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I meet the word ”Hypoellipticity” when I was the first year PhD student at University of Göttingen.

Before, I only know elliptic, hyperbolic and parabolic operators and associated equations. So I wrote this

note to clarify them. Some materials are from [1, 3].

We first recall the two top classical partial differential equations (PDEs):

• Laplace’s equation
∂2u

∂x2
+
∂2u

∂y2
= 0,

• Wave equation
∂2u

∂x2
− ∂2u

∂y2
= 0.

In fact, they all come from the usual differential operator are of the form

P (x,D) =
∑
|α|≤m

aα(x)Dα.

Here Dα = ∂α denotes a general mixed partial derivative depending on α. For Laplace’s equation, the

degree m = 2, the relevant α are (2, 0) and (0, 2), and the associated coefficients aα(x) are constant 1

and 1. For the wave equation, m,α are the same as the Laplacian, but the associated coefficients are 1

and −1.

As we have known, although the above two equations look similar, their solutions have different s-

moothness properties. Indeed, the solution to Laplace’s equation is called harmonic function, are infinitely

differentiable, while general solutions to the wave equation need not be smooth or even continuous. The

only reason is the different sign for coefficients.

In the theory of partial differential equations, elliptic operators are differential operators that gener-

alize the Laplace operator. They are defined by the condition that the coefficients of the highest-order

derivatives satisfy, ∑
|α|=m

aα(x)ξα 6= 0

for every x and every non-zero ξ in Rn, which implies the key property that the principal symbol is

invertible, or equivalently that there are no real characteristic directions. What’s more, when we consider

the elliptic equation:

Pu = f

in the sense of distribution. A basic problem is : what can we say about solution u for some given f?

We often resorts to understanding what sort of properties u inherits from f . For example, if f is smooth,

does it follow that u is smooth? As we know, the positive coefficients can guarantee the smoothness

by elliptic regularity theorem. However, ellipticity is sufficient but not necessary for smoothness. For

example, the solution to the heat equation

∂2u

∂x2
− ∂u

∂t
= 0
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is smooth even though the equation is not elliptic. Just now, there is no known nice condition that both

necessary and sufficient for smoothness. Therefore, we need the definition of hypoelliptic, which can be

seen as the weaker versions of ellipticity.

Definition 0.1 If all solutions are smooth, the PDE is called hypoelliptic.

Definition 0.2 A partial differential operator P is hypoelliptic if on every open subset: if Pu is smooth,

then u is smooth in the sense of distribution.

Example 0.1 On R, P = d
dx is hypoelliptic: if the derivative is smooth, then the primitive is also smooth.

This follows from the fundamental theorem of calculus: u(x) =
∫ x
0
Pu(t)dt+ C.

Example 0.2 On R2 with coordinates (x, y), P = ∂
dx is not hypoelliptic. In fact, Pu = 0 for any u that

depends only on y, and thus u need not to be smooth.

We can formulate a more quantitative version of hypoellipticity using Sobolev spaces. For p ∈ [1,∞],

s ∈ R, let W s,p denote the Sobolev space of order s on Rn. A simple consequence of the Sobolev

embedding theorem is the following lemma.

Lemma 0.1 Suppose ∀s ∈ R, ∃r(s) ∈ R such that

Pu ∈ Hr(s) ⇒ u ∈ Hs ⇐⇒ ‖u‖Hs ≤ C‖Pu‖Hr(s) .

Then P is hypoelliptic.

In fact, when P is a differential elliptic operator of order m, we usually have that

Pu ∈W s−m,p =⇒ u ∈W s,p.

Thus u is smoother than Pu by m derivatives. This is the best result could possibly hope for just now.

However, hypoellipticity becomes more subtle when P is not elliptic.

Definition 0.3 We say P is subelliptic if ∃ε > 0 such that the conditions of Lemma 0.1 hold with

r(s) = s− ε:
‖u‖Hs−ε ≤ C‖Pu‖Hr(s) .

In this case, u is smoother than Pu by ε derivatives, which can be much weaker than ellipticity (ε = m).

Let X1, · · · , Xj be smooth vector fields on Rn. Define L = X∗1X1 + · · · + X∗jXj , where X∗j denotes

the formal L2 adjoint of Xj . (When Xj = ∂
∂xj

, j = 1, · · · , n, then L = ∆.)

Example 0.3 If the vector fields X1, · · · , Xj are tangent to a lower dimensional submanifold of Rn, then

L is not hypoelliptic. This generalized Example 0.2.

Hörmander dealt with the opposite situdation.

Definition 0.4 We say X1, · · · , Xj satisfy Hörmander’s condition if the Lie algebra generated by X1, · · · , Xj

spans the tangent space.

Hörmander proved that if X1, · · · , Xj satisfy this Hörmander’s condition, then L is subelliptic oper-

ator, which is called the Hörmander sub-Laplacian.

Example 0.4 On R2, let X1 = ∂
∂x , X2 = x ∂

∂y . Then [X1, X2] = ∂
∂y so that X1, X2 satisfy Hörmander’s

condition at R2. Thus L = X∗1X1 +X∗2X2 = −∂2x − x2∂2y is subelliptic at R2. L is not elliptic.

In fact, Hörmander’s sub-Laplacian is one of the most fundamental examples of a far-reaching gener-

alization of ellipticity, known as maximal hypoellipticity. Let

Q(y) =
∑
|α|≤m

bα(x)yα

be a polynomial of degree m in noncommuting indeterminates y1, · · · , yj with smooth coefficients bα ∈
C∞(Rn): here we have used ordered multi-index notation to deal with the noncommuting indeterminates.

If X1, · · · , Xj are vector fields, then it makes sense to consider P = Q(X1, · · · , Xj) as a partial differential

operator of degree at most m.
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Definition 0.5 Suppose X1, · · · , Xj satisfy Hörmander’s condition. We say P = Q(X1, · · · , Xj) is

maximal hypoellipticity if

Pu ∈ L2 =⇒ Xαu ∈ L2

for all ordered multi-indicies α with |α| ≤ m.

A general method of a priori estimates developed by Kohn can be used to show that maximally

hypoelliptic operators are subelliptic. Beyond subellipticity, Kohns method does not give a complete

understanding of maximal hypoellipticity, and unlike the case of elliptic operators, the Fourier transform

is not a decisive tool. Finally, we mention a delicate phenomenon which is far from being understood:

hypoelliptic operators that are not subelliptic. For example, Kohn [2] found the complex analog of

Hörmander sub-Laplacians might be subelliptic, might be hypoelliptic but not subelliptic, or might not

be hypoelliptic at all. Besides these and some other intriguing results, many aspects of hypoellipticity

without subellipticity remain uncharted territory.

In conclusion, we have:

Ellipticity =⇒Maximal Hypoellipticity =⇒ Subellipticity =⇒ Hypoellipticity,

and none of the reverse implications hold.
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