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a b s t r a c t

In this paper, we study the following fractional Schrödinger equation

(−∆)su + V (x)u = K(x)f(u) + λW (x)|u|p−2u, x ∈ RN ,

where λ > 0 is a parameter, (−∆)s denotes the fractional Laplacian of order
s ∈ (0, 1), N > 2s, W ∈ L

2
2−p (RN ,R+), 1 < p < 2, V, K are nonnegative continuous

functions and f is a continuous function with a quasicritical growth. Under some
mild assumptions, we prove that the above equation has three solutions.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction and the main results

This paper is concerned with the following fractional Schrödinger equation

(−∆)su + V (x)u = K(x)f(u) + λW (x)|u|p−2
u, x ∈ RN , (1.1)

where (−∆)s denotes the fractional Laplacian of order s ∈ (0, 1), N > 2s, λ > 0, V, K, f ∈ C(RN ,R),
W ∈ L

2
2−p (RN ,R+) and 1 < p < 2.

In the last few years, the study of elliptic equation involving fractional Laplace operator appears widely
in optimization, finance, phase transitions, stratified materials, crystal dislocation, flame propagation,
conservation laws, materials science and water waves (see [1]). A basic motivation for the study of Eq. (1.1)
arises in looking for the standing wave solutions of the type Ψ(x, t) = e−iEt/εu(x) for the following time-
dependent fractional Schrödinger equation

iε
∂Ψ

∂t
= ε2s(−∆)sΨ + (V (x) + E)Ψ − f(x,Ψ) (x, t) ∈ RN × R. (1.2)
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Eq. (1.2) was introduced by Laskin [2,3], which describes how the wave function of a physical system
evolves over time. Over the past decades, problem (1.1) and problems similar as (1.1) have captured a lot of
interest, many authors have shown their interest in elliptic equation and system both in bounded domains
and unbounded domains, see [4–8].

Most of those results need to assume that the potential V admits a positive bounded from below.
However, we point out that when s = 1, Ambrosetti, Felli and Malchiodi in [9] considered the zero mass
case (i.e. lim|x|→∞V (x) = 0) for the problem

− ∆u + V (x)u = K(x)|u|p (1 < p < 2∗ − 1),

where V, K : RN → R are smooth functions and there exist a1, a2, a3, A, k1 > 0 such that

a3

1 + |x|a1 ≤ V (x) ≤ A and 0 < K(x) ≤ k1

1 + |x|a2 , ∀ x ∈ RN .

Later, in [10], Alves and Souto consider a more general condition on V and K, from which the working space
can be embedded into the weighted space. Using the idea in [10], authors in [11] and [12] obtain a positive
solution for a class of critical fractional Schrödinger equation, respectively.

Inspired by the above papers, in the present paper, we shall study the fractional problem with mixed
nonlinearity and the potential V vanishing at infinity. To the best of our knowledge, few works concerning
on this case up to now. To state our main results, we introduce the notion: we say that (V, K) ∈ K if the
following conditions hold:

(V ) K ∈ L∞(RN ), V (x), K(x) > 0, ∀x ∈ RN and lim|x|→+∞V (x) = 0 (shortly V (∞) = 0).
(K1) If {An} ⊂ RN is a sequence of Borel sets such that |An| ≤ R for all n and some R > 0, then

lim
r→+∞

∫
An∩Bc

r(0)
K(x)dx = 0, uniformly in n ∈ N.

Moreover, one of the following conditions occurs:
(K2) K

V ∈ L∞(RN ).
(K3) there is σ ∈ (2, 2∗

s) such that

lim
|x|→+∞

K(x)

V (x)
2∗

s−σ

2∗
s−2

= 0, where 2∗
s = 2N

N − 2s
.

The hypotheses on functions V (x) and K(x) were firstly introduced in [10]. Moreover, for the function
f , we assume the following conditions:

(f1) lim|t|→0
f(t)
|t| = 0 if (K2) holds, or lim|t|→0

f(t)
|t|σ−1 < +∞ if (K3) holds.

(f2) f has a quasicritical growth, that is, lim|t|→+∞
f(t)

|t|2
∗
s−1 = 0.

(f3) there exists θ > 2 such that 0 ≤ θF (t) ≤ tf(t) for all t ∈ R, where F (u) =
∫ u

0 f(t)dt.

Our main result is the following:

Theorem 1.1. Assume that (V, K) ∈ K, (f1) − (f3) are satisfied and W ∈ L
2

2−p (RN ,R+) (1 < p < 2).
Then there exists a positive constant λ0 such that for every 0 < λ < λ0, problem (1.1) has at least three
solutions.

Remark 1.1. From our condition (f1) − (f3), it is easy to see that 0 is a trivial solution of problem (1.1),
therefore we will prove that problem (1.1) has at least two nontrivial solutions, which is different from the
results in [11] and [12].
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Throughout this paper, we denote ∥ · ∥r the usual norm of the space Lr(RN ), 1 ≤ r < ∞, Br(x) denotes
the open ball with center at x and radius r, C or Ci(i = 1, 2, . . .) denote some positive constants may change
from line to line.

2. Preliminary results and proof of Theorem 1.1

In the sequel, we always assume that the hypotheses of Theorem 1.1 are satisfied. A complete introduction
to fractional Sobolev space Hs(RN ) can be found in [13], we only recall that the embedding Hs(RN ) ↪→
Lr(RN ) is continuous for any r ∈ [2, 2∗

s] and is locally compact whenever r ∈ [2, 2∗
s). We introduce the

subspace

E =
{

u ∈ Hs(RN ) :
∫
RN

V (x)u2dx < +∞
}

,

which is a Hilbert space equipped with the norm

∥u∥2 =
∫
RN

|(−∆) s
2 u|

2
dx +

∫
RN

V (x)u2dx.

Denote by Lr
K(RN ) the weighted Lebesgue space

Lr
K(RN ) = {u ∈ Hs(RN ) : u is measurable and

∫
RN

K(x)|u|rdx < +∞}

and owed with the norm

∥u∥Lr
K

(RN ) =
(∫

RN
K(x)|u|rdx

) 1
r
.

The energy functional associated with (1.1) is

Iλ(u) = 1
2

∫
RN

|(−∆) s
2 u|

2
dx + 1

2

∫
RN

V (x)u2dx −
∫
RN

K(x)F (u)dx − λ

p

∫
RN

W (x)|u|pdx.

It is easy to prove that Iλ is well defined on E and Iλ ∈ C1(E,R).
In a standard way (see e.g. [14]), one can check that the functional Iλ satisfies the Mountain Pass geometry.

Lemma 2.1. The functional Iλ satisfies the following conditions:

(i) There exist β, ρ > 0 such that Iε(u) ≥ β for ∥u∥ = ρ and λ ∈ (0, λ0);
(ii) There exists an e ∈ E satisfying ∥e∥ > ρ such that Iλ(e) < 0.

As a consequence of Mountain Pass Theorem [15] and Lemma 2.1, there exists a (PS) sequence {un} at
the Mountain Pass level c, i.e.,

Iλ(un) → c and I ′
λ(un) → 0. (2.1)

Lemma 2.2. Let {un} be a (PS) sequence {un} of Iλ. Then {un} is bounded in E.

Proof. As in [12, Lemma 2.2], we can get

1 + c + ∥un∥ ≤ Iλ(un) − 1
θ

⟨I ′
λ(un), un⟩

=
(

1
2 − 1

θ

)
∥un∥2 +

∫
RN

K(x)
(1

θ
unf(un) − F (un)

)
dx +

(
1
θ

− 1
p

)
λ

∫
RN

W (x)|un|pdx.
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Since (
1
p

− 1
θ

)
λ

∫
RN

W (x)|un|pdx ≤
(

1
p

− 1
θ

)
λ

(∫
RN

|W (x)|
2

2−p dx
) 2−p

2
(∫

RN
|un|2dx

) p
2

≤
(

1
p

− 1
θ

)
C∥W∥ 2

2−p
∥un∥p.

Hence,

1 + c + ∥un∥ +
(

1
p

− 1
θ

)
λ

∫
RN

W (x)|un|pdx ≥
(

1
2 − 1

θ

)
∥un∥2,

which implies that {un} is bounded in E. ■

To prove the main result, we need to establish the following compactness result.

Lemma 2.3. Any (PS) sequence {un} of Iλ has a convergent subsequence.

Proof. By Lemma 2.2, {un} is bounded in E. Up to a subsequence, we may assume that un ⇀ u in E.
From ⟨I ′

λ(un), un⟩ = on(1), we have

lim
n→+∞

∥un∥2 = lim
n→+∞

(∫
RN

K(x)f(un)undx + λ

∫
RN

W (x)|un|pdx
)

. (2.2)

From [10,12], there hold

lim
n→+∞

∫
RN

K(x)f(un)undx =
∫
RN

K(x)f(u)udx, (2.3)

lim
n→+∞

∫
RN

K(x)f(un)udx =
∫
RN

K(x)f(u)udx, (2.4)

lim
n→+∞

λ

∫
RN

W (x)|un|pdx = λ

∫
RN

W (x)|u|pdx, (2.5)

and

lim
n→+∞

λ

∫
RN

W (x)|un|p−2
unudx = λ

∫
RN

W (x)|u|pdx. (2.6)

Combining (2.2), (2.3) and (2.5), we obtain

lim
n→+∞

∥un∥2 =
∫
RN

K(x)f(u)udx + λ

∫
RN

W (x)|u|pdx. (2.7)

On the other hand, it follows from ⟨I ′
λ(un), u⟩ = on(1) that

(un, u) −
∫
RN

K(x)f(un)udx − λ

∫
RN

W (x)|un|p−2
unudx = on(1). (2.8)

By the definition of weak convergence, we obtain (un, u) → (u, u). Using (2.4), (2.6) and taking the limit in
(2.8), we get

∥u∥2 =
∫
RN

K(x)f(u)udx + λ

∫
RN

W (x)|u|pdx,

which together with (2.2) yields that ∥un∥2 → ∥u∥2. So un → u in E. This completes the proof. ■
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Define

cλ = inf
γ∈Γλ

max
0≤t≤1

Iλ(γ(t)),

where

Γλ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e}.

Proof of Theorem 1.1. By Mountain Pass Theorem and Lemma 2.1, we obtain that, for each 0 < λ < λ0,
there exists a (PS) sequence {un} ⊂ E for Iλ in E. Then, by Lemma 2.3, we can conclude that there exist a
subsequence {un} ⊂ E and u∗ ∈ E such that un → u∗ in E. Moreover, I ′

λ(u∗) = 0 and Iλ(u∗) = cλ ≥ β > 0.
The second solution of the problem (1.1) will be constructed through the local minimization. Since

W ∈ L
2

2−p (RN ,R+), we can choose a function ϕ ∈ E such that
∫
RN W (x)|ϕ|pdx > 0. Thus, by (V ) and (f3)

we have

Iλ(tϕ) = t2

2 ∥ϕ∥2 −
∫
RN

K(x)F (tϕ)dx − λtp

p

∫
RN

W (x)|ϕ|pdx

≤ t2

2 ∥ϕ∥2 − λtp

p

∫
RN

W (x)|ϕ|pdx

< 0,

for t > 0 large enough. Hence, let ρ > 0 be given in Lemma 2.1, we have −∞ < infu∈B̄ρ
Iλ(u) < 0.

By the Ekeland’s variational principle [14,16], there exists a minimizing sequence vn ∈ B̄ρ such that
Iλ(vn) → infu∈B̄ρ

Iλ(u) and I ′
λ(vn) → 0 as n → ∞. Hence, Lemma 2.3 implies that there exists a

nontrivial solution u∗∗ of problem (1.1) satisfying Iλ(u∗∗) < 0 and ∥u∗∗∥ ≤ ρ. Therefore, we can conclude
thatIλ(u∗∗) < 0 = Iλ(0) < Iλ(u∗) for all 0 < λ < λ0. This completes the proof of Theorem 1.1.
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