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1 Introduction to Lie groups

This section is a summary of the content in [Kir08, p.1-44].
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1.1 Basics of Lie groups

Definition 1.1 (Lie group). A real Lie group is a set G equipped with a smooth manifold
structure and a group structure, such that multiplication and the inversion are smooth maps,
with a morphism of Lie groups: f : G → G′ is a smooth map of manifolds and morpisms
of groups G → G′. A complex Lie group is a complex analytic manifold equipped with an
analytic group structure. A Lie subgroup H ≤ G is a Lie group H ⊂ G that is an immersed
submanifold and subgroup. In particular, H is a Lie group, while a closed Lie subgroup is a
subgroup and submanifold.

Example 1.1. GLn(R), GLn(C) and many subgroups, eg. SLn, On, SOn, Un, SUn, . . .

Corollary 1.2. If G is a connected Lie group, then any neighbourhood U 3 1 generates G.

Theorem 1.3. If H EG normal closed Lie subgroup, then G/H is a Lie group.

Theorem 1.4. Let f : G1 → G2 be a morphism of Lie groups. Then H = ker f is a normal
closed subgroup. f induces an injective morphism G1/H → G2 and Im f ≤ G2 is a Lie subgroup.
If Im f is a submanifold, then it is a closed Lie subgroup and f : G1/H

∼=−→ Im f .

Example 1.2. The homomorphism (R,+)→ (R2,+), t 7→
(
t
tθ

)
induces an immersion (R,+)→

(R2/Z2) if θ is irrational. This is a Lie subgroup that is not closed.

Theorem 1.5. The universal covering of a Lie group is a Lie group.

Definition 1.6 (Left, Right, Adjoint Action). A Lie group G acts on itself by the following
actions: Left action Lg(h) = gh, Right action Rg(h) = hg−1, Adjoint action Adg(h) = ghg−1.

Corollary 1.7. Lg and Rg are transitive, they commute and Adg = LgRg.

Definition 1.8. A vector field v ∈ Vect(G) is left-invariant, if dLg(X(h)) = X(Lg(h)) = X(gh)
for all g ∈ G. Similarly for right- and bi-invariant vector fields and differential forms.

Theorem 1.9. The map v 7→ v(1) defines an isomorphism between the vector space of left-
invariant vector fields and T1G.

Proposition 1.10. Let K ∈ {C,R}, G be a K-Lie group, g = TeG and x ∈ g. Then there exists
a unique morphism of Lie groups γx : K→ G such that γ̇x(0) = x.

Definition 1.11 (Exponential Map). exp: g→ G, exp(X) = γX(1).

Example 1.3. For G = R we have g = R, γa(t) = ta and hence exp(a) = a.

Example 1.4. For G = S1 we have g = R and exp(a) = e2πia.

Example 1.5. For Lie groups G ⊂ GLn(K) this agrees with the exponential map on matrices.

Theorem 1.12. The exponential map satisfies: (1) it is a diffeomorphism between a neighbour-
hood of 0 ∈ g and 1 ∈ G. The local inverse map will be denoted log. (2) exp((t + s)x) =
exp(tx) exp(sx) for any s, t ∈ K, (3) for any morphism of Lie groups ϕ : G1 → G2 and any
x ∈ g1 we have exp(ϕ∗(x)) = ϕ(exp(x)).

Proposition 1.13. For sufficiently small x, y ∈ G we have exp(x) exp(y) = exp(µ(x, y)) for
some smooth map µ : G×G→ G defined on a neighbourhood of (0, 0).

Lemma 1.14. The Taylor series for µ is given by µ(x, y) = x + y + λ(x, y) + order≥3, where
λ : g× g→ g is bilinear and skew-symmetric.

Definition 1.15 (Commutator). We define [x, y] = 2λ(x, y).

Remark 1.6. exp(x) exp(y) = exp(x+ y + 1
2 [x, y] + . . . )
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Example 1.7. Let G ⊂ GLn(K), so that g ⊂ gln(K), then [x, y] = xy − yx.

Theorem 1.16 (Jacobi-Identity). [X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]].

Definition 1.17 (Lie Algebra). A Lie Algebra over K is a vector space g over K with a
K-bilinear skew-symmetric map [, ] : g× g→ g satisfying the Jacobi identity.

Definition 1.18 (Morphism of Lie Algebras). K-linear maps preserving the commutator.

Example 1.8. Any vector space g with commutator [x, y] = 0.

Example 1.9. Any associative algebra over K with [x, y] = xy − yx.

Theorem 1.19. Let G be a Lie group. Then g = T1G = Lie(G) has a canonical structure of
a Lie algebra. Every morphisms of Lie groups ϕ : G1 → G2 defines a morphism of Lie algebras
ϕ∗ : g1 → g2. In particular there is a map Hom(G1, G2)→ Hom(g1, g2). If G1 is connected, this
map is injective.

Example 1.10. LetM be a manifold, then X(M), the vector fields onM , with the commutator
bracket of vector fields is a Lie algebra.

Definition 1.20 (Subalgebra, Ideal). Let g be a Lie algebra over K, a subspace h ⊂ g is called
a Lie subalgebra if it is closed under commutator, [h, h] ⊂ h. h is called an ideal if [g, h] ⊂ h.

Theorem 1.21. Let H be a Lie subgroup of G. Then h = T1H is a Lie subalgebra of g = T1G.

Theorem 1.22. Let H be a normal closed Lie subgroup of G. Then h is an ideal in g and
Lie(G/H) = g/h. Conversely, if H is a closed subgroup, H,G connected and h is an ideal in g,
then H is normal.

Definition 1.23 (Center). The center z(g) = {x ∈ g | [x, g] = 0}, an ideal in g.

Theorem 1.24. Connected subgroups H ⊂ G 1:1↔ Lie subalgebras h ⊂ g.

Theorem 1.25. If G1 is connected and simply connected, then Hom(G1, G2) = Hom(g1, g2).

Theorem 1.26. Any fin-dim Lie algebra is isomorphic to a Lie algebra of a Lie group.

Corollary 1.27. For any finite dimensional Lie algebra g there is a unique up to isomorphism
connected simply connected Lie group G with Lie(G) = g. Any other connected Lie group G′

with Lie algebra g must be of the form G/Z for some discrete central subgroup Z ≤ G.

2 Nilpotent Lie groups and Algebras

For details, compare [CG90, p.1-24] and [FS82, p.1-8].

Definition 2.1 (Descending Central Series). g(1) = g, g(n+1) = [g(n), g].

Lemma 2.2. For all p, q ∈ N one has [g(p), g(q)] ⊂ g(p+q). In particular g(p) is an ideal in g.

Definition 2.3 (Nilpotent Lie Algebra and group). A Lie algebra g is called nilpotent if
there is n ∈ N such that g(n+1) = 0. If n is the smallest such integer, then g is called n-step
nilpotent. A Lie group G is called nilpotent if its Lie algebra is.

Definition 2.4 (Graded Nilpotent Lie Algebra). A nilpotent Lie algebra is called graded,
if it splits in g =

⊕r
i=1 gi with [gi, gj ] ⊂ gi+j .
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Example 2.1 (Heisenberg group of rank 3). The Heisenberg group and its Lie algebra:

H3(R) =


1 a b

0 1 c
0 0 1

 ∣∣∣∣∣∣ a, b, c ∈ R

 g = TidH3(R) =


0 α β

0 0 γ
0 0 0

 ∣∣∣∣∣∣ α, β, γ ∈ R

 .

This Lie algebra has a basis X =

0 1 0
0 0 0
0 0 0

, Y =

0 0 0
0 0 1
0 0 0

 und Z =

0 0 1
0 0 0
0 0 0

. The

only non-trivial commutator relation is [X,Y ] = Z. In particular, its descending central series
is g(1) = g, g(2) = 〈Z〉, g(k) = 0 otherwise. So g is a 3-step nilpotent Lie algebra and H3(R) a
nilpotent Lie group.

Example 2.2. The same remains true for the (2n+ 1)-dimensional Heisenberg group:

Hn(R) =





1 x1 . . . . . . xn z
1 0 . . . 0 y1

. . . . . .
...

...
. . . 0

...
1 yn

1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x1, . . . , xn, y1, . . . yn, z ∈ R


⊂ GL2n+1(R),

ie. this is also a nilpotent Lie group with 3-step nilpotent Lie algebra.

Lemma 2.5. If g is nilpotent, so are all subalgebras and quotient algebras of g.

Theorem 2.6 (Engel’s Theorem). [CG90, p.4]Let g be a Lie algebra and let α : g→ gl(V ) be
a homomorphism such that α(X) is nilpotent for all X ∈ g. Then there exists a flag (Jordan-
Hölder series) of subspaces 0 = V0 ⊂ V1 ⊂ . . . Vn = V with dimVj = j such that α(X)Vj ⊂ Vj−1

for all j ≥ 1 and all X ∈ g. In particular α(g) is a nilpotent Lie algebra.

Corollary 2.7. If g is a Lie algebra such that adX : g → g, Y 7→ [X,Y ] is nilpotent for every
X ∈ g, then g is nilpotent.

Theorem 2.8 (Birkhoff Embedding Theorem). [CG90, p.7] Let g be a nilpotent Lie algebra
over K. Then there is a fin-dim vector space V together with an injection ι : g→ gl(V ) such that
ι(X) is nilpotent for all X ∈ g.

2.1 Nilpotent Lie groups

We only consider connected simply-connected Lie groups for now.

Remark 2.3. A Lie group G is called nilpotent if its Lie algebra g is nilpotent.

Lemma 2.9. A Lie group is nilpotent if and only if for its decending central series given by
G(1) = G and G(j+1) = [G,G(j)] one has G(j) = 0 for some j.

Theorem 2.10. Let X,Y ∈ g such that [X,Y ] = 0. Then exp(X) exp(Y ) = exp(X + Y ) =
exp(Y ) exp(X).

Theorem 2.11. For small X,Y ∈ g one has exp(X) exp(Y ) = exp(µ(X,Y )) for some g valued
function µ which is given by the series convergent in some neighbourhood of (0, 0):
µ(X,Y ) = X + Y +

∑
n≥2 µn(X,Y ) where µn(X,Y ) is a Lie polynomial in X,Y of degree n.

Corollary 2.12. The group operation in a connected Lie group G can be recovered from g.
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Proof. If G is connected, then it is generated by any nbhd of 1. In small nbhds one has:

xy = exp(X) exp(Y ) = exp(µ(X,Y ))

= exp

(
X + Y +

1

2
[X,Y ] +

1

12
([X, [X,Y ]] + [Y, [Y,X]]) + . . .

)
,

where X = log(x) and Y = log(y).

Remark 2.4. For nilpotent Lie groups, the sum is finite.

Theorem 2.13 ([CG90, p.13], [FS82, p.3]). G a nilpotent Lie group. Then:

(1) exp: g→ G is a diffeomorphism;

(2) The Campbell-Baker-Hausdorff formula holds for all X,Y ∈ g;

(3) Identifying g
exp−−→ G, the group law (x, y)→ xy is a polynomial map;

(4) If λ denotes a Lebesgue measure on g, then λ ◦ log is a bi-invariant Haar measure on G.

3 Homogeneous Lie Group

In this section we discuss nilpotent Lie algebras and groups in the spirit of Folland and Stein’s
book [FS82] as well as introduce homogeneous (Lie) groups. For more analysis and details in
this direction we refer to the recent open access books [FS82, FR17, RS19].

Proposition 3.1 (Exponential mapping and Haar measure). [RS19] Let G be a connected
and simply-connected nilpotent Lie group with Lie algebra g. Then:

1. The exponential map exp is a diffeomorphism from g to G. Moreover, if G is identified
with g via exp, then the group law (x, y) 7→ xy is a polynomial map.

2. If λ denotes a Lebesgue measure on g, then λ◦ exp−1 is a bi-invariant Haar measure on G.

Definition 3.2 (Dilations on a Lie algebra). A family of a Lie algebra g is a family of linear
mappings {δr : g→ g | r > 0} which satisfies:

1. the mappings are of the form δr = exp(A log r) for some fixed A being a diagonalisable
linear operator on g with positive eigenvalues.

2. each δr is a morphism of the Lie algebra g, that is, a linear mapping from g to itself which
respects the Lie bracket:

∀X,Y ∈ g, r > 0 [DrX,DrY ] = Dr[X,Y ]

3. In particular, δrs = δrδs for all r, s > 0. If α > 0 and {δr} is a family of dilations on g,
then so is {δ̃r}, where

δ̃r := δrα = exp(αA log r).

By adjusting α we can always assume that the minimum eigenvalue of A is equal to 1.

Remark 3.1. We call the eigenvalues of A the dilations’ weights. The set of dilations’ weights,
or in other worlds, the set of eigenvalues of A is denoted by WA.

Proposition 3.3 (Lie algebras with dilations are nilpotent). If a Lie algebra g admits a
family of dilations then it is nilpotent.

Remark 3.2. Not all nilpotent Lie algebras admit a dilation structure: an example of a (nine-
dimensional) nilpotent Lie algebra that does not allow any compatible family of dilations was
constructed by Dyer [Dye70].
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Definition 3.4 (Graded Lie algebras and groups). A Lie algebra g is called graded if it is
endowed with a vector space decomposition (where all but finitely many of the Vk’s are 0 )

g = ⊕∞j=1Vj such that [Vi, Vj ] ⊂ Vi+j
Consequently, a Lie group is called graded if it is a connected simply-connected Lie group whose
Lie algebra is graded.

Definition 3.5 (Stratified Lie algebras and groups). A graded Lie algebra g is called
stratified if V1 generates g an algebra. In this case, if g is nilpotent of step m we have

g = ⊕mj=1Vj , [Vj , V1] = Vj+1

and the natural dilations of g are given by

δr

(
m∑
k=1

Xk

)
=

m∑
k=1

rkXk, (Xk ∈ Vk)

Consequently, a Lie group is called stratified if it is a connected simply-connected Lie group
whose Lie algebra is stratified.

Definition 3.6 (Homogeneous Lie groups). Let δr be dilations on G. We say that a Lie
group G is a homogeneous Lie group if:

(a) It is a connected and simply-connected nilpotent Lie group G whose Lie algebra g is en-
dowed with a family of dilations {δr}.

(b) The maps exp ◦δr ◦ exp−1 are group automorphism of G

Remark 3.3. By Proposition Proposition 3.1, the exponential mapping exp is a global diffeo-
morphism from g to G, it induces the corresponding family on G which we may still call the
dilations on G and denote by δr. Hence δ can be as an representation of semi-group (R,×) on
g. Thus, for x ∈ G we will write δr(x) or abbreviate it writing simply rx.

Lemma 3.7. Graded Lie algebras are naturally equipped with dilations. If a Lie algebra g has
a family of dilations such that the weights are all rational, then g has a natural gradation.

Proof. Let g =
⊕r

j=1 gj and let α = min{1 ≤ j ≤ r | gj 6= 0}. Then δr = exp(A log r), where A
is the operator defined on gj by AX = j

αX for X ∈ gj is a family of dilations.

Proposition 3.8. The following hold:

(i) A Lie algebra equipped with a family of dilations is nilpotent.

(ii) A homogeneous Lie group is a nilpotent Lie group.

Proof. Let A denote the set of eigenvalues of A. For a ∈ A let Wa ⊂ g denote the corresponding
eigenspace. Then for X ∈ Wa one has δrX = raX. Hence, for X ∈ Wa and Y ∈ Wb one
has δr[X,Y ] = [δrX, δrY ] = ra+b[X,Y ], thus [Wa,Wb] ⊂ Wa+b. Since a ≥ 1 we see that
g(j) ⊂

⊕
a≥jWa. Since A is finite it follows that g(j) = 0 for j sufficiently large.

Example 3.4 (Abelian groups). The Euclidean space Rn is a homogeneous group with dilation
given by the scalar multiplication. The abelian group (Rn,+) is also graded: its Lie algebra Rn
is trivially graded, i.e. V1 = Rn.

Example 3.5 (Heisenberg groups). If n is a positive integer, the Heisenberg group Hn is the
group whose underlying manifold is Cn × R and whose multiplication is given by

(z1, . . . , zn, t)
(
z′1, . . . , z

′
n, t
′) =

(
z1 + z′1, . . . , zn + z′n, t+ t′ + 2 Im

n∑
k=1

zkz
′
k

)
.
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The Heisenberg group Hn is a homogeneous group with dilations

δr (z1, . . . , zn, t) =
(
rz1, . . . , rzn, r

2t
)
.

It is also graded: its Lie algebra gn can be decomposed as

gn = V1 ⊕ V2 where V1 = ⊕ni=1RXi ⊕ RYi and V2 = RT

Example 3.6 (Upper triangular groups). Let G be the group of all n×n real matrices (aij)
such that aii = 1 for 1 ≤ i ≤ n and aij = 0 when i > j. Then G is a homogeneous group with
dilations

δr (aij) = rj−iaij

Remark 3.7. A gradation over a Lie algebra is not unique: the same Lie algebra may admit
different gradations. For example, any vector space decomposition of Rn yields a graded structure
on the group (Rn,+) . More convincingly, we can decompose the 3 dimensional Heisenberg Lie
algebra h1 as

h1 =
3⊕
j=1

Vj with V1 = RX1, V2 = RY1, V3 = RT

This last example can be easily generalised to find several gradations on the Heisenberg groups
Hno , no = 2, 3, . . . , which are not the classical ones given in Example Example 3.5. Another
example would be

h1 =

8⊕
j=1

Vj with V3 = RX1, V5 = RY1, V8 = RT

and all the other Vj = {0}.

Remark 3.8. A gradation may not even exist. The first obstruction is that the existence of
a gradation implies nilpotency; in other words, a graded Lie group or a graded Lie algebra are
nilpotent. Even then, a gradation of a nilpotent Lie algebra may not exist. As a curiosity, let us
mention that the (dimensionally) lowest nilpotent Lie algebra which is not graded is the seven
dimensional Lie algebra given by the following commutator relations:

[X1, Xj ] = Xj+1 for j = 2, . . . , 6, [X2, X3] = X6

[X2, X4] = [X5, X2] = [X3, X4] = X7

They define a seven dimensional nilpotent Lie algebra of step 6 (with basis {X1, . . . , X7}) .
It is the (dimensionally) lowest nilpotent Lie algebra which is not graded.

Remark 3.9. Different gradations may lead to "morally equivalent” decompositions. For in-
stance, if a Lie algebra g is graded by g = ⊕∞j=1Vj then it is also graded by g = ⊕∞j=1Wj where
W2j′+1 = {0} and W2j′ = Vj′ . This last example motivates the presentation of homogeneous Lie
groups: indeed graded Lie groups are homogeneous and the natural homogeneous structure for
the graded Lie algebra

g = ⊕∞j=1Vj = ⊕∞j=1Wj

is the same for the two gradations.

Remark 3.10. There are plenty of graded Lie groups which are not stratified, simply because
the first vector subspace of the gradation may not generate the whole Lie algebra (it may be {0}
for example). Moreover, a direct product of two stratified Lie groups is graded but may be not
stratified as their stratification structures may not ‘match’.
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4 Coadjoint action and unitary dual

In the following section G will always be a Lie group (not necessarily nilpotent) with Lie
algebra g, and its dual Lie algebra being g∗. There are several key features of nilpotent Lie
groups which we use here:

1. Because the finite filtration structure, we have both Campbell-Baker-Hausdorff formula
and adjoint action on g both are polynomials.

2. The Kirillov’s Lemma: For g non-commutative nilpotent Lie algebra with centre z(g)
1-dimensional, then g admits a splitting:

g = RZ ⊕ RY ⊕w = RX ⊕ g0

Moreover, we have Z spans the center of g with [X,Y ] = Z and g0 the centralizer of Y
and an ideal.

First note there is a natural coadjoint action of G on g∗, where for g ∈ G,X ∈ g and l ∈ g∗

we have:
(Ad∗(g)l)(X) = l(Ad(g)−1(X))

with its differential at unit element e gives the derived coadjoint action of g∗ via:

((ad∗X)l)(Y ) = l(ad(−X)Y ) = l([Y,X])

Definition 4.1. If g is a Lie algebra and l ∈ g with its radical defined as:

rl := {Y ∈ g |Bl(X,Y ) = 0 ∀X ∈ g}

with the natural bilinear form Bl defined as Bl(X,Y ) = l([X,Y ]).

Note Bl defines an antisymmetric form, and the radical is even dimensional, with the isotropic
subspace (i.e., space on which Bl is 0) have maximal dimension dim g− 1

2 dim g/rl := n− k. We
call such spaces polarizing subalgebra.

Theorem 4.2. for each l ∈ g there always exists a polarizing subalgebra. Moreover, if g0 is a
subalgebra of codimension 1, then there are two mutually exclusive possibilities:

1. rl ⊆ g0 ⇔ rl ⊆ rl0 ⇔ rl is of codimension 1 in rl0. In this case, any polarizing subalgebra
for l0 is also polarizing for l.

2. rl 6⊆ g0 ⇔ rl ⊇ rl0 ⇔ rl0 is of codimension 1 in rl. In this case, If m is a polarizing
subalgebra then m0 = m ∩ g0 is a polarizing subalgebra for l0 with m0 is of codimension 1
in m and m = rl + m0.

Remark 4.1. The proof of this theorem uses Kirillov’s lemma.

If we choose a strong Malcev basis, then the polarizing subalgebra for l can be reconstructed
in a step-by-step way by taking

ml =
n∑
j=1

r(lj) where lj = l|gj

for {gj}j a chain of ideals such that dim gj = j

Remark 4.2. For various examples of coadjoint actions, see [CG90, Example 1.3.7 to 1.3.11].

Now Kirillov theory, which founded on the representation of Heisenberg group, gives our the
complete description of Ĝ for G a nilpotent Lie group. For a starter, we begin with a subgroup
M on which Bl vanishes, then we induces the representation to that of a representation of G.
To make it more explicit:
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Definition 4.3. Given a representation of closed subgroupK of G together with a representation
(π,Hπ), the induced representation of G, which we denote as IndGK(π) is a representation of
G with:

Hσ :=
{
f : G→ Hπ Borel measurable | f(kg) = π(k)f(g) and

∫
K\G
‖f(g)‖2dġ <∞

}
where dġ is the right invariant measure (which always exists for unimodular groups). Then G
acts on the right:

σ(x)f(g) = f(gx) ∀x ∈ G

We choose now K to be M := expm for m the polarizing subalgebra of g with respect to
l ∈ g∗. Then M admits a 1-dimensional representation:

χl,M : M → S1 expY 7→ e2πil(Y )

and form induced representation πl,M := IndGM (χl,M ). The following theorems shows this actually
characterizes all irreducible unitary representations of G (in the nilpotent case!):

Theorem 4.4 ([CG90, Theorem 2.2.1 to 2.2.4]). Let G be a nilpotent Lie group with Lie
algebra g. Then:

1. For each l ∈ g∗ there exists a polarizing subalgebra m such that πl,M is irreducible. More-
over, this is independent of choice of polarizing subalgebra m, hence we may write πl =
[πl,M ]

2. Let π ∈ Ĝ, then there is a l ∈ g∗ such that π ∼= πl. Moreover, πl = πl′ if and only if they
are in the same coadjoint orbit.

Remark 4.3 (Sketch of proof of Theorem 4.4). One key feature of the nilpotent Lie group
is the following “onion-peeling” feature which we describe below. Consider h is a one-dimensional
central subalgebra of g with respective Lie group H. Suppose l ∈ g∗ vanishes on h (hence every
polarizing subalgebra m for l contains h), then we quotient out h which fit into the following
diagram:

M G m g

M G m = m/h g = g/h

pM=p|M

log

p

and it is straightforward to check:

χl,M = χl,M ◦ pM πl,M = πl,M ◦ p

Hence by using induction we suffices to check the case when h has only one-dimensional
center, on which l ∈ g∗ is nonvanishing. But this is very much captured by Stone-von Neumann
theorem [CG90, Theorem 2.2.9]:

Theorem 4.5 (Stone-von Neumann). Let ρ1, ρ2 be two unitary representations of R in the
same Hilbert space Hρ satisfying the covariance relation:

ρ1(x)ρ2(y)ρ1(x)−1 = e2πiλx·yρ2(y) ∀x, y ∈ R λ 6= 0

then Hρ admits a splitting into
⊕

i∈NHi of invariant irreducible subspaces under joint action.
Moreover each Hk are isometric to L2(R), under which ρi transforms to ‘canonical’ actions on
L2(R):

[ρ1(x)f ](t) = f(t+ x) [ρ2f ](t) = e2πiλytf(t)

for each λ 6= 0, these two ρi act irreducibly on L2(R).
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Now the killing blow is by the following byproduct of Kirillov’s theorem, which allows us to
do induction on dimG.

Theorem 4.6 ([CG90, Proposition 2.3.4]). Let G be nilpotent Lie group with one dimensional
center Z(G) = exp(RZ). Choose splitting RZ ⊕ g0 as in Kirillov’s Lemma, with G0 = exp(g0).
Then for each π ∈ Ĝ that does not vanishes on the center, then we can find a σ ∈ Ĝ0 such that
indGG0

(σ) ∼= π.

5 Parametrization of coadjoint orbits

Now we have a complete characterization of Ĝ and to apply Plancherel technique we further
need the Plancherel measure on Ĝ. Before the key theorem, we see that the orbits of unipotent
action can only pass through each pointwise fixed hyperplane once, as vindicated by the following
theorem:

Lemma 5.1. Assume G acts on V unipotently with G · v0 = v0, then (G · v) ∩ (v + Rv0) = {v}
or v + Rv0 for any v ∈ V .

The key theorem of the following discussion is as follows:

Theorem 5.2 (Chevalley-Rosenlicht). [CG90, Theorem 3.1.4] Let G be a m-dimensional
connected group acting unipotently on a real vector space V . If v ∈ V , then we can parametrize
the G-orbit as:

G · v = {exp(t1X1) · · · exp(tkXk) · v | ti ∈ R}

which is a closed submanifolds of V . Choose bases {ei} with respect to Jordan Hölder series Vi as
in Engel’s Theorem such that Vj = R− span{ej+1, · · · em}, we define a map Q in polynomials
Qj:

Q : Rk 7→ G · v (t1, · · · tk) 7→ exp(t1X1) · · · exp(tkXk) · v =
m∑
i=1

Qj(t1, · · · , tk)ej

Then we can write partition of {1, 2, · · · ,m} = S t T with S = {j1 < · · · < jk} such that Qj
depends only on {ti}ji≤j. Moreover, Qji is linear in ti:

Qji = ti +Q′ji(t1, . . . , ti−1)for1 ≤ i ≤ k

This can be seen as a refinement of CBH-formula, which gives a complete description of
polynomial actions on V . In particular, we see G · v is an affine variety with an ‘nice’ invariant
measure like Rn:

Lemma 5.3 ([CG90, Corollary 3.1.5]). The inverse map are polynomials by P1, . . . , Pm : Rk → R
such that P =

∑m
j=1 Pjej where Pj depends only on those {ui | ji ≤ j}. Moreover, Pjis are

orthogonal projections to ui for all 1 ≤ i ≤ k.

Sketch of Proof. Denote ui = Qji(t1, . . . , tk) and we see u1 = t1 and recursively the following
can be defined.

Remark 5.1. Note the partition S only depends on the orbit (but not the particular choice of
representatives) and these are precisely those dimensions on which the orbits increase dimension
by passing from V/Vj−1 to V/Vj . Moreover, given splitting V = VS ⊕ VT base on S, T , and the
following map:

Rk G · v VS ⊕ VT

u = (u1, . . . , uk) (P1(u), . . . , Pm(u)) (uj1 , . . . , ujn)⊕ (Pt1(u), . . . , Ptm−k(u))

P permutation of basis

and we see from the map that G · v is just the graph of {Pj | j ∈ T}.
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Now recall each set U ⊆ Rn is said to be Zariski-open if it is a union of sets {x ∈ Rm :
P (x) 6= 0} for some polynomial P . We define the set of generic orbits in V to be

{v ∈ V | dimG · v is maximal in V/Vj for all 1 ≤ j ≤ m}

which is a Zariski-open G-invariant set byChevalley-Rosenlicht. All orbits in it have maximum
dimension, but it need not coincide with the full set of orbits in V of maximal dimension. Upon
choosing VS as “representatives” we see VT are parameters of orbits. So we want to show U
admits a locally trivial structure in V under Zariski topology:

Theorem 5.4 ([CG90, Theorem 3.1.6]). Use the setting of Chevalley-Rosenlicht, then there
exists a Zariski-open set U ⊆ V such that for rational functions {Ri(x, t)}mi=1 of (x, t) ∈ Rm×Rk,
if v =

∑m
i=1 xiei, then:

1. The functions Ri(x, t) are rational nonsingular on U × Rk and for v ∈ U , R(x, t) =∑m
i=1Ri(x, t)ei maps Rk diffeomorphic onto the orbit G · v;

2. For fixed x, Rj(x, t) has all behviours of Qj(t) in Chevalley-Rosenlicht, whereas in
general:

Rj(x, t) =

{
xj +R′j(x1, . . . , xj−1, t1, . . . , ti) if j /∈ S
ti + xji +R′ji(x1, . . . xji−1, t1, . . . , ti−1) if j = ji ∈ S

with R′ rational and i the largest index in S such that ji < j. Moreover, R1(x, t) = x1.

Remark 5.2. Note The sets S and U are more specific as the complement of indices of generic
dimensions. i.e., by choosing the dj the generic dimension of G-orbits in V/Vj and k = dm the
generic dimension of orbits in V . Now:

U := {v ∈ V | dimG · v = d where v ∈ V/Vj for 1 ≤ j ≤ m}
S := {j1 < · · · jk | for each ji, dj1 6= dji − 1}

Dually we have a completely analogous version of P map in Lemma 5.3 that extends them
to (x, u) ∈ Rm ×Rk. For details of statements consult [CG90, Corollary 3.1.8]. Having these all
settled, we are ready to describe the local structure already:

Theorem 5.5 ([CG90, Theorem 3.1.9]). Inherited the setting as in this section, we have:

1. Every G-orbit in U meets VT in a unique point. In particular, U ∩ VT is nonempty and
Zariski-open in VT ;

2. The local trivialization on U , denoted by φ : (U ∩ VT )× VS → U are birational nonsingular
bijections such that

(a) For each v ∈ VT ∩ U , the map

Pv : VS (U ∩ VT )× VS U U ∩ VT

w (v, w) φ(v, w) pT (φ(v, w))

ι pT |U

with pT the orthogonal projection onto VT -component;
(b) The Jacobian determinant of φ is 1.

Summing them up, we see a nice parametrization of orbit G · v by u = (u1, . . . , ul) with
du1 · · · duk an invariant measure. (See [CG90, 3.1.10])

Example 5.3. Consider simple case S := {2, 4} ⊆ {1, 2, 3, 4}, then according to the lemma
above, we have:

P (u1, u2) = (c, P2(u1), P3(u1), P4(u1, u2)) = (c, u2, P3(u1), u2)

Q(t1, t2) = (b,Q2(t1), Q3(t1), Q4(t1, t2)) = (b, t1, Q3(t1), t1 +Q′4(t2))
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6 Plancherel Formula of nilpotent Lie groups

The highlight of this discussion on representation theory ends in the concrete Plancherel formula
on nilpotent group case. We state the main theorem first.

Theorem 6.1 (Plancherel inversion theorem). [CG90, Theorem 4.3.9] Let {X1, . . . , Xn} be
a strong Malcev basis for a nilpotent Lie algebra g with dual basis {l1, . . . ln}. Define U to be the
set of generic coadjoint orbits with index set S = {i1 < · · · < i2k} for rl\g and T the complement
of S. Then we define the Pfaffian associated to l by:

|Pf(l)|2 = detB, where Bjk = Bl(Xij , Xik)

as above. Then for φ ∈ S(G), the function evaluated at e is given by an absolutely convergent
integral:

φ(e) =

∫
U∩VT

|Pf(l)| trπl(φ) dl

with dl the Lebesgue measure on VT = R − span{li : i ∈ T} such that the cube determined by T
has measure 1.

To validify this theorem we need to first explain trπ. It is indeed true that every π ∈ Ĝ
gives a trace-class operator on L2(Rk) for each Schwartz ‘test’ function φ ∈ S(G), where k :=
dimRl\G

2 the induced dimension. To give a more detailed descripion, one however needs to choose
parametrization of the orbit space. We first pin down the parametrization:

Let π = πl ∈ Ĝ with m the polarizing subalgebra for L. Fix a basis {X1, . . . , Xn} a weak
Malcev basis through m. Then we define the parametrization as follows by implicitly using
Theorem A.1:

γ : Rn → G (s, t) 7→ exp s1X1 · · · · · exp(spXp) · exp(t1Xp+1) · · · · · exp(tkXn)

α : Rp →M s 7→γ(s, 0)

β : Rk →M\G t 7→γ(0, t)

with the invariant measures dm, dg, dġ corresponding with the Lebesgue measures in such that
in light of [CG90, Lemma 1.2.12].

Theorem 6.2 ([CG90, Theorem 4.2.1, Proposition 4.2.2. ff]). Fix the setting as above.
Take the standard basis realization of π = πl in L2(Rk) relative to the given Malcev basis. Then
for each φ ∈ S(G), π(φ) isof trace class with Schwartz kernel Kφ ∈ S(Rk × Rk), i.e.:

for all f ∈ L2(Rk) π(φ) ◦ f(s) =

∫
Rk
Kφ(s, t)f(t)dt

with θπ(φ) := trπ(φ) a tempered distribution on S(G), and the following integral absolutely
convergent:

θπ(φ) =

∫
Rk
Kφ(s, s)ds

Moreover, using the parametrization α, β, γ above, the kernel Kφ admits the form:

Kφ(t′, t) =

∫
M
χl(m)φ(β(t′)−1mβ(t))dm

The integral being absolutely convergent, and χ(expY ) = e2πil(Y ) for Y ∈ m.

with the trace of representation accordingly expression as:

trπ(φ) =

∫
Rk
Kφ(u, u)du =

∫
R

[∫
m
e2πil(H)φ(β(u)−1 expHβ(u))dH

]
du (Kernel of Trace)
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Now the choice of basis and hence α, β, γ allows us to fix the invariant measure on G and g
respectively, hence we can define Euclidean Fourier transform on G (resp. on g ):

for all l ∈ g∗

{
f̂(l) =

∫
g e

2πil(X)f(expX)dX for f ∈ S(G)

Ff(l) =
∫
g e

2πil(X)f(X)dX for f ∈ S(g)

As we are using invariant Haar measure now, this brings life to a more intrinsic version of trace
formula:

Theorem 6.3 ([CG90, Theorem 4.2.4]). Given π ∈ Ĝ for G simply connected nilpotent Lie
group, which corresponds to the coadjoint orbit Ol ⊆ g∗ of l, then there is a unique choice of
invariant measure µ on Ol such that:

trπ(φ) =

∫
g∗
φ̂(l)µ(dl)

for all φ ∈ S(G). More precisely, it can described by choosing l ∈ g∗ such that π = πl. Then
let {U1, . . . , Ur, X1, . . . , X2k} be any weak Malcev basis through rl. Choose B ∈ M2k(R) to be a
matrix corresponding to Bl restricted to {Xi}, then the Lebesgue measure defines an invariant
measure dġ on Rl\G such that for any Schwartz function φ:

trπ(φ) = | detB|1/2
∫
R2k

φ̂(l · γ(x))dx

= | detB|1/2
∫
Rl\G

φ̂(l · g)dġ

Remark 6.1. In the case G is not simply connected, the case resembles that of aforementioned
case, albeit somewhat more complicated. To begin our discussion, we need to fix the Haar
measure beforehand. Choose dx0 on G̃ with corresponding Lebesgue measure dX on g.Then for
the lattice Λ on g we choose dẊ on g/Λ to be Λ-equivariant, i.e.:∫

g
φ(X)dX =

∫
g/Λ

(∑
Z∈Λ

φ(X + Z)

)
dẊ ∀φ ∈ S(g)

Using this set of measures to define L1(g/Λ) and for φ ∈ L1(g/Λ) we define the Fourier transform
on its dual lattices g∗Z := {l ∈ g∗ | l(Γ) ⊆ Z} to be:

φ̂(l) =

∫
g/Λ

φ(X)e2πil(X)dẊ

note e2πil(X) takes constant value on Λ-cosets on dual lattices. Also we make the Haar measure
dx on G to be compatible with the Galois covering, i.e.:

∫
G̃
φ(x0)dx0 =

∫
G

∑
γ∈Γ

φ(xγ)

 dx ∀φ ∈ Cc(G̃)

Theorem 6.4 ([CG90, Theorem 4.4.4]). Let G be a connected nilpotent Lie group with G̃
its covering group, and Γ ⊆ G̃ a discrete central subgroup such that G ∼= G̃/Γ. If g is the
corresponding Lie algebra, we define Λ = log Γ. Fix dX, dẊ, dx, dx0 as above.

If π ∈ Ĝ then π corresponds to some coadjoint orbit Ol ⊆ g∗Z and:

trπ(f) =

∫
O1

f̂ ◦ exp(l)dθl(l
′) ∀f ∈ S(G)

with dθl the invariant measurable on Ol in the trace formula for the representation σl ∈
̂̃
G

associated with Ol.
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To make the exposition complete, there are three key items to be ascertained:

1. The measure present in The measure dl in Theorem 6.1. In nilpotent cases this is really
canonical, as there is a natural symplectic structure on the orbit, for which case we take
the symplectic volume form to be its measure. To be more explicit, fix l ∈ g∗, then the map
ϕ = ϕl := l· the right action gives a map G → O which quotients to be a diffeomorphism
Rl\G → O. Differentiate at e gives dϕ and we define the canonical symplectic form
omega to be the canonical symplectic form on dual tangent space, which is here g∗ by:

ω(dϕ(X), dε(Y )) = l([X,Y ]) for all X,Y ∈ g

It is easy to check ω is Ad∗G-invariant and we take the canonical measure to be the
measure associated to the volume form µ = ω∧n on g∗.

2. Recall a few notions:

(a) the self-dual measure associated with any nondegenerate bilinear form B, i.e., the
form on which we define Fourier transform as:

Fφ(v) =

∫
V
f(v′)e2πiB(v,v′)dm(v′) φ ∈ S(G)

and then we say m is self-dual if ‖φ‖22 = ‖Fφ‖22.
(b) The tempered distribution corresponding to π = πl, i.e., the distribution θπ on
S(G) such that 〈θπ, φ〉 = trπφ for all φ ∈ S(G).

Then the measure on each orbit can be further identified with the self-dual Euclidean
measure dm on R2k w.r.t. Bl, the canonical measure µ on orbit Ol and the tempered
distribution θπ in an canonical way. i.e., by {U1, . . . , Ur, X1, . . . , X2k} the weak Malcev
basis through the radical rl and identify x ∈ R2k with X =

∑
xjXj ∈ r\g. Then:

(a) dm = |detB|1/2dx1 · · · dx2k where Bij = Bl(Xi, Xj);
(b) The map f := x 7→ Ad∗(expxX)−1l, which is a map between R2k and Ol, transforms

dm to θl on Ol and to (2kk!)−1µl the canonical invariant measure on Ol.

3. Parametrization of the tempered distribution θl based on actual choice from Theorem 5.5.
Other than choosing a weak Malcev basis, we can identify the dual orthogonal basis kS :=
V ⊥T = R− span{Xi : i ∈ S} and kT := V ⊥S respectively. THne the basis Xi gives a map:

γ :kS → G
2k∑
j=1

xjXij 7→ expxX

fl := l · γ :kS → Ol x 7→ Ad∗(γ(x))−1l

Then γ(kS) defines a cross-section for Rl\G which transforms the Lebesgue measure m1

on kS (such that the unit cube has mass 1) to a right-invariant measure on Rl\G, with the
constant given by Pfaffian, i.e., θl = (fl)∗(|Pf(l)|m1).

7 Infinitesimal representations and characters of nilpotent Lie
groups

To wrap up the discussion, we will discuss briefly about the infinitesimal character of π ∈ Ĝ.

Definition 7.1. Let G be a Lie group and let π be a representation of G on a Hilbert space Hπ.
A vector v ∈ Hπ is said to be smooth or of type C∞ if the function

G 3 x 7→ π(x)v ∈ Hπ
is of class C∞. We denote by H∞π the space of all smooth vectors of π.
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The following is a necessary preparation to introduce the notion of the infinitesimal repre-
sentation and of the operator π(X). This will be of fundamental importance in the sequel.

Proposition 7.2. Let G be a Lie group with Lie algebra g. Let π be a strongly continuous
representation of G on a Hilbert space Hπ. Then for any X ∈ g and v ∈ H∞π , the limit

lim
t→0

1

t
(π (expG(tX)) v − v)

exists in the norm topology of Hπ and is denoted by π(X)v. Each π(X) leaves H∞π invariant,
and π is a representation of g on H∞π satisfying

∀X,Y ∈ g π(X)π(Y )− π(Y )π(X)− π([X,Y ]) = 0

Consequently, π extends to a representation of the Lie algebra U(g) on H∞π with π(0) = 0 and
π(1) = 0

Definition 7.3. Let G be a Lie group with Lie algebra g and let π be a strongly continuous
representation of G on a Hilbert space Hπ. The representation π defined above is called the
infinitesimal representation associated to π. We will often denote it also by π. Consequently, for
T ∈ U(g) or for its corresponding left-invariant differential operator.

First we find a suitable parametrization of universal enveloping algebra U(g), then we see
that using this characterization together with a generalized version of Schur’s Lemma to yield
the fact the the center of U(g), which we denote as Z(g), acts on smooth vectors by scalars.

Remark 7.1. The reader should note this pattern of infinitesimal character is generally the
same for semisimple Lie algebras, though the details are largely different. In semisimple cases,
we construct a Harish-Chandra homomorphism. Something to be added later on...

Definition 7.4. Let g be a finite-dimensional Lie algebra over C and let T (g) :=
∑∞

r=0

⊗r g
the tensor algebra of g, and the universal enveloping algebra U(g) is the quotient of T (g)
by two sided ideal generated by:

{(X ⊗ Y − Y ⊗X − [X,Y ]) | X,Y ∈ g}

By Poincaré-Birkhoff-Witt Theorem we can find a canonical basis fo U(g) by monomials:

Xα = Xα1
1 . . . Xαn

n where α = (α1, . . . , αn) is a multi-index

whereXi are a basis of g. LetG be an analytic group with Lie algebra g. Now we can identify U(g)
with the space of left-invariant differential operator D(G) via the following algebra isomorphism:
Given X ∈ g, then assign to it a left-invariant vector field X̃ via:

X̃f(x) =
d

dt
f(x · (exp tX))

∣∣
t=0

One can also take it as an first-order differential operator. Now extend the map to U(g) via uni-
versal property. Conversely, given a differential operator D ∈ D(GR), we realize it as an element
in U(g) use the equation above. Denote Z(g) the centre of U(g). By [Kna86, Proposition 3.8]
we can identify the centre with all G-invariant differential operator, i.e., if one (hence all) of the
following holds true:

D ∈ Z(g)⇔ DX = XD ⇔ eadXD = D ⇔ Ad(g)D = D for all X ∈ g, g ∈ G

If we take the degree the basis above to be degree 1, then it gives a natural grading structure by
index degree. Denote S(g) to be its associated graded ring, which can be seen to be identified
with the symmetric algebra of g via extending the map gid : S1(g) = U1(g)/U0(g)→ g. This can
be further identified with the polynomial algebra C[g∗] as follows:

φ : S(g) −→ C[g∗] Xα = Xα1
1 . . . Xαn

n 7→ (Xα : l 7→ l(X1)α1 . . . l(Xn)αn)

This isomorphism φ when restricted to Ad∗G-invariant subspace, gives an characterization of
Z(g).

15



Theorem 7.5 ([CG90, Corollary 3.3.3 and Theorem 3.3.4]). Define C[g∗]G and Y(g) to be the
following subspaces of C[g∗] and S(g) respectively:

C[g∗]G := {f ∈ C[g∗] | (adX)f = 0 ∀X ∈ g}
Y(g) := {P ∈ S(g) | (adX)P = 0 ∀X ∈ g}

Then C[g∗] is the set of Ad∗G-invariant polynomials on g∗, while φ above gives an isomorphism
(of algebras) between C[g∗]G and Y(g). Moreover, the following symmetrization map S gives a
linear bijection between S(g) and U(g):

S : S(g) −→ U(g)Y1 . . . Yr 7→
1

r!

∑
σ∈Sr

Yσ1 · · ·Yσn

averaging the value of all r-permutations. If we further assume G and g to be nilpotent, then S
gives an algebra isomorphism between Y(g) and Z(g).

Remark 7.2. The last statement again uses Kirillov’s Lemma as a key input of nilpotency.

To end our discussion we are satisfied with quoting the following theorem:

Theorem 7.6 ([Pou72, Corollary 3.5] and [CG90, Theorem 4.6.2]). Given a continuous unitary
representation π of Lie group G. If A ∈ Z(g), then A acts on smooth vectors of Hπ as scalars. If
furthermore G is assumed to be nilpotent, then by identifying the A with its image S(A) ∈ C[g∗],
which is a polynomial on g∗, we can explicitly computed the infinitesimal character as:

π(A) = S(A)(2πil) · I where l ∈ Oπ

This chapter will be more related to functional analysis as it is dealing with unbounded
operators. However, in the end we will give a theorem found by Nelson in [Nel59], which integrates
a Lie algebra representation to a unitary Lie group representation iff the Laplace operator is
essentially self-adjoint. All the notions just mentioned will be defined properly in the following.
We first start with the definition of unbounded operators and some of their properties, before
we introduce the absolute value of an operator, which will be crucial for estimations on the way
to Nelson’s theorem.

Note that everything, which is done in the following, can also be established for Hilbert
modules as it was shown in [Pie06].

8 Unbounded Operators and Analytic Vectors

In the following we will introduce (unbounded) operators, which crucially depend on their do-
main. Because of this it is not possible to apply an operator on every vector in the Banach or
Hilbert space. However, in case of operators that map their domain on subspaces, which are not
part of the domain, it is not even possible to square the operator. It is the number of repeated
applications of the operator, which gives us a definition for smooth and analytic operators. More-
over, in case of a Hilbert space there are even more detailed possibilities to define unbounded
operators similar to bounded ones.

Definition 8.1 (Unbounded Operator). Let X be a Banach space. Then an unbounded
operator on X is given by a linear map

A : DomA −→ X, (1)

where DomA ⊆ X is a linear subspace that is the domain of A. The operator A is called densely
defined if DomA is a dense subspace of X. The set of (unbounded) operators on X is denoted
by O(X).
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Remark 8.1. Compared with bounded (or continuous) linear operators, unbounded operators
do not yield an algebra. The reason is the domain which does not coincide for all the operators in
O(X). This leads to the situation that addition and composition of operators can not be defined
as usual. Let A,B ∈ O(X) be two unbounded operators, then the domain of A+B is given by

DomA+B = DomA ∩DomB (2)

and
DomAB = {x ∈ X | Bx ∈ DomA for x ∈ DomB}. (3)

As the domain of an unbounded operators is crucial we will assume every operator to be un-
bounded in the following. This means they all have an associated domain, which is not always
mentioned.

Example 8.2 (Differentiation operator). The most famous example and the reason why
unbounded operators are considered, is the fact that the usual differentiation operator d

dx is an
unbounded one. By taking into account the space of continuous functions C([0, 1]) on the unit
interval endowed with the supremum norm

‖f‖ = sup
x∈[0,1]

|f(x)| (4)

we can consider the function f(x) = xn for n ∈ N. Then we obtain

mathrmdf

dx
(x) = nxn−1, (5)

which is indeed unbounded by using operator norm.

Definition 8.2 (Extension and closure). Let X be a Banach space and let A,B ∈ O(X).

(i) The operator A is called extension of B if

DomB ⊆ DomA and A|DomB = B. (6)

This is denoted by B ⊆ A.

(ii) The operators A is called closed if its graph

GraphA = {(x,Ax) ∈ DomA× X} ⊆ X× X (7)

is closed.

(iii) The operator A is called closable if it has a closed extension, which is denoted by A.

(iv) The domain DomA is called invariant if ImA ⊆ DomA.

Remark 8.3. Let A be an unbounded operator on X, which is bounded on its domain, i.e.

‖A‖ = sup
x∈X

‖Ax‖
‖x‖

<∞. (8)

Then there is a unique and bounded extension of A on DomAcl. Especially, if A is a densely
defined operator then DomAcl = X and thus A becomes a bounded operator on the whole
Banach space X. On the other hand if there is a bounded extension on DomAcl = X, then there
A must already be a bounded operator on DomA.

Definition 8.3 (Smooth and analytic vectors). Let X be a Banach space and let A ∈ O(X)
be an unbounded operator.

(i) The vector x ∈ DomA is called smooth for A if x ∈ DomAk for all k ∈ N and the set of
smooth vectors for A is denoted by DomA∞.
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(ii) The vector x ∈ DomA is called analytic for A if there is an s > 0 such that

∞∑
n=0

‖Anx‖
n!

sn <∞. (9)

The set of analytic vectors for A is denoted by DomAω and the set of analytic vectors for
A with respect to one s > 0 is denoted by DomAω,s.

Remark 8.4. Let A ∈ O(X) be an operator on a Banach space X.

(i) Then the smooth vectors for A are equivalently given by the intersection of all DomAk for
k ∈ N, i.e.

DomA∞ =
∞⋂
k=0

DomAk. (10)

Moreover, note that every analytic vector for A is contained in the set of smooth vectors for
A, i.e. DomAω ⊆ DomA∞. The reason is that only in this case the series is well-defined.

(ii) Note that the condition given in Equation (9) is the same as requiring esAx to have a
positive radius of absolute value.

Example 8.5 (Analytic functions). Considering the same conditions as in Example 8.2, i.e.
the Banach space is given by C([0, 1]) endowed with the supremum norm. Then the analytic
vectors with respect to the differentiation operator d

dx are given by the analytic functions on the
interval [0, 1].

So far we only considered the case of a Banach space X. In case of a Hilbert space H with
its inner-product 〈·, ·〉 there is even more structure for unbounded operators like symmetric and
adjoint operators. However, it is not as easy as in the case of bounded operators to define an
adjoint of an operator since we need to be very careful with the domains of the operators. For
the following definition we also switch to densely defined operators.

Definition 8.4 (Symmetric operator). Let H be a Hilbert space and let A be a densely
defined operator on H.

(i) The operator A is called symmetric if

〈x,Ay〉 = 〈Ax, y〉 (11)

for all x, y ∈ DomA.

(ii) The operator A is called skew-symmetric if

〈x,Ay〉 = −〈Ax, y〉 (12)

for all x, y ∈ DomA.

Remark 8.6. Note that there is still another definition for symmetry for a densely defined
operator A on a Hilbert space which only requires the adjoint operator A∗ to be an extension of
A, i.e. A ⊆ A∗. Indeed it turns out that we also arrive at

〈x,Ay〉 = 〈Ax, y〉 (13)

for all x, y ∈ DomA.

Definition 8.5 (Adjoint operator). Let H be a Hilbert space and let A be a densely defined
operator on H.
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(i) The operator A∗ is called the adjoint of A, if it is defined on the domain

DomA∗ = {x ∈ H | y 7→ 〈x,Ay〉 is continuous} (14)

such that
〈x,Ay〉 = 〈A∗x, y〉 (15)

for all y ∈ DomA.

(ii) If A = A∗, then A is called self-adjoint.

(iii) If A = −A∗, then A is called skew-adjoint.

(iv) If A = A∗, then A is called essentially self-adjoint.

(v) If A = −A∗, then A is called essentially skew-adjoint.

Remark 8.7. There must be some discussion on the definition of the adjoint of an operator A.
First note that due to the continuity of the map y 7→ 〈x,Ay〉 is a continuous linear functional
on DomA, but as this is densely contained in H it has a bounded extension on H. By Riesz
theorem it follows that there is a z ∈ H such that 〈z, y〉 = 〈x,Ay〉 for all y ∈ DomA. Again, the
densely contained domain leads to the existence of a unique operator satisfying z = A∗x.

9 Calculus of Absolute Value

At this point the actual journey starts aiming at Nelson’s theorem. This is neatly presented in
Nelson’s paper [Nel59]. Nevertheless, we will give a motivation and a step-by-step explanation of
(almost) everything but will refer to this mentioned paper for the unimportant details. The reason
for talking about the estimations is the following: suppose A,X ∈ O(X) such that ‖Xx‖ ≤ ‖Ax‖
for all x ∈ DomA+X, then there is a theorem, which gives conditions for all analytic vectors of
A being analytic vectors of X. However, this involves certain estimations of ‖Xnx‖ in terms of
‖x‖, ‖Ax‖, . . . , ‖Anx‖. For two commuting operators it turns out that ‖Xnx‖ ≤ ‖Anx‖ for all
n ∈ N, but this does not holds in the general case. Actually, we need to take into account the
commutator to be able to obtain such kind of estimation. Note that in the following A will be
an elliptic operator and X denotes a first order operator in the enveloping algebra of operators.

In the following we will establish some rules to rewrite the inequality

‖Cx‖ ≤ ‖Ax‖+ ‖Bx‖ (16)

for all x ∈ DomA ∩DomB ∩DomC by

|C| ≤ |A|+ |B| (17)

for some operators A,B,C ∈ O(X).

Definition 9.1 (Absolute value of an operator). Let X be a Banach space and let A ∈ O(X).
The symbol |A| is called the absolute value of A. The set of absolute values |O|(X) is linearly
generated by the formal finite sum of absolute values of all the operators contained in O(X).

Proposition 9.2. Let X be a Banach space.

(i) The space of absolute values |O|(X) yields a abelian semigroup.

(ii) For absolute values α = |A1|+ · · ·+ |Al| and β = |B1|+ · · ·+ |Bm| the multiplication defined
by

αβ =
l∑

i=1

m∑
j=1

|AiBj | (18)

makes |O|(X) a semialgebra by the identification of positive numbers a with |a id | for id
being the identity.

19



Definition 9.3 (Norm of absolute value). Let X be a Banach space and let α, β ∈ |O|(X).
The norm of an absolute value α = |A1|+ · · ·+ |Al| is defined by

‖αx‖ = ‖A1x‖+ · · ·+ ‖Alx‖ (19)

for all x ∈ X by using the convention ‖Ax‖ = ∞ for x /∈ DomA. For another absolute value
β = |B1|+ · · ·+ |Bm| the ordering α ≤ β is defined by

‖αx‖ ≤ ‖βx‖ (20)

for all x ∈ X.

Proposition 9.4. Let X be a Banach space and A,B,C ∈ O(X).

(i) The inequality |A+B| ≤ |A|+ |B| holds true.

(ii) If |A| ≤ |B| holds then |AC| ≤ |BC| holds.

Proof. By setting α = |A| and β = |B| the claims hold true.

Definition 9.5 (Power series of absolute values). Let X be a Banach space and let (αn)n∈N
and (βn)n∈N ⊂ |O|(X).

(i) A power series of absolute values ϕ is given by

ϕ =
∞∑
n=0

αns
n. (21)

For another power series of absolute value ψ with coefficients (βn)n∈N the ordering ϕ ≤ ψ
is defined by αn ≤ βn for all n ∈ N.

(ii) The norm of a power series of absolute value ϕ coming from (αn)n∈N is defined for all x ∈ X
by

‖ϕx‖ =
∞∑
n=0

‖αnx‖sn. (22)

Definition 9.6 (Analytic vector for absolute value). Let X be a Banach space. A vector
x ∈ X is called an analytic vector for α ∈ |O|(X) if there is some s > 0 such that

‖esαx‖ <∞. (23)

The set of analytic vector for α in denoted by Domαω and the set of analytic vectors for α for
a particular s > 0 is denoted by Domαω,s.

Remark 9.1. Note that in case of α = |A| we arrive at

‖es|A|x‖ =

∞∑
n=0

‖Anx‖
n!

sn, (24)

which means that in this case x ∈ Dom |A|ω is also an analytic vector for A.

The commutator of operators A,X ∈ O(X) is given by

(adX)A = XA−AX. (25)

Hence we define the commutator of absolute value in the following way.

Definition 9.7 (Commutator of absolute value). Let X be a Banach space and α, ξ ∈ |O|(X)
with α = |A1|+ · · ·+ |Al| and ξ = |X1|+ · · ·+ |Xd|. The commutator is defined by

(ad ξ)α =

d∑
i=1

l∑
j=1

|XiAj −AjXi|. (26)
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Theorem 9.8. Let X be a Banach space and let α, ξ ∈ |O|(X) like before. Let ξ ≤ cα, (ad ξ)nα ≤
cnα and

ν(s) =

∞∑
n=1

cn
n!
sn and κ(s) =

∫ s

0

Dt

1− ν(t)
. (27)

Then esξ ≤ ecκ(s)α.

Remark 9.2. In order to give the estimation

(ad ξ)nα ≤ cnα (28)

in the previous theorem, it is nessessary to require A to be elliptic.

Definition 9.9 (Analytic dominance). Let X be a Banach space and let α, ξ ∈ |O|(X) be
related as in Theorem 9.8 such that c, cn < ∞ and ν(s) has positive convergence radius. Then

it is said that α analytically dominates ξ, which is denoted by ξ
ω
≤ α.

Corollary 9.10. Let X be a Banach space and let α, ξ ∈ |O|(X). If ξ
ω
≤ α then Domαω ⊆

Dom ξω.

Remark 9.3. Note that so far we did not use the completeness of the Banach space X we
always have available. Therefore it would be sufficient to consider only a normed vector space.
Furthermore, we did not even use the linearity of the operators O(X).

10 Nelson’s Theorem

From now on let H be a Hilbert space. In then next two lemmas we are aiming to find statements
about domains of extended corresponding operators. The problem is that for two operators A
and X having closures with |X|

ω
≤ |A|, it is not clear that in case x ∈ DomA

ω we can conclude
x ∈ DomX

2ω.

Proposition 10.1. Let X ∈ H be a closed and symmetric operator on a Hilbert space H. Then
X is self-adjoint iff DomXω ⊆ H is dense.

This equivalence says that we only need enough analytic vectors for the operator X, which
are contained in the Hilbert space H to make it a self-adjoint operator.

Remark 10.1. (i) The previous statement still holds true if "symmetric" is replaced by
"skew-symmetric" and "self-adjoint" by "skew-adjoint" by considering ιX, which has the
same set of analytic vectors as X.

(ii) The statement having the condition of DomXω as a dense subspace in Proposition 10.1 is
also said to be Nelson’s theorem.

Lemma 10.2. Let X1, . . . , Xd, A ∈ H be symmetric operators on a Hilbert space H with
common invariant domain Dom and suppose that A is essentially self-adjoint. Let ξ = |X1| +
· · · + |Xd|, α = |A| + | id |, ξ ≤ cα and (ad ξ)nα ≤ cnα with c < ∞ and cn < ∞ for all n ≥ 1.
For all finite sequences i1, . . . , in one has

DomA
n ⊂ DomXi1 . . . Xin . (29)

Let D̃om =
⋂∞
n=1 DomA

n and let X̃1, . . . , X̃d, Ã be the restrictions of X1, . . . , Xd, A to D̃om .
Let ξ̃ = |X̃|1 + · · ·+ |X̃|d, α = |Ã|+ | id |. Then ξ̃ ≤ cα̃, (ad ξ̃)nα̃ ≤ cnα̃ for all n ≥ 1.

Moreover, if ξ
ω
≤ α, then there is an s > 0 such that the set Dom ξ̃ω,s ⊆ Dom is dense in H

and each Xi is essentially self-adjoint.
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Remark 10.2. The essence of this lemma is that we can find a common subspace D̃om , which
the closed operators satisfy the same estimations on as given by the original operators before.
Moreover, in case of analytic dominance the self-adjointness of the dominating operator passes
to other such that they become essentially self-adjoint.

In the following Dom ⊆ H be a subspace and g be a Lie algebra consisting of the skew-
symmetric operators having Dom as a common invariant domain. The Lie bracket of g is the
usual commutator, which maps into the skew-symmetric operators as well.

Let us denote the universal enveloping algebra of g by U(g). An element of U(g) is said to
be of order ≤ n if it consists of a real linear combination of operators of the form Y1 · · ·Yk with
k ≤ n and all Yj ∈ g. The set of elements of order ≤ n is denoted by U(g)n and make U(g)
a filtered algebra, i.e. U(g)0 ⊆ U(g)1 ⊆ · · · ⊆ U(g)n ⊆ . . . and U(g)k · U(g)l ⊆ U(g)k+l. The
element ∆ of order 2 is also called Nelson’s Laplacian and given by

∆ = X2
1 + · · ·+X2

d (30)

for X1, . . . , Xd forming a basis of the Lie algebra g. The goal in the following is to establish some
estimations in terms of Nelson’s Laplacian ∆.

Lemma 10.3. For B ∈ U(g)2 there is some k <∞ such that |B| ≤ k|∆− id |.

Lemma 10.4. Let ξ = |X1|+ · · ·+ |Xd| and let α = |∆− id |. Then ξ
ω
≤ α, especially, ξ ≤

√
d
2α

and there is a c <∞ such that for all n ≥ 1, (ad ξ)nα ≤ cnα. Furthermore, ξ
ω
≤ |∆|+ | id |.

Lemma 10.5. Let m ∈ N. If B ∈ U(A)2m, then for some k <∞ one has

|B| ≤ kαm, (31)

where αm = |(∆ − 1|)m. If η = |Y1| + · · · + |Yl| for Yj ∈ U(A)2m and adYj maps into U(A)2m

into itself, for j = 1, . . . , l, then η
ω
≤ αm for some c <∞, (ad η)nαm ≤ cnαm for all n ≥ 1.

In the following G be a simply-connected Lie group of the Lie algebra g leading to an answer
for the question: when does a representation of g come from a unitary representation of G?
The next statement gives a relation of unitary representation of G if there are enough analytic
vectors.

Lemma 10.6. Let g be a Lie algebra of skew-symmetric operators on a Hilbert space H having
a common invariant domain Dom . Let X1, . . . , Xd be a basis for g and let ξ = |X1|+ · · ·+ |Xd|.
If for some s > 0 the set Dom ξω,s ⊆ Dom is dense in H, then there is on H a unique unitary
representation U of the simply-connected Lie group G having g as a Lie algebra such that for all
X ∈ g, U(X) = X.

Theorem 10.7. Let g be a Lie algebra of skew-symmetric operators on a Hilbert space H having a
common domain Dom . Let X1, . . . , Xd be a basis for g and ∆ = X2

1 +· · ·+X2
d . If ∆ is essentially

self-adjoint, then there is on H a unique unitary representation U of the simply-connected Lie
group G having g as its Lie algebra such that for all X ∈ g one has U(X) = X.

Proof. For ξ = |X1|+ · · ·+ |Xd| we know by Lemma 10.4 that ξ
ω
≤ |∆|+ | id | and thus by Lemma

10.2 we have Dom x̃i
ω,s ⊆ H is dense. Note that for applying Lemma 10.2 Nelson’s Laplacian

needs to be essentially self-adjoint. By Lemma 10.6 we obtain the unitary representation we
were looking for.
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11 Sobolev Spaces

In this section we introduce abstract Sobolev spaces occuring in connection with Nelson’s Lapla-
cian ∆, where Nelson’s Laplacian is supposed to be essentially self-adjoint. Thus it is closed and
symmetric.

Definition 11.1 (s-th Sobolev space,[Vas06]). Let H be a Hilbert space and g the Lie
algebra of skew-symmetric operators. Let X1, . . . , Xd ∈ g be a basis and ∆ = X2

1 + · · ·+X2
d be

essentially self-adjoint. Then for s > 0 the pre-Hilbert space

Hs = Dom ∆
s/2 (32)

with the scalar product given by

〈x, y〉s = 〈x, y〉+ 〈∆s/2
x,∆

s/2
y〉 (33)

for x, y ∈ Hs is called the s-th Soboloev space of ∆.

Proposition 11.2. Let Hs be the s-th Sobolev space for some s > 0.

(i) The s-th Sobolev space Hs is a Hilbert space with respect to the scalar product given in
Equation (33).

(ii) An operator P ∈ H of order m extends to a linear bounded map

P : Hs −→ Hs−m. (34)

12 Analysis on homogeneous Lie groups

Given now a dilation structure δ on G using diagonalisable linear operator A, and rearrange
its eigenvalues d1 ≤ · · · ≤ dn in ascending order. The mappings {δr = exp(A log r)} give the
dilation structure to an n -dimensional homogeneous group G. Fix a basis {Xk}nk=1 of the Lie
algebra g of the Lie group G such that

AXk = dkXk

for each k. There are two types of choice of norm on nilpotent Lie groups:

1. We can force the invariance of norm under group action. By noticing the exponential map
in the case of nilpotent (and hence in the case of homogeneous Lie groups) are diffeomor-
phisms, The Euclidean norm on Lie algebra exp can be pulled back to give a norm on G
(which is the Haar measure on G by [CG90, Theorem 1.2.10]) i.e.:

‖x‖G :=
∥∥exp−1 x

∥∥
we use |x| = ‖x‖G to denote the Haar measure on G.

2. We coerce the invariance for sake of homogeneity with respect to dilation. This gives rise
to the following definition:

Definition 12.1 (Homogeneous Quasi-norms). Let us define a homogeneous quasi-
norm on a homogeneous group G to be a continuous function x 7→ |x| from G to [0,∞)
that satisfies for all x ∈ G and r > 0,

(a) (symmetry:)
∣∣x−1

∣∣ = |x|,
(b) (homogeneity:) |δr(x)| = r|x| for all r > 0.

(c) (non-degeneracy): |x| = 0 if and only if x = e.
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Here and elsewhere we denote by rx = δrx the dilation of x induced by the dilations on
the Lie algebra through the exponential mapping.

We define moreover with respect to the dilation structure:

Q :=

n∑
k=1

dk = Tr(A)

the homogeneous dimension of G. From now on Q will always denote the homogeneous
dimension of G.

Remark 12.1. There always exist homogeneous quasi-norms on homogeneous groups. Moreover,
there always exist quasi-norms that are C∞-smooth on G\{0}.

Observe that

X =

n∑
k=1

ckXk ∈ g implies ‖δrX‖ =

(
n∑
k=1

c2
kr

2dk

)1/2

where ‖ · ‖ is the Euclidean norm. We can notice that for X 6= 0 the function ‖δrX‖ is a strictly
increasing function of r, and it tends to 0 and ∞ as r → 0 and r → ∞, respectively. Now, for
x = expX, we can define a homogeneous quasi-norm on G by setting

‖e‖ := 0 and ‖x‖ := 1/r for x 6= 0

where r = r(X) > 0 is the unique number such that∥∥δr(X)X
∥∥ = 1

By the implicit function theorem and the fact that the Euclidean unit sphere is a C∞ manifold
we see that this function is C∞ on G\{0}

This two norms also give rises to different scaling constant when measuring subsets E of G.
For the Haar measure, we have

|δr(E)| = rQ|E|, d(rx) = rQdx

In particular, we have |B(x, r)| = rQ for all r > 0 and x ∈ G, whereas for homogeneous quasi-
norms, ‖B(x, r)‖ = rdimG.

Example 12.2. In the case of Heisenberg groups H1, the dilation corresponds to the matrix

A =

1
1

2

. Hence the homogeneous quasi-norm is (up to norm equivalence) the Koranyi

norm:
‖(x, y, t)‖ = ((x2 + y2)2 + t2)1/4

where as the norm corresponding to the Haar measure is:

|(x, y, t+
x · y

2
)| = (x2 + y2 + t2)1/2

Definition 12.2 (Homogeneous functions and operators). A function f on G\{0} is said
to be homogeneous of degree λ if it satisfies

f ◦ δr = rλf for all r > 0.
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We note that for f and g, we have the formula∫
G
f(x) (g ◦ δr) (x)dx = r−Q

∫
G

(
f ◦ δ1/r

)
(x)g(x)dx

given that the integrals exist. Hence we can extend the mapping f 7→ f ◦ δr to distributions by
defining, for any distribution f and any test function φ, the distribution f ◦ δr by

〈f ◦ δr, φ〉 = r−Q
〈
f, φ ◦ δ1/r

〉
where 〈·, ·〉 denotes the usual duality between functions and distributions. The distribution f is
called homogeneous of degree λ if it satisfies

f ◦ δr = rλf for all r > 0

Also, a linear operator D on G is called homogeneous of degree λ if it satisfies

D (f ◦ δr) = rλ(Df) ◦ δr for all r > 0

for any f. If D is a linear operator homogeneous of degree λ and f is a homogeneous function of
degree µ, then Df is homogeneous of degree µ− λ

If 0 < p ≤ ∞, then Lp will denote the usual Lebesgue space on G. For 0 < p <∞ we write

‖f‖p :=

(∫
G
|f(x)|pdx

)1/p

despite the fact that this is not a norm for p < 1. However, the map (f, g) 7→ ‖f −g‖pp is a metric
on Lp for p < 1. We recall that if f is a measurable function on G, its distribution function
λf : [0,∞]→ [0,∞] is defined by

λf (α) := |{x : |f(x)| > α}|,

and its nonincreasing rearrangement f∗ : [0,∞)→ [0,∞) is defined by

f∗(t) = inf {α : λf (α) ≤ t} .

Moreover,

z

∫
G
|f(x)|pdx = −

∫ ∞
0

αpdλf (α) = p

∫ ∞
0

αp−1λf (α)dα =

∫ ∞
0

f∗(t)pdt

For 0 < p <∞, the weak-Lp is the space of functions f such that

[f ]p := sup
α>0

αpλf (α) = sup
t>0

t1/pf∗(t) <∞

Proposition 12.3 (Polar decomposition: a special case). Let f be a locally integrable
function on G\{0} and assume that it is homogeneous of degree −Q. Then there is a constant
µf (the "average value” of f) such that for every g ∈ L1

(
(0,∞), r−1dr

)
we have∫

G
f(x)g(|x|)dx = µf

∫ ∞
0

g(r)r−1dr

Proposition 12.4 (Polar decomposition). Let

℘ := {x ∈ G : |x| = 1}

be the unit sphere with respect to the homogeneous quasi-norm | · |. Then there is a unique Radon
measure σ on ℘ such that for all f ∈ L1(G)∫

G
f(x)dx =

∫ ∞
0

∫
ϕ
f(ry)rQ−1dσ(y)dr
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Let f and g be two integrable function on G. Then their convolution f ∗ g is well defined by

(f ∗ g)(x) :=

∫
G
f(y)g

(
y−1x

)
dy =

∫
G
f
(
xy−1

)
g(y)dy

Proposition 12.5 (Young’s inequality). Suppose

1 ≤ p, q, r ≤ ∞ and
1

p
+

1

q
=

1

r
+ 1

If f ∈ Lp and g ∈ Lq, then f ∗ g ∈ Lr and

‖f ∗ g‖Lr(G) ≤ ‖f‖Lp(G)‖g‖Lq(G).

Now let us summarize some properties of approximations to the identity in terms of the
convolution. The following notation will be used throughout this note: if φ is a function on G
and t > 0, we define φt by

φt := t−Qφ ◦ δ1/t, that is, φt(x) := t−Qφ(x/t)

We notice that if φ ∈ L1(G) then
∫

G φt(x)dx is independent of t.

Proposition 12.6 (Approximation of identity). Let φ ∈ L1(G) and let a :=
∫

G φ(x)dx.
Then we have the following properties:

(i) If f ∈ Lp(G) for 1 ≤ p <∞, then ‖f ∗ φt − af‖p → 0 as t→ 0.

(ii) If f is bounded and right uniformly continuous, then ‖f ∗ φt − af‖∞ → 0 as t→ 0.

(iii) If f is bounded on G and continuous on an open set Ω ⊂ G, then f ∗φt−af → 0 uniformly
on compact subsets of Ω as t→ 0.

13 Rockland operators and Sobolev space

In this part, we study a special type of operators: the (homogeneous) Rockland operators.
These operators can be viewed as a generalisation of sub-Laplacians to the non-stratified but
still homogeneous (graded) setting.

13.1 Rockland operators

We start with the discussion of general Rockland operators, giving definitions, examples, and
then relating them to the hypoellipticity questions.

Definition 13.1. A Rockland operator on G is a left-invariant differential operator R which is
homogeneous of positive degree and satisfies the Rockland condition:

(R) for each unitary irreducible representation π on G, except for the trivial representation,
the operator π(R) := π(R) (infinitesimal representation) is injective on H∞π , that is,

∀v ∈ H∞π π(R)v = 0 =⇒ v = 0.

Where H∞π is space of all smooth vectors of π which means π(x)v ∈ Hπ is of class C∞.

Proposition 13.2. Let G be a homogeneous Lie group. If there exists a Rockland operator on
G then the group G is graded. Furthermore, the dilations’ weights v1, . . . , vn satisfy

a1v1 = . . . = anvn

for some integers a1, . . . , an
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Definition 13.3. If G is a stratified Lie group with a given basis Z1, . . . , Zp for the first stratum
of its Lie algebra, then the left-invariant differential operator on G given by

Z2
1 + . . .+ Z2

p

is called a sub-Laplacian.

Example 13.1.

(1) ForG = Rn,Rmay be any positive homogeneous elliptic differential operator with constant
coefficients. For example, we can take

R = (−∆)m or R = (−1)m
n∑
j=1

aj

(
∂

∂xj

)2m

, aj > 0,m ∈ N;

(2) For the Heisenberg group G = Hn, we can take

R = (−L)m or R = (−1)m
n∑
j=1

(
ajX

2m
j + bjY

2m
j

)
, aj , bj > 0,m ∈ N

where L :=
∑n

j=1

(
X2
j + Y 2

j

)
, with Xj := ∂xj −

yj
2 ∂t, Yj := ∂yj +

xj
2 ∂t are the left-invariant

vector fields.

(3) For any stratified Lie group with vectors X1, . . . , Xk spanning the first stratum, we can
take

R = (−1)m
k∑
j=1

ajX
2m
j , aj > 0

so that, in particular, for m = 1, R is a positive sub-Laplacian which is homogeneous
degree 2;

(4) For any graded Lie group G with dilation weights v1, . . . , vn let us fix the basis X1, . . . , Xn

of the Lie algebra g of G satisfying

DrXj = rvjXj , j = 1, . . . , n, r > 0

whereDr denote the dilations on the Lie algebra. If v0 is any common multiple of v1, . . . , vn,
the operator

R =

n∑
j=1

(−1)
v0
vj ajX

2
v0
vj

j , aj > 0

is a Rockland operator of homogeneous degree 2v0.

Proof. We only proof the last one satisfies the Rockland condition. The operator R given in
(4) is clearly a homogeneous left-invariant differential operator of homogeneous degree 2νo. Let
π ∈ Ĝ\{1} and v ∈ H∞π be such that π(R)v = 0. Then

0 = (π(R)v, v)Hπ =

n∑
j=1

(−1)
νo
vj cj

(
π (Xj)

2 νo
vj v, v

)
Hπ

(35)

=
n∑
j=1

cj

∥∥∥π (Xj)
νo
vj v
∥∥∥
Hπ

(36)

and hence π (Xj)
νo
vj v = 0 for j = 1, . . . , n Let us observe the following simple fact regarding

any positive integer p and any Z ∈ U(g) : the hypothesis π(Z)pv = 0 implies that
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1. if p is odd then π(Z)p+1v = π(Z)π(Z)pv = 0.

2. whereas if p is even then

0 = (π(Z)pv, v)Hπ = (−1)p/2
(
π(Z)

p
2 v, π(Z)

p
2 v
)
Hπ

= (−1)p/2
∥∥∥π(Z)

p
2 v
∥∥∥2

Hπ

and hence π(Z)
p
2 v = 0 whereas if p is even then

0 = (π(Z)pv, v)Hπ = (−1)p/2
(
π(Z)

p
2 v, π(Z)

p
2 v
)
Hπ

= (−1)p/2
∥∥∥π(Z)

p
2 v
∥∥∥2

Hπ

and hence π(Z)
p
2 v = 0.

Applying this argument inductively on Z = Xj and p = νo/vj , νo/2vj , . . . we obtain that
π (Xj) v = 0 for each j. Hence v = 0.

Remark 13.2. By Proposition 3.1, if a homogeneous Lie group G admits a Rockland operator,
then the group G is graded. Example 4 gives the converse: on such a group, we can always find
a Rockland operator.

From one Rockland operator, we can construct many since powers of a Rockland operator or
its complex conjugate operator are Rockland:

Lemma 13.4. Let R be a Rockland operator on a graded Lie group G endowed with a family
of dilations with integer weights. Then the operators Rk for any k ∈ N and R are also Rockland
operators.

Definition 13.5. Let Ω be an open subset of Rn and let L be a differential operator on Ω with
smooth coefficients. Then L is said to be hypoelliptic if, for any distribution u ∈ D′(Ω) and any
open subset Ω′ of Ω, the condition Lu ∈ C∞ (Ω′) implies that u ∈ C∞ (Ω′)

Theorem 13.6. Let R be a left-invariant and homogeneous differential operator on a homoge-
neous Lie group G. The hypoellipticity of R is equivalent to R satisfying the Rockland condition.
In this case, any operator of the form

R+
∑

[α]<ν

cαX
α

where ν is the degree of homogeneity of R and cα any complex number, is also hypoelliptic.

Proposition 13.7. Let R be a Rockland operator on a graded Lie group G. We assume that
R is formally self-adjoint. Let π be a strongly continuous unitary representation of G. Then
the operators R and π(R) densely defined on D(G) ⊂ L2(G) and H∞π ⊂ Hπ, respectively, are
essentially self-adjoint. In this case we will denote by R2 the self-adjoint extension and by E its
spectral measure:

R2 =

∫
R
λdE(λ).

Let us fix a positive Rockland operator R on G which is homogeneous of degree ν ∈ N. By
functional calculus, we can define the spectral multipliers

e−tR2 :=

∫ ∞
0

e−tλdE(λ), t > 0

which form the heat semigroup of R. The operators e−tR2 are invariant under left-translations
and are bounded on L2(G). Therefore the Schwartz kernel theorem implies that each operator
e−tR2 admits a unique distribution ht ∈ S ′(G) as its convolution kernel:

e−tR2f = f ∗ ht, t > 0, f ∈ S(G)
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The distributions ht, t > 0, are called the heat kernels of R. We summarise their main properties
in the following theorem:

Theorem 13.8. Let R be a positive Rockland operator on a graded Lie group G. Then the heat
kernels ht associated with R satisfy the following properties. Each function ht is Schwartz and
we have

(1) ht ∗ hs = ht+s ∀s, t > 0,

(2) hrνt(rx) = r−Qht(x) ∀x ∈ G, t, r > 0,

(3) ht(x) = ht (x−1) ∀x ∈ G,

(4)
∫
G ht(x)dx = 1 ∀x ∈ G for all t > 0,

(5) The function h : G× R→ C defined by

h(x, t) :=

{
ht(x) if t > 0 and x ∈ G
0 if t ≤ 0 and x ∈ G

is smooth on (G× R)\{(0, 0)} and satisfies

(R+ ∂t)h = δ0,0

where δ0,0 is the delta-distribution at (0, 0) ∈ G× R,

(6) Having fixed a homogeneous norm | · | on G, we have for any N ∈ N0, α ∈ Nn0 and ` ∈ N0,
that

∃C = Cα,N,` > 0 ∀t ∈ (0, 1] sup
|x|=1

∣∣∣∂`tXαht(x)
∣∣∣ ≤ Cα,N tN

Theorem 8.2 shows that the functions ht provide a commutative approximation of the identity.
We already know that

{
e−tR2

}
t>0

is a strongly continuous contraction semi-group. Moreover,
we have the following properties for any p :

Proposition 13.9. The operators f 7→ f ∗ht, t > 0 form a strongly continuous semi-group on
Lp(G) for any p ∈ [1,∞) and on Co(G) if p =∞. This semi-group is also equibounded:

∀t > 0,∀f ∈ Lp(G) or Co(G) ‖f ∗ ht‖p 6 ‖h1‖1 ‖f‖p.

Furthermore, for any f ∈ D(G) and any p ∈ [1,∞] (finite or infinite), we have the convergence∥∥∥∥1

t
(f ∗ ht − f)−Rf

∥∥∥∥
p

−→t→0 0.

13.2 Positive Rockland operators

The extension of a positive Rockland operator R to Lp(G) will be denoted by Rp, and first we
discuss the essential properties of such an extension.

Definition 13.10. Let R be a positive Rockland operator on a graded Lie group G. For p ∈
[1,∞), we denote by Rp the operator such that −Rp is the infinitesimal generator of the semi-
group of operators f 7→ f ∗ ht, t > 0, on Lp(G)

We also denote by R∞o the operator such that −R∞o is the infinitesimal generator of the
semi-group of operators f 7→ f ∗ ht, t > 0, on Co(G)

Theorem 13.11. Let R be a positive Rockland operator on G and p ∈ [1,∞]

(1) The operator Rp is closed. The domain of Rp contains D(G), and for f ∈ D(G) we have
Rpf = Rf ,
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(2) The positive Rockland operator Rp is the infinitesimal generator of the strongly continuous
semi-group

{
f 7→ f ∗ ht

}
t>0

on Lp(G) for p ∈ [1,∞) and on Co(G) for p =∞,

(3) If p ∈ (1,∞) then the dual of Rp is Rp′ . The dual of R∞ restricted to L1(G) is R1. The
dual of R1 restricted to Co(G) ⊂ L∞(G) is R∞,

(4) If p ∈ [1,∞), the operator Rp is the maximal restriction of R to Lp(G), that is, the domain
of Rp consists of all the functions f ∈ Lp(G) such that the distributional derivative Rf
is in Lp(G) and Rpf = Rf. In particular, the operator R2 coincides with the self-adjoint
extension of R on L2(G). The operator R∞ is the maximal restriction of R to Co(G), that
is, the domain of R∞ consists of all the function f ∈ Co(G) such that the distributional
derivative Rf is in Co(G) and Rpf = Rf ,

(5) If p ∈ [1,∞), the operator Rp is the smallest closed extension of R|D(G) on Lp(G). For
p = 2,R2 is the self-adjoint extension of R on L2(G).

Theorem above has the following couple of corollaries which will enable us to define the
fractional powers of Rp.

Corollary 13.12. We keep the same setting and notation as above:

(1) The operator Rp is injective on Lp(G) for p ∈ [1,∞) and R∞ is injective on Co(G), namely,
for p ∈ [1,∞) ∪ {∞} : ∀f ∈ Dom (Rp) Rpf = 0 =⇒ f = 0.

(2) If p ∈ (1,∞) then the operator Rp has dense range in Lp(G). The operator R∞ has dense
range in Co(G). The closure of the range ofR1 is the closed subspace

{
φ ∈ L1(G) :

∫
G φ = 0

}
of L1(G).

(3) For p ∈ [1,∞] and any µ > 0, the operator µI +Rp is invertible on Lp(G), p ∈ [1,∞), and
on Co(G) for p =∞, and the operator norm of (µI +Rp)−1 is∥∥∥(µI +Rp)−1

∥∥∥
L (Lp(G))

6 ‖h1‖µ−1

or ∥∥∥(µI +R∞)−1
∥∥∥

L (Co(G))
6 ‖h1‖µ−1.

Remark 13.3. From (3) we know that the operator Rp is Komatsu-non-negative, we refer the
interested reader to the monograph of Martinez and Sanz [MS01].

13.3 Fractional powers of Rockland operators

Theorem 13.13. Let R be a positive Rockland operator on a graded Lie group G. Let p ∈ [1,∞].

(1) Let A denote either R or I +R.

(a) For every a ∈ C, the operator Aap is closed and injective with
(
Aap
)−1

= A−ap . We
have A0

p = I, and for any N ∈ N,ANp coincides with the usual powers of differential
operators on S(G) and Dom

(
AN
)
∩ Range

(
AN
)
is dense in Range( Ap ).

(b) For any a, b ∈ C, in the sense of operator graph, we have AapAbp ⊂ Aa+b
p . If Range

(Ap) is dense then the closure of AapAbp is Aa+b
p .

(c) For every a ∈ C, the operator Aap is invariant under left translations.

(d) If p ∈ (1,∞) then the dual of Ap is Ap′ . The dual of A∞ restricted to L1(G) is A1.
The dual of A1 restricted to Co(G) ⊂ L∞(G) is A∞.

(e) For any a ∈ C+, Dom
(
Aap
)
contains S(G).
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(2) For each a ∈ C+, the operators (I +Rp)a and Rap are unbounded and their domains satisfy
for all ε > 0

Dom [(I +Rp)a] = Dom
(
Rap
)

= Dom [(Rp + εI)a] .

(3) If 0 < Re a < 1 and φ ∈ Range (Rp) then

R−ap φ =
1

Γ(a)

∫ ∞
0

ta−1e−tRpφdt

in the sense that limN→∞
∫ N

0 converges in the norm of Lp(G) or Co(G).

(4) If a ∈ C+, then the operator (I +Rp)−a is bounded and for any φ ∈ X with X = Lp(G) or
Co(G), we have

(I +Rp)−a φ =
1

Γ(a)

∫ ∞
0

ta−1e−t(I+Rp)φdt

in the sense of absolute convergence:∫ ∞
0

ta−1
∥∥∥e−t(I+Rp)φ

∥∥∥
X
dt <∞.

(5) For any a, b ∈ C, the two (possibly unbounded) operators Rap and (I +Rp)b commute.

(6) For any a ∈ C, the operator Rap is homogeneous of degree νa.

13.4 Sobolev spaces on graded Lie groups

Definition 13.14. Let R be a positive Rockland operator of homogeneous degree ν and let
s ∈ R. For any tempered distribution f ∈ S ′(G), we denote by (I + R)s/νf the tempered
distribution defined to be〈

(I +R)s/νf, φ
〉

=
〈
f, (I +R)s/νφ

〉
, φ ∈ S(G)

Lemma 13.15. For any s ∈ R and p ∈ [1,∞], the domain of the operator (I +Rp)
s
ν contains

S(G), and the map

f 7−→
∥∥∥(I +Rp)

s
ν f
∥∥∥
Lp(G)

defines a norm on S(G). We denote it by

‖f‖W s,p(G) :=
∥∥∥(I +Rp)

s
ν f
∥∥∥
Lp(G)

Moreover, any sequence in S(G) which is Cauchy for ‖ · ‖W s,p(G) is convergent in S ′(G).

Definition 13.16. Let R be a positive Rockland operator on a graded Lie group G. We consider
its Lp analogue Rp and the powers of (I +Rp)s. Let s ∈ R:

(1) If p ∈ [1,∞), the Sobolev space W s,p(G) is the subspace of S ′(G) obtained by completion
of S(G) with respect to the Sobolev norm

‖f‖W s,p(G) :=
∥∥∥(I +Rp)

s
ν f
∥∥∥
Lp(G)

, f ∈ S(G).
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(2) If p =∞, the Sobolev space W s,∞(G) is the subspace of S ′(G) obtained by completion of
S(G) with respect to the Sobolev norm

‖f‖W s,∞(G) :=
∥∥∥(I +R∞)

s
ν f
∥∥∥
L∞(G)

, f ∈ S(G).

We can also define the homogeneous version of our Sobolev spaces. For some technical
reasons, the definition of homogeneous Sobolev spaces is restricted to the case p ∈ (1,∞).

Definition 13.17. Let R be a Rockland operator of homogeneous degree ν on a graded Lie
group G, and let p ∈ (1,∞). We denote by Ẇ s,p(G) the space of tempered distribution obtained
by the completion of S(G) ∩Dom

(
R

s
ν
p

)
for the norm

‖f‖Ẇ s,p(G) :=
∥∥∥R s

2
p f
∥∥∥
p
, f ∈ S(G) ∩Dom

(
Rs/νp

)
.

By construction the Sobolev space W s,p(G) endowed with the Sobolev norm is a Banach
space which contains S(G) as a dense subspace and is included in S ′(G). The Sobolev spaces
share many properties with their Euclidean counterparts.

Theorem 13.18. Let R be a positive Rockland operator of homogeneous degree ν on a graded
Lie group G. We consider the associated Sobolev spaces W s,p(G) for p ∈ [1,∞)∪{∞} and s ∈ R.

(1) If s = 0, then W 0,p(G) = Lp(G) for p ∈ [1,∞].

(2) If s > 0, then we have

W s,p(G) = Dom
[
(I +Rp)

s
ν

]
= Dom

(
R

s
ν
p

)
( Lp(G),

and the following norms are equivalent to ‖ · ‖W s,p(G) :

f 7−→ ‖f‖Lp(G) +
∥∥∥(I +Rp)

s
ν f
∥∥∥
Lp(G)

, f 7−→ ‖f‖Lp(G) +
∥∥∥R s

ν
p f
∥∥∥
Lp(G)

.

(3) Let s ∈ R and f ∈ S ′(G):

(i) Given p ∈ (1,∞), we have f ∈ W s,p(G) if and only if (I +Rp)s/ν f ∈ Lp(G), in the
sense that the linear mapping

S(G) 3 φ 7→
〈

(I +Rp)s/νf, φ
〉

=
〈
f,
(
I +Rp′

)s/ν
φ
〉

extends to a bounded functional on Lp′(G) where p′ is the conjugate exponent of p.

(ii) f ∈W s,1(G) if and only if (I +R1)s/ν f ∈ L1(G) in the sense that the linear mapping

S(G) 3 φ 7→
〈

(I +R1)s/νf, φ
〉

=
〈
f,
(
I +R∞

)s/ν
φ
〉

extends to a bounded functional on Co(G) and is realised as a measure given by an
integrable function.

(iii) f ∈ W s,∞(G) if and only if (I +R∞)s/ν f ∈ Co(G) in the sense that the linear
mapping

S(G) 3 φ 7→
〈

(I +R∞)s/νf, φ
〉

=
〈
f,
(
I +R1

)s/ν
φ
〉

extends to a bounded functional on L1(G) and is realised as integration against func-
tions in Co(G)

32



(4) If a, b ∈ R with a < b and p ∈ [1,∞] then the following continuous strict inclusions hold

S(G) (W b,p(G) (W a,p(G) ( S ′(G)

and an equivalent norm for W b,p(G) is

W b,p(G) 3 f 7−→ ‖f‖Wa,p(G) +

∥∥∥∥R b−a
ν

p f

∥∥∥∥
Wa,p(G)

(5) For p ∈ [1,∞] and any a, b, c ∈ R with a < c < b, there exists a positive constant C = Ca,b,c
such that for any f ∈W b,p(G), we have f ∈W c,p ∩W a,p and

‖f‖W c,p(G) ≤ C‖f‖1−θWa,p(G)‖f‖
θ
W b,p(G)

where θ := (c− a)/(b− a).

In the next statement, we show how to produce functions and converging sequences of Sobolev
spaces using the convolution:

Proposition 13.19. Let a ∈ R and p ∈ [1,∞]

(i) If f ∈ Lp(G) and φ ∈ S(G), then f ∗ φ ∈W s,p(G) for any s and p.

(ii) If f ∈ Ls,pW (G) and ψ ∈ S(G), then

(I +Rp)
s
ν (ψ ∗ f) = ψ ∗

(
(I +Rp)

s
ν f
)

and ψ ∗ f ∈W s,p(G) with

‖ψ ∗ f‖W s,p(G) ≤ ‖ψ‖L1(G)‖f‖W s,p(G)

Furthermore, if
∫
ψ = 1, writing

ψε(x) := ε−Qψ
(
ε−1x

)
for each ε > 0, then {ψε ∗ f} converges to f in W s,p(G) as ε→ 0.

Proposition 13.20 (Hilbert space Hs(G) = W s,2(G)). Let G be a graded Lie group. For any
s ∈ R, the inhomogeneous Sobolev space Hs(G) is a Hilbert space with the inner product given by

(f, g)Hs(G) :=

∫
G

(I +R2)
s
ν f(x)(I +R2)

s
ν g(x)dx,

and the homogeneous Sobolev space Ḣs(G) is a Hilbert space with the inner product given by

(f, g)Ḣs(G) :=

∫
G
R

s
ν
2 f(x)R

s
ν
2 g(x)dx.

If s > 0, an equivalent inner product on Hs(G) is

(f, g)Hs(G) :=

∫
G
f(x)g(x)dx+

∫
G
R

s
ν
2 f(x)R

s
ν
2 g(x)dx.

If s = ν` with ` ∈ N0, an equivalent inner product on Hs(G) is

(f, g) = (f, g)L2(G) +
∑

[α]=ν`

(Xαf,Xαg)L2(G) ,

and an equivalent inner product on Ḣs(G) is

(f, g) =
∑

[α]=ν`

(Xαf,Xαg)L2(G) .
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13.5 Operators acting on Sobolev spaces

In this section we show that left-invariant differential operators act continuously on homogeneous
and inhomogeneous Sobolev spaces.

Theorem 13.21. Let G be a graded Lie group.

(1) Let T be a left-invariant differential operator of homogeneous degree νT . Then for every
p ∈ (1,∞) and s ∈ R, T maps continuously Lps+νT (G) to Lps(G) Fixing a positive Rockland
operator R in order to define the Sobolev norms, it means that

∃C = Cs,p,T > 0 ∀φ ∈ S(G) ‖Tφ‖Lps(G) ≤ C‖φ‖Lps+νT (G).

(2) Let T be a νT -homogeneous left-invariant differential operator. Then for every p ∈ (1,∞)
and s ∈ R, T maps continuously L̇ps+νT (G) to L̇ps(G). Fixing a positive Rockland operator
R in order to define the Sobolev norms, it means that

∃C = Cs,p,T > 0 ∀φ ∈ L̇ps+νT (G) ‖Tφ‖L̇ps(G) ≤ C‖φ‖L̇ps+νT (G).

Lemma 13.22. Let R be a Rockland operator on G of homogeneous degree ν and let ` ∈ N0, p ∈
(1,∞). Then the space Lpν`(G) is the collection of functions f ∈ Lp(G) such that Xαf ∈ Lp(G)
for any α ∈ Nn0 with [α] = ν`. Moreover, the map

φ 7→
∑

[α]=ν`

‖Xαφ‖p

is a norm on L̇pν`(G) which is equivalent to the homogeneous Sobolev norm and the map

φ 7→ ‖φ‖p +
∑

[α]=ν`

‖Xαφ‖p

is a norm on Lpν`(G) which is equivalent to the Sobolev norm.

Theorem 13.23. Let G be a graded Lie group and p ∈ (1,∞). The homogeneous Lp Sobolev
spaces on G associated with any positive Rockland operators coincide. The inhomogeneous Lp

Sobolev spaces on G associated with any positive Rockland operators coincide. Moreover, in the
homogeneous and inhomogeneous cases, the Sobolev norms associated to two positive Rockland
operators are equivalent.

In the first part of this talk, index theory for elliptic differential operators on compact mani-
folds is recalled. The second part explains why filtered manifold are a good framework to study
certain hypoelliptic operators. Instead of ellipticity, the Rockland condition for model operators
acting on graded nilpotent Lie groups is used. In the last part, index theory for the special case
of contact manifolds is discussed and we have a glimpse on how this could be generalized to
arbitrary filtered manifolds.

14 Index theory for differential operators on compact manifolds

For a detailed introduction to index theory see for example [HR04]. In the following, let M
denote a compact, smooth manifold. Let P be a differential operator of order d acting on
C∞(M), understood as an unbounded operator on L2(M) (with respect to some Riemannian
metric on M).

We want to solve differential equations of the form Pu = f , which is in general hard. The
dimension of the cokernel and kernel of P describe how many constraints f has to satisfy in
order to have a solution u and how unique this solution is.
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Definition 14.1. A closed unbounded operator P : D(P )→ H on a Hilbert space H is Fredholm
if it has closed range and dimKerP <∞ and dim cokerP <∞. In this case, its Fredholm index
is defined by

ind(P ) = dimKerP − dim cokerP.

The Fredholm index is a useful invariant because it is robust under small perturbations of
the operator. We want to find conditions under which a differential operator is Fredholm, one
example is ellipticity.

Let (x1, . . . , xn) be local coordinates on U ⊂M . Then P can be written in these coordinates
as

P =
∑
|α|≤d

cα(x)∂α with cα ∈ C∞(U).

Here, we use multi-index notation: For α = (α1, . . . , αn) ∈ Nn0 let

|α| = α1 + α2 + . . .+ αn,

∂α =
∂|α|

∂xα1
1 · · · ∂x

αn
n
.

Definition 14.2. The principal symbol of P on U is defined to be

σ(P )(x, ξ) =
∑
|α|=d

cα(x)(iξ)α for x ∈ U and ξ ∈ T ∗xM.

One can show that the value σ(P )(x, ξ) does not depend on the chosen coordinates, so σ(P )
is a well-defined function in C∞(T ∗M).

Definition 14.3. A differential operator P on M is elliptic if σ(P )(x, ξ) 6= 0 for all x ∈M and
ξ 6= 0.

Proposition 14.4. Let P be an elliptic differential operator on a compact manifold M . Then
it is closable and P is a Fredholm operator. Moreover, its Fredholm index only depends on the
principal symbol.

Even more is true, its index just depends on a certain K-theory class [σ(P )] ∈ K0(C0(T ∗M))
one builds from the principal symbol (using that it is invertible).

Theorem 14.5 (Atiyah-Singer [AS63]). The Fredholm index of an elliptic differential oper-
ator P on a compact manifold M can be computed as follows

ind(P ) =

∫
T ∗M

ch([σ(P )]) ∪ Td(TM ⊗ C)).

Remark 14.1. The above results hold, more generally, also for differential operators P : Γ∞(E)→
Γ∞(F ) that act on the smooth sections of vector bundles E,F over the manifold M .

15 Filtered manifolds

Apart from the elliptic operators, there are more differential operators that are Fredholm.

Proposition 15.1 ([van05]). Let P be a symmetric hypoelliptic differential operator on a com-
pact manifold M . Suppose that the range of P is closed, then P is Fredholm.

Open Question 1. Given a hypoelliptic differential operator, can we find a (pseudo)-differential
calculus in which the operator has an ‘invertible principal symbol’? Here, the principal symbol
might be no longer a function on T ∗M , but an element of a (possibly noncommutative) algebra.

The answer to this question is positive for some hypoelliptic differential operators that arise
in the framework of filtered manifolds. Filtered manifolds were introduced by Melin and recently
considered in [vEY17, CP19, SH16].
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Definition 15.2. A filtered manifold (M,H) is a smooth manifold with a filtration of its tangent
bundle 0 = H0 ⊆ H1 ⊆ H2 ⊆ . . . ⊆ Hr = TM consisting of smooth subbundles such that[

Γ∞(H i),Γ∞(Hj)
]
⊆ Γ∞(H i+j) for all i, j. (37)

Here, we set H i = TM for all i ≥ r. A manifold is filtered of step r, if H i ( TM for all i < r.

For each point m ∈M one can define a graded nilpotent Lie algebra gm by

gm :=

r⊕
i=1

H i
m/H

i−1
m .

The Lie bracket on gm is defined in the following way: For 〈Xm〉 ∈ H i
m/H

i−1
m and 〈Ym〉 ∈

Hj
m/H

j−1
m extend them to sections X ∈ Γ∞(H i) and Y ∈ Γ∞(Hj) and set

[〈Xm〉, 〈Ym〉] := 〈[X,Y ]m〉 ∈ H
i+j
m /H i+j−1

m .

This is well-defined by (37) and can be extended bilinearly. The graded nilpotent Lie algebras
gm integrate to graded nilpotent Lie groups Gm, these are called the osculating groups.

Remark 15.1. For the vector bundle tHM :=
⊕r

i=1H
i/H i−1 the bracket defines a vector

bundle morphism [ · , · ] : tHM ⊗ tHM → tHM , that restricts to a Lie bracket in each fibre. In
this sense, we get a bundle of Lie algebras (not in the sense of fibre bundles as the fibres might
be non-isomorphic Lie algebras).

Equipping the fibres of the bundle with the Dynkin product, we get group structures on the
fibres which vary smoothly along M . Denote this bundle of Lie groups by THM .

Example 15.2. A filtered manifold of step r = 1 is just a smooth manifold. The osculating
group at m ∈M is TmM ∼= Rn, where n = dimM .

Example 15.3. A filtered manifold of step r = 2 is a smooth manifold with a subbundle
H ⊆ TM . This is called a Heisenberg structure for M .

If H has codimension one, we call (M,H) a Heisenberg manifold. In this case, all osculating
groupsGm are isomorphic to Rl(m)×Hk(m) for some l(m), k(m) ∈ N0 such that l(m)+2k(m)+1 =
dimM . Here, Hk denotes the (2k+ 1)-dimensional Heisenberg group. Note that l(m) and k(m)
can vary along M , so it can happen that not all osculating groups are isomorphic.

Definition 15.3. A contact manifold is a filtered manifold of step 2 and dimension 2k+ 1 such
that all osculating groups are isomorphic to the Heisenberg group Hk.

Remark 15.4. Usually, one defines a contact manifold of dimension 2k + 1 by requiring that
there is a codimension 1 bundle H ⊆ TM such that all non-vanishing local 1-forms θ with
θ(H) = 0 satisfy that θ ∧ ( dθ)k is a volume form. Then θ is called a (local) contact form. This
definition is equivalent to definition 15.3 by [van05].

Example 15.5. Each graded nilpotent Lie group G of step r can be viewed as a (noncompact)
filtered manifold of step r. Let the Lie algebra of G be graded by g =

⊕r
i=1 gr and fix a basis

{X1, . . . , Xn} of g such that {X1, . . . , Xdim g1} is a basis of g1 and {Xdim gi−1+1, . . . , Xdim gi} is
a basis for gi for all i > 1. Viewing them as left-invariant vector fields on G, let Hi be the
vector bundle spanned by {X1, . . . , Xdim gi}. This defines a filtration as g is graded nilpotent.
Moreover, all osculating groups are isomorphic to G.

The filtration on M allows to define a new notion of order for differential operators on M .
The basic idea is that a section in Γ∞(H i) \ Γ∞(H i−1) has order i when viewed as a differential
operator on M .

More concretely, let X1, . . . , Xn : U → TM let be an H-frame on a coordinate chart U ⊂M ,
which means that {X1, . . . , XdimHi} is a frame for H i for all 1 ≤ i ≤ r. We use again multi-index
notation for differential operators but define the graded length for a multiindex α ∈ Nn0 :

[α] = α1 · 1 + . . .+ αdimH1 · 1 + αdimH1+1 · 2 + · · ·+ αdimH2 · 2 + . . .+ αn · r.
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We define the graded order of Xα = Xα1
1 . . . Xαn

n to be [α]. Each differential operator P can be
written locally as

P =
∑

[α]≤d

cα(x)Xα.

Definition 15.4. The model operator of P at m ∈ U is defined to be

Pm :=
∑

[α]=d

cα(m)〈X(m)〉α

viewed as a left invariant differential operator on the osculating group Gm.

One can show that Pm does not depend on the chosen H-frame. In the following, we will
replace ellipticity by H-ellipticity:

Definition 15.5. A differential operator P on a filtered manifold (M,H) is H-elliptic if all Pm
are hypoelliptic operators on Gm.

By the last talk, a differential operator P is H-elliptic if and only if all model operators Pm
satisfy the Rockland condition as operators on the graded nilpotent Lie groups Gm.

Example 15.6. To see how this relates to usual ellipticity, recall that for a usual manifold
(r = 1) of dimension n, the osculating groups are all isomorphic to Rn. The model operators are
the constant coefficient operators

Pm =
∑
|α|=d

cα(m)∂α.

Every unitary irreducible representation of Rn is unitarily equivalent to a one-dimensional rep-
resentation πξ given by πξ(x) = ei〈ξ,x〉 for some ξ ∈ Rn. One computes that dπξ(

∂
∂xj

) = iξj .
Therefore, dπξ(Pm) = σ(P )(m, ξ) holds. Hence, H-ellipticity is, in this case, the same as ellip-
ticity.

In the following, we consider two differential operators which are not elliptic but H-elliptic
with respect to certain step 2 filtrations. In both cases, a term which would be of lower order in
the usual differential calculus is crucial to make the operator H-elliptic.

Example 15.7. Consider the heat operator on Rn × R

P = −∆x +
∂

∂t
= −

n∑
i=1

∂2

∂x2
i

+
∂

∂t
.

By considering its principal symbol, we see that the operator is not elliptic in the ordinary
calculus. Consider the step 2 filtration 0 ⊆ TRn ⊆ T (Rn × R). The osculating groups are still
isomorphic to Rn × R, but the order of ∂

∂t is now also 2. As dπ(ξ,η)(P(x,t)) = |ξ|2 + iη is only
zero for (ξ, η) = (0, 0) for all (x, t) ∈ Rn × R, it follows that P is H-elliptic with respect to the
filtration above.

Example 15.8 ([EPS04]). Let {X1, . . . , Xk, Y1, . . . , Yk, Z} denote the usual basis of the Heisen-
berg group Hk. Consider the operator

P =

k∑
j=1

−X2
j − Y 2

j + iµZ with µ ∈ C.

All osculating groups are isomorphic to Hk. Recall that by Kirillov’s orbit method there is
a bijection between Ĥk and the coadjoint orbit space h∗k/Hk. Writing an element of h∗k as
cZ∗ +

∑k
j=1 ajX

∗
j + bjY

∗
j with aj , bj , c ∈ R, there are two different types of orbits:
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1. c = 0. In this case the orbit just consists of a single point and the polarizing subalgebra is
hk. The corresponding representation of Hk is one-dimensional and given by

χ(a,b)(x, y, z) = ei(〈a,x〉+〈b,y〉) for (x, y, z) ∈ Hk.

One computes dχ(a,b)(Xj) = aj , dχ(a,b)(Yj) = bj and dχ(a,b)(Z) = 0. Hence, dχ(a,b)(Pm) =
|a|2 + |b|2 6= 0 for all m ∈ Hk and (a, b) 6= (0, 0). Note that (a, b) = (0, 0) corresponds to
the trivial representation.

2. c 6= 0. Here, the orbits under the coadjoint action are 2k-dimensional and of the formcZ∗ +

k∑
j=1

ajX
∗
j + bjY

∗
j | (a, b) ∈ R2k

 .

A polarizing subalgebra is given by RZ ⊕RX1⊕ . . .RXk. One can show that the resulting
infinite-dimensional representation is unitarily equivalent to the representation πc : Hk →
L2(Rk) given by

πc(x, y, z)h(u) = eic(z+
1
2 〈x,y〉)e±i

√
|c|〈y,u〉h(u+

√
|c|x)

for (x, y, z) ∈ Hk, h ∈ L2(Rk) and u ∈ Rk. Here, the ± corresponds to the sign of c.
Computing the infinitesimal representations yields

dπc(Xj) =
√
|c| ∂
∂uj

,

dπc(Yj) = ±
√
|c|iuj

dπc(Z) = ic.

The Rockland condition is satisfied if and only if

dπγ(Pm) = c(−∆ + |u|2 ± µI)

is injective on S(Rk). The operator −∆+ |u|2 on Rk is the quantum harmonic oscillator. It
has pure point spectrum and its spectrum is given by {k+2l | l ∈ N0}. The corresponding
eigenfunctions are Schwartz. Therefore, the operator is injective if and only if µ /∈ {k+ 2l |
l ∈ N0} ∪ {−k − 2l | l ∈ N0}.

In summary, the operator P is H-elliptic if and only if µ is not contained in this set.

16 Index theory for contact manifolds

Rockland operators on graded nilpotent Lie groups satisfy certain a priori estimates. For example,
on the Heisenberg group Hk for the Sublaplacian L =

∑k
j=1−X2

j − Y 2
j and a left-invariant

operator A of Heisenberg order ≤ 2, there is a C > 0 such that

‖Au‖ ≤ C(‖Lu‖+ ‖u‖) for all u ∈ S(G). (38)

On a contact manifold M there are certain coordinates called Darboux coordinates that identify
M locally with a open subset of the Heisenberg group. These allow to derive similar estimates
for H-elliptic operators on M .

For a compact contact manifold M of dimension 2k + 1, let {ϕ : Ui → Hk}ni=1 be an atlas of
Darboux coordinates. Using a subordinate partition of unity {χi}, one can define Sobolev spaces
Hs on M by setting

‖u‖2Hs :=

n∑
i=1

‖(χi · u) ◦ ϕ−1
i ‖

2
Hs .

Here, we use the Sobolev norm on Hk with respect to the Sublaplacian. Using the Darboux
coordinates and the estimates for the model operators from (38) one can show
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Proposition 16.1 ([van10]). Let P be an H-elliptic operator P on a compact contact manifold
M . For s ∈ R, there is a C > 0 such that

‖u‖Hs ≤ C(‖Pu‖2 + ‖u‖2) for all u ∈ C∞(M).

Using these estimates one can show:

Theorem 16.2 ([van10]). Let P be an H-elliptic operator P on a compact contact manifold
M . Then P is hypoelliptic. Moreover, P is closable and P is Fredholm.

Furthermore, one can show that the index just depends on the model operators.

Remark 16.1. The same is also true for H-elliptic operators on arbitrary compact filtered
manifolds. This follows from the pseudo-differential calculus developed by van Erp and Yuncken
in [vEY17].

Remark 16.2. In the contact case, one can show again that the index just depends on a K-
theory class in K0(C∗(THM)) which one can build from the model operators. By iterating
the Connes-Thom isomorphism in K-theory, one obtains an isomorphism ψ : K0(C∗(THM)))→
K0(C0(T ∗M)). Using the inverse isomorphism, van Erp proves in [van10] an Atiyah-Singer
index theorem for contact manifolds. In [BvE14] Baum and van Erp give a different, more
explicit description of the cohomological form of the index.

A Computations in Heisenberg groups

The following is a simplified summary of the computations performed in [CG90, Example 1.1.2,
Example 1.2.4, Example 1.3.9, Example 2.2.6, Example 4.3.11], with the rest of examples can be
found in the sequel of these examples.

In this section we list the necessary results of computations of Hn(R) for n = 1, i.e., the
simplest case of Heisenberg group with Lie algebra hn of the following form:

h1 :=


0 x z

0 y
0

 ∣∣∣∣∣∣ x, y, z ∈ R

←→ H1 :=


0 x z + 1

2x · y
0 y

0

 ∣∣∣∣∣∣ x, y, z ∈ R


Now fixes the element W = (a, b, c) = aX + bY + cZ and w = (x, y, z) corresponding to the
following elements in h1 and H1 respectively:0 a c

0 b
0

 1 x z
1 y

1



then the adjoint actions gives AdwW =

0 a c+ x · b− y · a
0 b

0

.

Now for X,Y, Z we fix dualized basis X∗, Y ∗, Z∗ with l = (α, β, γ) = αX∗ + βY ∗ + γZ∗ ∈ g,
then for w = (x, y, z):

Ad∗w : (α, β, γ) 7→ (α+ γ · y, β − γ · x, γ)

Hence we have two types of orbits:

1. γ = 0: In this case Ad∗(G) · l = l and we have 0-dimensional orbits;

2. γ 6= 0: In this case we have the G-orbits are 2n-dimensional affine planes:

Ad∗(G) · (α, β, γ) =
{

(α′, β′, γ)
∣∣ α′, β′ ∈ R1

}
for (α, β, γ) ∈ g∗

Writing 2. as γZ∗+Z⊥ := γZ∗+{l ∈ g∗ | l(Z) = 0} we can parametrize the polarizing subalgebra
as the following cases respectively:
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1. rl = g the only radical;

2. rl = RZ are the radical for l ∈ Z⊥ and m are 2n-dimensional subalgebras of the form
RZ ⊕ RY or RZ ⊕ RX.

Now to parametrize Ĝ, we need some auxiliary lemma to separate the measure:

Theorem A.1 ([CG90, Theorem 1.2.12]). Let h be a k-dimensional subalgebra of a nilpotent
algebra g, with respective Lie group H ⊆ G. Choose a weak Malcev basis {X1, · · · , Xn} for g
through h. Then the following φ defines a analytic diffeomorphism:

φ : Rn−k → H\G (t1, · · · , tn−k) 7→ H · · · exp(t1Xk+1) · · · exp(tn−kXn)

which takes the Lebesgue measure on Rn−k to a G-invariant measure on H\G.

Remark A.1. This again use the fact that the Campbell-Baker-Hausdorff formula is a poly-
nomial diffeomorphism with a polynomial inverse, which only applies when there is choice of
Malcev basis.

Now Ĝ (as a set) can be fully described based on γ respectively:

1. For l ∈ Z⊥, as m = g the only polarizing subalgebra for l, hence the inductions are trivial
and:

πl = χl where χl(expW ) = e2πil(W ) for W ∈ g

There are one-dimensional representations which corresponding to Gab := G/[G,G] =
G/G(1). Note this corresponds to the Pontryagin Duality of all the characters;

2. For l = λZ∗ +Z⊥ with λ 6= 0. Since πl,M are independent of choice of l and M within the
same orbit we can choose for convenience the representative l = λZ∗ with m = RZ ⊕ RY .
On such, the characters are of the form: χl(exp(zZ + yY )) = e2πiλz. To describe the
behaviour of πl := indGM (χl), we describe the action of πl on L2(M\G,C). Take S =
exp(RX). Our choice of basis is clearly a Strong Malcev basis, so by Theorem A.1 we have
the basis dt on R transfers to a right invariant measure on S. Hence the restriction map
f 7→ f |S gives an isometry between Hπl and L

2(Rn) = L2(R). So now it suffices to describe
the action of (x, y, z) ∈ g on f(t, 0, 0) with (x, y, z) := exp(xX + yY + zZ) ∈ G. The key
is to use CBH-formula to write S ·G to the form of M · S:

(t, 0, 0) · (x, y, z) =

(
0, y, z + t · y +

1

2
x · y

)
· (t+ x, 0, 0)

Hence the action of (x, y, z) ∈ G on f |S ∈ L2(R) is via:

πl(x, y, z)f(0, 0, t) = exp2πiλ(z+t·y+ 1
2
x·y) f(0, 0, t+ x)

for non-zero λ. And one can see the infinite-dimensional representations are precisely those
those on which the center exp(RZ) acts nontrivially. This embodies the proof of general
cases.

Now to parametrize Ĥ1 we see S in Lemma 5.3 (and its following theorems) can be chosen to be
S = {2, 3, . . . , 2n + 1} since every nontrivial orbit has dimension 2n and V = g∗ has dimension
2n+ 1. Hence U, VS , VT in this case admits a particular nice form:

VS = RY ∗ ⊕ RX∗

VT = RZ∗
U = {l ∈ g∗ | l(Z) 6= 0}

U ∩ VT = R×Z∗

The adjoint action above is naturally expressed in the polynomial form, hence we have, for u ∈ U
parametrized by {

−xjγ if 1 ≤ j ≤ n
yj−nγ if n+ 1 ≤ j ≤ 2n
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Hence when n = 1, the local trivialization ϕ : (U ∩ VT )× VS → U is given by:

φ(γZ∗, u) = γZ∗ + u1Y
∗ + u2X

∗

Having the orbits parametrized, we see the symplectic form B appears in Plancherel inversion
theorem associated with l ∈ g∗ admits the form:(

0 l(Z) · idn
−l(Z) · idn 0

)
∈M2n(R)

whose determinant is l(Z)2n and hence Pf(l) = l(Z)n. Hence the Fourier inversion theorem
reads:

f(e) =

∫
R

trπλZ∗(f)|λ|ndλ

with |λ|ndλ the Plancherel measure, under the identification VT = {λZ∗ : λ ∈ R} ∼= R.

To end this computation, we are satisfied with laying down the kernel function Kl,φ(t, t) ∈
S(R × R) for fixed φ ∈ S(G) and l = λZ∗ for λ 6= 0. Then the parametrization α, β, γ appears
in Equation (Kernel of Trace) are:

γ(zZ, yY, xX) = exp(zZ) exp(yY ) exp(xX)

α(zZ, yY ) = exp(zZ) exp(yY )

β(xX) = exp(xX)

Hence the integrand by CBH-formula gives:

β(xX)−1 exp(yY + zZ)β(xX) = (−x, 0, 0) ∗ (0, y, z) ∗ (x, 0, 0) = (0, y, z − yx)

NowKφ,l(x, x) ∈ S(R×R) in Theorem 6.2 by identifying dH = dY dZ, du = dx and l(zZ+yY ) =
λz, that:

Kφ,l(x, x) =

∫
R

∫
R
e2πiλzφ

1 0 z − xy
1 y

1

 dydz

whereas the general form we used the ‘straightened’ form:

K
(x1,y1,z1)
φ,l (t, x) =

∫
R

∫
R
φ(t− x, y, z)e2πλi(z−z1+x1y−xy1)dydz

where this kernel corresponding the trace corresponding to the function f evaluated at

1 x1 z1

1 y1

1

.

Note here the exponential coefficients encodes the right action of G on the induced representation.
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