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Abstract
In this paper, we study the following critical fractional Schrödinger–Poisson system

{
𝜀2𝑠(−Δ)𝑠𝑢 + 𝑉 (𝑥)𝑢 + 𝜙𝑢 = 𝑃 (𝑥)𝑓 (𝑢) +𝑄(𝑥)|𝑢|2∗𝑠−2𝑢, in ℝ3,

𝜀2𝑡(−Δ)𝑡𝜙 = 𝑢2, in ℝ3,

where 𝜀 > 0 is a small parameter, 𝑠 ∈
( 3
4 , 1

)
, 𝑡 ∈ (0, 1) and 2𝑠 + 2𝑡 > 3, 2∗

𝑠
∶= 6

3−2𝑠 is

the fractional critical exponent for 3-dimension, 𝑉 (𝑥) ∈ (ℝ3) has a positive global

minimum, and 𝑃 (𝑥), 𝑄(𝑥) ∈ (ℝ3) are positive and have global maximums. We

obtain the existence of a positive ground state solution by using variational meth-

ods, and we determine a concrete set related to the potentials 𝑉 , 𝑃 and 𝑄 as the

concentration position of these ground state solutions as 𝜀 → 0+. Moreover, we con-

sider some properties of these ground state solutions, such as convergence and decay

estimate.

K E Y W O R D S
concentration, critical growth, fractional Schrödinger–Poisson system, ground state solution

M S C ( 2 0 1 0 )
35J50, 35Q40, 58E05

1 INTRODUCTION AND MAIN RESULTS

In this paper, we study the existence and concentration of solutions for the following critical fractional Schrödinger–Poisson

system {
𝜀2𝑠(−Δ)𝑠𝑢 + 𝑉 (𝑥)𝑢 + 𝜙𝑢 = 𝑃 (𝑥)𝑓 (𝑢) +𝑄(𝑥)|𝑢|2∗𝑠−2𝑢, in ℝ3,

𝜀2𝑡(−Δ)𝑡𝜙 = 𝑢2, in ℝ3,
(1.1)

where 𝜀 > 0 is a small parameter, 𝑠 ∈
( 3
4 , 1

)
, 𝑡 ∈ (0, 1), 2𝑠 + 2𝑡 > 3 and (−Δ)𝛼 is the fractional Laplacian operator, which can

be defined by the Fourier transform (−Δ)𝛼𝑢 = −1(|𝜉|2𝛼𝑢). In (1.1), the first equation is a nonlinear fractional Schrödinger

equation in which the potential 𝜙 satisfies the second equation which is a fractional Poisson equation. For this reason, (1.1) is

refered to as a fractional nonlinear Schrödinger–Poisson system (also called Schrödinger–Maxwell system). When 𝑠 = 1
2 and

𝑡 = 1, such a system becomes more interesting in Physics. It comes from the semi-relativistic theory in the repulsive (plasma
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physics) Coulomb case (see e.g. [29]). If one put the second equation into the first equation, such a system reduces to the

semi-relativistic Hartree equation which arises from the quantum theory of boson stars ([21]).

If 𝜙(𝑥) = 0 in the first equation, (1.1) becomes the fractional Schrödinger equation like

𝜀2𝑠(−Δ)𝑠𝑢 + 𝑉 (𝑥)𝑢 = 𝑓 (𝑥, 𝑢), 𝑥 ∈ ℝ𝑁. (1.2)

Equation (1.2) is related to standing wave solutions of the fractional time-dependent Schrödinger equation of the form

𝑖𝜀
𝜕𝜓

𝜕𝑡
= 𝜀2𝑠(−Δ)𝑠𝜓 + 𝑉 (𝑥)𝜓 − 𝑓 (𝑥, |𝜓|), 𝑥 ∈ ℝ𝑁,

which is a fundamental equation in fractional quantum mechanics (see [20]). It is well known that, different to the classical

Laplacian operator, the usual analysis tools for elliptic PDEs can not be directly applied to (1.2) since (−Δ)𝑠 is a nonlocal

operator. To overcome this difficulty, Caffarelli and Silvestre [5] developed a powerful extension method which transfer the

nonlocal Equation (1.2) into a local one settled on the half-space ℝ𝑁+1
+ .

In the local case that 𝑠 = 𝑡 = 1, (1.1) reduces to the following system{
−𝜀2Δ𝑢 + 𝑉 (𝑥)𝑢 + 𝜙𝑢 = 𝑓 (𝑥, 𝑢), inℝ3,

−𝜀2Δ𝜙 = 𝑢2, inℝ3.
(1.3)

From the point view of Quantum Mechanics, the system (1.3) describes mutual interactions of many particles (see [36]) and also

arises in Abelian Gauge Theories. These theories consist of field equations that provide a model to describe the interaction of a

nonlinear Schrödinger field with the electromagnetic field (see [7,8]). In the past decades, the system likes or similars to (1.3)

has been studied extensively by means of variational tools. See [2,10,16,19,27,40,45] and the references therein for the existence

of solutions. The concentration behavior of solutions was studied in some papers. Ruiz constructed a family of solutions which

concentrate around a sphere in [26]. In [28], Ruiz and Varia obtained the existence of multi-bump type solutions and showed

that the bumps concentrate around a local minimum of the potential for 𝑓 (𝑥, 𝑢) = |𝑢|𝑞−2𝑢 and 3 < 𝑞 < 5 by applying Lyapunov–

Schmidt reduction methods. The critical case was considered in [17], He and Zou proved that system (1.3) possesses a positive

ground state solution which concentrates around the global minimum of 𝑉 . The following semiclassical Schrödinger–Poisson

system has also attracted a lot of attention{
−𝜀2Δ𝑢 + 𝑉 (𝑥)𝑢 + 𝜙𝑢 = 𝑓 (𝑢), in ℝ3,

−Δ𝜙 = 𝑢2, in ℝ3.
(1.4)

D’Aprile and Wei [9] constructed a family of positive radially symmetric bound states and showed the concentration around a

sphere in ℝ3 as 𝜀→ 0 for (1.4) with 𝑓 (𝑢) = |𝑢|𝑞−2𝑢, 1 < 𝑞 < 11
7 .

Recently, there is an increasing interest in the existence of solutions to the fractional Schrödinger–Poisson system. A frac-

tional Schrödinger–Poisson system with 𝑉 = 0 and a general nonlinearity in the subcritical and critical case was considered in

[44], where a positive solution was obtained by using a perturbation approach, and the asymptotic behavior of solutions for a

vanishing parameter was also given. In [34] and [35], Teng adapted the monotonicity trick (see e.g. [18]) to obtain the exis-

tence of ground state solutions to the critical and subcritical cases, respectively. In [24], the authors considered the following

system {
𝜀2𝑠(−Δ)𝑠𝑢 + 𝑉 (𝑥)𝑢 + 𝜙𝑢 = 𝑔(𝑢), in ℝ3,

𝜀𝜃(−Δ)
𝛼

2𝜙 = 𝛾𝛼𝑢2, in ℝ3,

where 𝛾𝛼 is a constant, and they established the multiplicity of solutions for small 𝜀 via the Ljusternik–Schnirelmann category

theory, where 𝑔 is subcritical at infinity. However, the concentration behavior of solutions was almost not considered before

in literatures. To the best of our knowledge, the only result was due to Liu and Zhang [22], where the authors considered the

following system {
𝜀2𝑠(−Δ)𝑠𝑢 + 𝑉 (𝑥)𝑢 + 𝜙𝑢 = 𝑓 (𝑢) + |𝑢|2∗𝑠−2𝑢, in ℝ3,

𝜀2𝑡(−Δ)𝑡𝜙 = 𝑢2, in ℝ3.
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Under the assumptions

(C) 𝑓 ∶ ℝ → ℝ is a function of 1-class,

(M)
𝑓 (𝑡)
𝑡3

is strictly increasing for 𝑡 > 0,

and other suitable conditions, Liu and Zhang obtained the multiplicity of positive solutions which concentrate on the minima

of 𝑉 (𝑥) by the minimax theorems and Ljusternik–Schnirelmann category theory. When 𝑓 is not a function of 1-class, the

multiplicity of solutions was established in [43]. The concentration behavior of ground state solutions for a subcritical case with

two competing potentials was studied in [42].

In this paper, we are concerned with the existence and concentration behavior of ground state solutions for (1.1). We note

that (1.1) involves three different potentials which make our problem more complicated than that one in [22]. This brings a

competition between the potentials 𝑉 , 𝑃 and 𝑄: each one would like to attract ground states to their minimum or maximum

points, respectively. It makes difficulties in determining the concentration position of solutions. This kind of problem can be

traced back to [38,39] and [6] for the semilinear Schrödinger equation. In [11], the authors found new concentration phenomena

for Dirac equations with competing potentials and subcritical or critical nonlinearities, respectively. See also [12,37] and [41]

for other related results.

To state our main results, we need the following assumptions

(f1) 𝑓 ∈ (ℝ,ℝ), 𝑓 (𝑡) = 𝑜(𝑡3) as 𝑡→ 0 and 𝑓 (𝑡) = 0 for all 𝑡 ≤ 0;

(f2) There exists 4 < 𝑝 < 2∗
𝑠

such that

|𝑓 (𝑡)| ≤ 𝑐1(1 + |𝑡|𝑝−1)
for all 𝑡 ∈ ℝ and some 𝑐1 > 0;

(f3) 𝑡𝑓 (𝑡) − 4𝐹 (𝑡) ≥ 𝑠𝑡𝑓 (𝑠𝑡) − 4𝐹 (𝑠𝑡), ∀𝑡 ≥ 0,∀𝑠 ∈ [0, 1], where 𝐹 (𝑡) = ∫ 𝑡0 𝑓 (𝜏) 𝑑𝜏;

(f4) There exists 4 ≤ 𝜎 < 2∗
𝑠

such that

𝐹 (𝑡) ≥ 𝑐2𝑡𝜎
for all 𝑡 > 0 and some 𝑐2 > 0.

Remark 1.1. If the nonlinearity is differentiable, then it is easy to see that (𝑓3) is equivalent to the condition (𝑀) by the

derivative rules. In the present paper, we only need 𝑓 ∈ (ℝ,ℝ). At the time, the condition (𝑓3) is weaker than (𝑀). In fact,

for any 𝑠 ∈ [0, 1], 𝑡 > 0, let 𝑘(𝑠) = 𝑠4𝑡𝑓 (𝑡) − 4𝐹 (𝑠𝑡), then 𝑘′(𝑠) = 4𝑠3𝑡𝑓 (𝑡) − 4𝑡𝑓 (𝑠𝑡) = 4𝑠3𝑡𝑓 (𝑡) − 4𝑡 𝑓 (𝑠𝑡)(𝑠𝑡)3 (𝑠𝑡)
3. If (𝑀) holds,

then

𝑘′(𝑠) ≥ 4𝑠3𝑡𝑓 (𝑡) − 4𝑡𝑓 (𝑡)
𝑡3

(𝑠𝑡)3 = 0, for all 𝑡 ∈ ℝ.

Therefore, 𝑘(𝑠) is increasing on [0,1]. Consequently, 𝑘(1) ≥ 𝑘(𝑠), for all 𝑠 ∈ [0, 1]. Thus, for any 𝑠 ∈ [0, 1], by (𝑀) we

have

𝑡𝑓 (𝑡) − 4𝐹 (𝑡) ≥ 𝑠4𝑡𝑓 (𝑡) − 4𝐹 (𝑠𝑡) = 𝑠4𝑡4 𝑓 (𝑡)
𝑡3

− 4𝐹 (𝑠𝑡) ≥ 𝑠𝑡𝑓 (𝑠𝑡) − 4𝐹 (𝑠𝑡).

Here is an example of nonlinearity which satisfies (𝑓3) but does not satisfy the condition (𝑀). Define

𝐹 (𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑡4 ∫
𝑡

0

sin5
(
𝜋

2 𝜏
)

𝜏5
𝑑𝜏, 𝑡 ∈ [0, 1],

𝑡4

⎛⎜⎜⎜⎝∫
1

0

sin5
(
𝜋

2 𝜏
)

𝜏5
𝑑𝜏 + ∫

𝑡

1

1
𝜏5
𝑑𝜏

⎞⎟⎟⎟⎠, 𝑡 ≥ 1.
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By a direct computation, one has

𝑓 (𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

4𝑡3 ∫
𝑡

0

sin5
(
𝜋

2 𝜏
)

𝜏5
𝑑𝜏 +

sin5
(
𝜋

2 𝑡
)

𝑡
, 𝑡 ∈ [0, 1],

4𝑡3
⎛⎜⎜⎜⎝∫

1

0

sin5
(
𝜋

2 𝜏
)

𝜏5
𝑑𝜏 + ∫

𝑡

1

1
𝜏5
𝑑𝜏

⎞⎟⎟⎟⎠ +
1
𝑡
, 𝑡 ≥ 1.

Thereby, for 𝑡 ∈ [0,+∞) and 𝑠 ∈ [0, 1], as 0 ≤ 𝑡 ≤ 1, one has

𝑠𝑡𝑓 (𝑠𝑡) − 4𝐹 (𝑠𝑡) = sin5
(
𝜋

2
𝑠𝑡

) ≤ sin5
(
𝜋

2
𝑡

)
= 𝑡𝑓 (𝑡) − 4𝐹 (𝑡).

As 𝑡 ≥ 1, if 0 ≤ 𝑠𝑡 ≤ 1, then

𝑠𝑡𝑓 (𝑠𝑡) − 4𝐹 (𝑠𝑡) = sin5
(
𝜋

2
𝑠𝑡

) ≤ 1 = 𝑡𝑓 (𝑡) − 4𝐹 (𝑡),

and if 𝑠𝑡 ≥ 1, then

𝑠𝑡𝑓 (𝑠𝑡) − 4𝐹 (𝑠𝑡) = 1 = 𝑡𝑓 (𝑡) − 4𝐹 (𝑡).

All in all, 𝑠𝑡𝑓 (𝑠𝑡) − 4𝐹 (𝑠𝑡) ≤ 𝑡𝑓 (𝑡) − 4𝐹 (𝑡) for any 𝑠 ∈ [0, 1], 𝑡 ∈ [0,+∞).
By the definition of 𝑓 , we have

𝑓 (𝑡)
𝑡3

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

4∫
𝑡

0

sin5
(
𝜋

2 𝜏
)

𝜏5
𝑑𝜏 +

sin5
(
𝜋

2 𝑡
)

𝑡4
, 𝑡 ∈ [0, 1],

4
⎛⎜⎜⎜⎝∫

1

0

sin5
(
𝜋

2 𝜏
)

𝜏5
𝑑𝜏 + ∫

𝑡

1

1
𝜏5
𝑑𝜏

⎞⎟⎟⎟⎠ +
1
𝑡4
, 𝑡 ≥ 1,

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

4∫
𝑡

0

sin5
(
𝜋

2 𝜏
)

𝜏5
𝑑𝜏 +

sin5
(
𝜋

2 𝑡
)

𝑡4
, 𝑡 ∈ [0, 1],

4∫
1

0

sin5
(
𝜋

2 𝜏
)

𝜏5
𝑑𝜏 + 1, 𝑡 ≥ 1.

Notice that ∫ 1
0

sin5
(
𝜋

2 𝜏
)

𝜏5
𝑑𝜏 < +∞. Thus, if 𝑡 ≥ 1, one has

𝑓 (𝑡)
𝑡3

≡ 4∫
1

0

sin5
(
𝜋

2 𝜏
)

𝜏5
𝑑𝜏 + 1.

So
𝑓 (𝑡)
𝑡3

is not strictly increasing for 𝑡 > 0, that is, 𝑓 does not satisfy condition (𝑀).

We need some notations to help us to determine the concentration set of solutions. Set

𝑉min ∶= min
𝑥∈ℝ3

𝑉 (𝑥), 𝑉max ∶= sup
𝑥∈ℝ3

𝑉 (𝑥),  ∶=
{
𝑥 ∈ ℝ3 ∶ 𝑉 (𝑥) = 𝑉min

}
, 𝑉∞ ∶= lim inf|𝑥|→∞

𝑉 (𝑥),

𝑃min ∶= inf
𝑥∈ℝ3

𝑃 (𝑥), 𝑃max ∶= max
𝑥∈ℝ3

𝑃 (𝑥),  ∶=
{
𝑥 ∈ ℝ3 ∶ 𝑃 (𝑥) = 𝑃max

}
, 𝑃∞ ∶= lim sup|𝑥|→∞

𝑃 (𝑥),
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𝑄min ∶= inf
𝑥∈ℝ3

𝑄(𝑥), 𝑄max ∶= max
𝑥∈ℝ3

𝑄(𝑥),  ∶=
{
𝑥 ∈ ℝ3 ∶ 𝑄(𝑥) = 𝑄max

}
, 𝑄∞ ∶= lim sup|𝑥|→∞

𝑄(𝑥),

𝑉 ∶= min
𝑥∈ 𝑉 (𝑥), 𝑃 ∶= max

𝑥∈ 𝑃 (𝑥).

Moreover, we assume that 𝑉 , 𝑃 and 𝑄 satisfy the following conditions:

(A0) 𝑉 , 𝑃 ,𝑄 are three continuous and bounded functions with 𝑉min > 0, 𝑃min > 0 and 𝑄min > 0;

either

(A1) 𝑃 > 𝑃∞ and there exists 𝑥𝑃 ∈ 𝐶 such that 𝑉
(
𝑥𝑃

) ≤ 𝑉 (𝑥) for |𝑥| ≥ 𝑅 with 𝑅 > 0 sufficiently large, where

𝑃 ∶=
{
𝑥 ∈  ∶ 𝑃 (𝑥) = 𝑃

}
or

(A2) 𝑉 < 𝑉∞ and there exists 𝑥𝑉 ∈ 𝑉 such that 𝑃
(
𝑥𝑉

) ≥ 𝑃 (𝑥) for |𝑥| ≥ 𝑅 with 𝑅 > 0 sufficiently large, where

𝑉 ∶=
{
𝑥 ∈  ∶ 𝑉 (𝑥) = 𝑉

}
.

If
(
𝐴1
)

holds, we set

𝑃 =
{
𝑥 ∈ 𝑃 ∶ 𝑉 (𝑥) ≤ 𝑉 (𝑥𝑃 )} ∪

{
𝑥 ∈  ⧵ 𝑃 ∶ 𝑉 (𝑥) < 𝑉

(
𝑥𝑃

)}
∪
{
𝑥 ∉  ∶ 𝑃 (𝑥) > 𝑃 or 𝑉 (𝑥) < 𝑉

(
𝑥𝑃

)}
.

If
(
𝐴2
)

holds, we set

𝑉 =
{
𝑥 ∈ 𝑉 ∶ 𝑃 (𝑥) ≥ 𝑃 (𝑥𝑉 )} ∪

{
𝑥 ∈  ⧵ 𝑉 ∶ 𝑃 (𝑥) > 𝑃

(
𝑥𝑉

)}
∪
{
𝑥 ∉  ∶ 𝑉 (𝑥) < 𝑉 or 𝑃 (𝑥) > 𝑃

(
𝑥𝑉

)}
.

Clearly, 𝑃 and 𝑉 are bounded sets. Moreover, if  ∩  ∩ ≠ ∅, then 𝑃 = 𝑉 =  ∩  ∩.

Now we state our main results as follows.

Theorem 1.2. Assume that (𝑓1)–(𝑓4), 𝑠 ∈
( 3
4 , 1

)
, 𝑡 ∈ (0, 1), 2𝑠 + 2𝑡 > 3,

(
𝐴0
)

and
(
𝐴1
)

hold, then for all small 𝜀 > 0:

(i) The system (1.1) has a positive ground state solution
(
𝜔𝜀, 𝜙𝜔𝜀

)
;

(ii) 𝜔𝜀 possesses a global maximum point 𝑥𝜀 such that, up to a subsequence, 𝑥𝜀 → 𝑥0 as 𝜀→ 0, lim𝜀→0 𝑑𝑖𝑠𝑡(𝑥𝜀,𝑃 ) = 0, and(
𝑣𝜀(𝑥), 𝜓𝜀(𝑥)

)
∶=

(
𝜔𝜀
(
𝜀𝑥 + 𝑥𝜀

)
, 𝜙𝜀

(
𝜀𝑥 + 𝑥𝜀

))
converges in 𝐻𝑠

(
ℝ3) to a positive ground state solution of{

(−Δ)𝑠𝑢 + 𝑉
(
𝑥0
)
𝑢 + 𝜙𝑢 = 𝑃

(
𝑥0
)
𝑓 (𝑢) +𝑄

(
𝑥0
)|𝑢|2∗𝑠−2𝑢, in ℝ3,

(−Δ)𝑡𝜙 = 𝑢2, in ℝ3.

In particular if  ∩  ∩ ≠ ∅, then lim𝜀→0 𝑑𝑖𝑠𝑡(𝑥𝜀, ∩  ∩) = 0, and up to a subsequence,
(
𝑣𝜀, 𝜓𝜀

)
converges in

𝐻𝑠
(
ℝ3) to a positive ground state solution of{

(−Δ)𝑠𝑢 + 𝑉min𝑢 + 𝜙𝑢 = 𝑃max𝑓 (𝑢) +𝑄max|𝑢|2∗𝑠−2𝑢, in ℝ3,

(−Δ)𝑡𝜙 = 𝑢2, in ℝ3.

(iii) There exists a constant 𝐶 > 0 such that

𝜔𝜀(𝑥) ≤ 𝐶𝜀3+2𝑠

𝜀3+2𝑠 + |𝑥 − 𝑥𝜀|3+2𝑠 , for all 𝑥 ∈ ℝ3.

Theorem 1.3. Assume that (𝑓1)–(𝑓4), 𝑠 ∈
( 3
4 , 1

)
, 𝑡 ∈ (0, 1), 2𝑠 + 2𝑡 > 3,

(
𝐴0
)

and
(
𝐴2
)

hold, and we replace
(𝑃

)
by

(𝑉

)
,

then all the conclusions of Theorem 1.2 remain true.

Remark 1.4. Comparing to [22], there are some different points in our paper. First, we do not need 𝑓 satisfies the smooth

condition (𝑆), and this prevents us using the Nehari manifold in a standard way. Second, we do not assume 𝑓 satisfies the

monotonicity condition (𝑀) which plays an important role in [22].

In the sequel, we only give the detailed proof for Theorem 1.2 because the argument for Theorem 1.3 is similar to that for

Theorem 1.2.

This paper is organized as follows. In Section 2, we provide some preliminary lemmas which will be used later. In Section 3,

we consider the autonomous problem of the sytem (1.1) and prove the existence of positive ground state solutions. In Section 4,
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we prove the existence of positive ground state solutions of the sytem (1.1) for small 𝜀 > 0. In Section 5, we study the concen-

tration phenomenon and convergence of ground state solutions. In Section 6, we obtain the decay estimate of solution, which is

polynomial instead of exponential form. Finally, we give the proof of Theorem 1.2.

Notation. In this paper we make use of the following notations.

• For any 𝑅 > 0 and for any 𝑥 ∈ ℝ3, 𝐵𝑅(𝑥) denotes the ball of radius 𝑅 centered at 𝑥;

• 𝐿𝑝
(
ℝ3), 1 ≤ 𝑝 ≤ +∞, denotes the Lebesgue space with the following norm

‖𝑢‖𝑝 =
⎧⎪⎪⎨⎪⎪⎩

(
∫ℝ3

|𝑢|𝑝𝑑𝑥) 1
𝑝

, if 1 ≤ 𝑝 < ∞,

ess sup
𝑥∈ℝ3

|𝑢(𝑥)|, if 𝑝 = ∞.

• 𝐶 or 𝐶𝑖 (𝑖 = 1, 2,…) denote some positive constants could change from line to line.

2 PRELIMINARIES

First, we collect some preliminary results for the fractional Laplacian from [3]. We define the homogeneous fractional Sobolev

space 𝑠,2(ℝ3) as the completion of ∞
0
(
ℝ3) with respect to the norm

‖𝑢‖𝑠,2 ∶=
(
∬ℝ3×ℝ3

|𝑢(𝑥) − 𝑢(𝑦)|2|𝑥 − 𝑦|3+2𝑠 𝑑𝑥 𝑑𝑦

) 1
2
= [𝑢]𝐻𝑠.

We denote by𝐻𝑠
(
ℝ3) the standard fractional Sobolev space, defined as the set of 𝑢 ∈ 𝑠,2(ℝ3) satisfying 𝑢 ∈ 𝐿2(ℝ3) with

the norm

‖𝑢‖2
𝐻𝑠 = ∬ℝ3×ℝ3

|𝑢(𝑥) − 𝑢(𝑦)|2|𝑥 − 𝑦|3+2𝑠 𝑑𝑥 𝑑𝑦 + ∫ℝ3
𝑢2𝑑𝑥 = [𝑢]2

𝐻𝑠 + ‖𝑢‖22.
Also, in light of [3] and [25, Proposition 3.4 and Proposition 3.6], we have

‖‖‖(−Δ) 𝑠2 𝑢‖‖‖22 = ∫ℝ3
|𝜉|2𝑠|𝑢̂(𝜉)|2𝑑𝜉 = 1

2
𝐶(𝑠)∬ℝ3×ℝ3

|𝑢(𝑥) − 𝑢(𝑦)|2|𝑥 − 𝑦|3+2𝑠 𝑑𝑥 𝑑𝑦,

where 𝑢̂ stands for the Fourier transform of 𝑢 and

𝐶(𝑠) =
(
∫ℝ3

1 − 𝑐𝑜𝑠𝜉1|𝜉|3+2𝑠 𝑑𝜉

)−1
, 𝜉 = (𝜉1, 𝜉2, 𝜉3).

As a consequence, the norms on 𝐻𝑠
(
ℝ3) defined below

𝑢 →

(
∫ℝ3

𝑢2𝑑𝑥 +∬ℝ3×ℝ3

|𝑢(𝑥) − 𝑢(𝑦)|2|𝑥 − 𝑦|3+2𝑠 𝑑𝑥 𝑑𝑦

) 1
2
,

𝑢 →

(
∫ℝ3

𝑢2𝑑𝑥 + ∫ℝ3
|𝜉|2𝑠|𝑢̂(𝜉)|2𝑑𝜉) 1

2
,

𝑢 →

(
∫ℝ3

𝑢2𝑑𝑥 + ‖‖‖(−Δ) 𝑠2 𝑢‖‖‖22
) 1

2
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are all equivalent. Furthermore, it is well known that 𝐻𝑠
(
ℝ3) is continuously embedded into 𝐿𝑟

(
ℝ3) for any 2 ≤ 𝑟 ≤ 2∗

𝑠
and

compactly embedding into 𝐿𝑟
𝑙𝑜𝑐

(
ℝ3) for any 1 ≤ 𝑟 < 2∗

𝑠
and there exists a best constant 𝑠 > 0 such that

𝑠 = inf
𝑢∈𝑠,2

(
ℝ3
)
⧵{0}

∫ℝ3
|||(−Δ) 𝑠2 𝑢|||2 𝑑𝑥( ∫ℝ3 |𝑢|2∗𝑠 𝑑𝑥) 2

2∗𝑠

.

Moreover, (−Δ)𝑠𝑢 can be equivalently represented as (see [25, Lemma 3.2])

(−Δ)𝑠𝑢(𝑥) = −𝐶(𝑠)
2 ∫ℝ3

𝑢(𝑥 + 𝑦) + 𝑢(𝑥 − 𝑦) − 2𝑢(𝑥)|𝑦|3+2𝑠 𝑑𝑦, for all 𝑥 ∈ ℝ3. (2.1)

We denote ‖ ⋅ ‖𝐻𝑠 by ‖ ⋅ ‖ in the sequel for convenience.

Recall that by the Lax–Milgram theorem, we know that for every 𝑢 ∈ 𝐻𝑠
(
ℝ3), there exists a unique 𝜙𝑡

𝑢
∈ 𝑡,2(ℝ3) such that

(−Δ)𝑡𝜙𝑡
𝑢
= 𝑢2 and 𝜙𝑡

𝑢
can be expressed by

𝜙𝑡
𝑢
(𝑥) = 𝐶𝑡 ∫ℝ3

𝑢2(𝑦)|𝑥 − 𝑦|3−2𝑡 𝑑𝑦, for all 𝑥 ∈ ℝ3,

which is called 𝑡-Riesz potential, where

𝐶𝑡 =
1

𝜋
3
2

Γ( 32 − 𝑡)

22𝑡Γ(𝑡)
.

Making the change of variables 𝑥 → 𝜀𝑥, we can rewrite the system (1.1) as the following equivalent system{
(−Δ)𝑠𝑢 + 𝑉 (𝜀𝑥)𝑢 + 𝜙𝑢 = 𝑃 (𝜀𝑥)𝑓 (𝑢) +𝑄(𝜀𝑥)|𝑢|2∗𝑠−2𝑢, in ℝ3,

(−Δ)𝑡𝜙 = 𝑢2, in ℝ3.
(2.2)

If 𝑢 is a solution of the system (2.2), then 𝜔(𝑥) ∶= 𝑢(𝑥
𝜀
) is a solution of the system (1.1). Thus, to study the system (1.1), it

suffices to study the system (2.2). In view of the presence of potential 𝑉 (𝑥), we introduce the subspace

𝐻𝜀 =
{
𝑢 ∈ 𝐻𝑠

(
ℝ3) ∶ ∫ℝ3

𝑉 (𝜀𝑥)𝑢2𝑑𝑥 <∞
}
,

which is a Hilbert space equipped with the inner product

(𝑢, 𝑣)𝜀 = ∫ℝ3
(−Δ)

𝑠

2 𝑢(−Δ)
𝑠

2 𝑣 𝑑𝑥 + ∫ℝ3
𝑉 (𝜀𝑥)𝑢𝑣 𝑑𝑥,

and the equivalent norm

‖𝑢‖2
𝜀
= (𝑢, 𝑢)𝜀 = ∫ℝ3

|||(−Δ) 𝑠2 𝑢|||2𝑑𝑥 + ∫ℝ3
𝑉 (𝜀𝑥)𝑢2𝑑𝑥.

Moreover, it can be proved that
(
𝑢, 𝜙𝑡

𝑢

)
∈ 𝐻𝜀 ×𝑡,2(ℝ3) is a solution of (2.2) if and only if 𝑢 ∈ 𝐻𝜀 is a critical point of the

functional 𝜀 ∶ 𝐻𝜀 → ℝ defined as

𝜀(𝑢) = 1
2 ∫ℝ3

|||(−Δ) 𝑠2 𝑢|||2𝑑𝑥 + 1
2 ∫ℝ3

𝑉 (𝜀𝑥)𝑢2𝑑𝑥 + 1
4 ∫ℝ3

𝜙𝑡
𝑢
𝑢2𝑑𝑥 − ∫ℝ3

𝑃 (𝜀𝑥)𝐹 (𝑢) 𝑑𝑥 − 1
2∗
𝑠
∫ℝ3

𝑄(𝜀𝑥)|𝑢|2∗𝑠 𝑑𝑥, (2.3)

where 𝜙𝑡
𝑢

is the unique solution of the second equation in (2.2). Note that 2 ≤ 12
3+2𝑡 ≤ 2∗

𝑠
if 4𝑠 + 2𝑡 ≥ 3, then by the Hölder

inequality and the Sobolev inequality, we have

∫ℝ3
𝜙𝑡
𝑢
𝑢2𝑑𝑥 ≤

(
∫ℝ3

|𝑢| 12
3+2𝑡 𝑑𝑥

) 3+2𝑡
6
(
∫ℝ3

|𝜙𝑡
𝑢
|2∗𝑡 𝑑𝑥) 1

2∗
𝑡 ≤ 1

 1
2
𝑡

(
∫ℝ3

|𝑢| 12
3+2𝑡 𝑑𝑥

) 3+2𝑡
6 ‖𝜙𝑡

𝑢
‖𝑡,2 ≤ 𝐶‖𝑢‖2‖𝜙𝑡𝑢‖𝑡,2 <∞.
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Therefore, the functional 𝜀 is well-defined for every 𝑢 ∈ 𝐻𝜀 and belongs to 1(𝐻𝜀,ℝ). Moreover, for any 𝑢, 𝑣 ∈ 𝐻𝜀, we have

⟨′
𝜀
(𝑢), 𝑣⟩ =∫ℝ3

(−Δ)
𝑠

2 𝑢(−Δ)
𝑠

2 𝑣 𝑑𝑥 + ∫ℝ3
𝑉 (𝜀𝑥)𝑢𝑣 𝑑𝑥 + ∫ℝ3

𝜙𝑡
𝑢
𝑢𝑣 𝑑𝑥

− ∫ℝ3
𝑃 (𝜀𝑥)𝑓 (𝑢)𝑣 𝑑𝑥 − ∫ℝ3

𝑄(𝜀𝑥)|𝑢|2∗𝑠−2𝑢𝑣 𝑑𝑥. (2.4)

The properties of the function 𝜙𝑡
𝑢

are given in the following lemma (see [35, Lemma 2.3]).

Lemma 2.1. If 4𝑠 + 2𝑡 ≥ 3, then for any 𝑢 ∈ 𝐻𝑠
(
ℝ3), we have

(i) 𝜙𝑡
𝑢
≥ 0;

(ii) 𝜙𝑡
𝑢
∶ 𝐻𝑠

(
ℝ3) → 𝑡,2(ℝ3) is continuous and maps bounded sets into bounded sets;

(iii) ∫ℝ3 𝜙
𝑡
𝑢
𝑢2𝑑𝑥 ≤ 𝐶‖𝑢‖412

3+2𝑡

≤ 𝐶‖𝑢‖4;

(iv) If 𝑢𝑛 ⇀ 𝑢 in 𝐻𝑠
(
ℝ3), then 𝜙𝑡

𝑢𝑛
⇀ 𝜙𝑡

𝑢
in 𝑡,2(ℝ3);

(v) If 𝑢𝑛 → 𝑢 in 𝐻𝑠
(
ℝ3), then 𝜙𝑡

𝑢𝑛
→ 𝜙𝑡

𝑢
in 𝑡,2(ℝ3) and ∫ℝ3 𝜙

𝑡
𝑢𝑛
𝑢2
𝑛
𝑑𝑥 → ∫ℝ3 𝜙

𝑡
𝑢
𝑢2𝑑𝑥.

Define 𝑁 ∶ 𝐻𝑠
(
ℝ3) → ℝ by

𝑁(𝑢) = ∫ℝ3
𝜙𝑡
𝑢
𝑢2𝑑𝑥.

The next lemma shows that the functional 𝑁 and 𝑁 ′ possesses 𝐵𝐿-splitting property which is similar to the well-known

Brezis–Lieb lemma ([4]).

Lemma 2.2. ([35, Lemma 2.4]) Assume that 2𝑠 + 2𝑡 > 3. Let 𝑢𝑛 ⇀ 𝑢 in 𝐻𝑠
(
ℝ3) and 𝑢𝑛 → 𝑢 a.e.in ℝ3. Then

(i) 𝑁(𝑢𝑛 − 𝑢) = 𝑁
(
𝑢𝑛
)
−𝑁(𝑢) + 𝑜(1);

(ii) 𝑁 ′(𝑢𝑛 − 𝑢) = 𝑁 ′(𝑢𝑛) −𝑁 ′(𝑢) + 𝑜(1), in
(
𝐻𝑠

(
ℝ3))∗.

The following vanishing lemma is a version of the concentration-compactness principle proved by P. L. Lions. We can consult

[15, Lemma 2.2] and [30, Lemma 2.4].

Lemma 2.3. If
{
𝑢𝑛
}

is bounded in 𝐻𝑠
(
ℝ3) and it satisfies

sup
𝑥∈ℝ3 ∫𝐵𝑅(𝑥) |𝑢𝑛|2𝑑𝑥 → 0 𝑎𝑠 𝑛 → ∞,

for some 𝑅 > 0. Then 𝑢𝑛 → 0 in 𝐿𝑟
(
ℝ3) for any 2 ≤ 𝑟 < 2∗

𝑠
.

In order to find critical points for 𝜀, we will use the Nehari methods. The Nehari mainfold corresponding to 𝜀 is

defined by

𝜀 =
{
𝑢 ∈ 𝐻𝜀∖{0} ∶ ⟨′

𝜀
(𝑢), 𝑢⟩ = 0

}
.

Thus, for any 𝑢 ∈ 𝜀, we have that

∫ℝ3

|||(−Δ) 𝑠2 𝑢|||2𝑑𝑥 + ∫ℝ3
𝑉 (𝜀𝑥)𝑢2𝑑𝑥 + ∫ℝ3

𝜙𝑡
𝑢
𝑢2𝑑𝑥 = ∫ℝ3

𝑃 (𝜀𝑥)𝑓 (𝑢)𝑢 𝑑𝑥 + ∫ℝ3
𝑄(𝜀𝑥)|𝑢|2∗𝑠 𝑑𝑥.

Since 𝑓 is only continuous but not belongs to 1-class, 𝜀 need not be of class 1 in our case, so we cannot use standard

arguments on the Nehari manifold in the standard way. To overcome the nondifferentiability of the Nehari manifold, we shall

use the reduction method developed by Szulkin and Weth in [33].

First, (𝑓1) and (𝑓2) imply that for each 𝜏 > 0, there is 𝐶𝜏 > 0 such that

|𝑓 (𝑢)| ≤ 𝜏|𝑢|3 + 𝐶𝜏 |𝑢|𝑝−1 and |𝐹 (𝑢)| ≤ 𝜏

4
|𝑢|4 + 𝐶𝜏

𝑞
|𝑢|𝑝 (2.5)
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for all 𝑢 ∈ 𝐻𝑠
(
ℝ3). By (𝑓1) and (𝑓3), we deduce that

𝐹 (𝑢) ≥ 0 and
1
4
𝑓 (𝑢)𝑢 − 𝐹 (𝑢) ≥ 0. (2.6)

In the following we shall show some properties for 𝜀.

Lemma 2.4. For any 𝑢 ∈ 𝐻𝜀∖{0}, we have

(i) There exists a unique 𝜃𝑢 such that 𝜃𝑢𝑢 ∈ 𝜀. Moreover, 𝜀(𝜃𝑢𝑢) = max𝜃≥0 𝜀(𝜃𝑢).
(ii) There exist 𝑇2 > 𝑇1 > 0 independent of 𝜀 > 0 such that 𝑇1 ≤ 𝜃𝑢 ≤ 𝑇2.

Proof. (𝑖) For 𝜃 > 0, let

𝑔(𝜃) = 𝜀(𝜃𝑢) = 𝜃2

2 ∫ℝ3

|||(−Δ) 𝑠2 𝑢|||2𝑑𝑥 + 𝜃2

2 ∫ℝ3
𝑉 (𝜀𝑥)𝑢2𝑑𝑥

+𝜃
4

4 ∫ℝ3
𝜙𝑡
𝑢
𝑢2𝑑𝑥 − ∫ℝ3

𝑃 (𝜀𝑥)𝐹 (𝜃𝑢) 𝑑𝑥 − 𝜃2
∗
𝑠

2∗
𝑠
∫ℝ3

𝑄(𝜀𝑥)|𝑢|2∗𝑠 𝑑𝑥.
Then, by (2.5) and Sobolev embedding inequality, we have

𝑔(𝜃) ≥ 1
2
𝜃2‖𝑢‖2

𝜀
− 𝐶𝜃4 ∫ℝ3

|𝑢|4𝑑𝑥 − 𝐶𝜃𝑝 ∫ℝ3
|𝑢|𝑝𝑑𝑥 − 𝜃2

∗
𝑠

2∗
𝑠

𝑄max ∫ℝ3
|𝑢|2∗𝑠 𝑑𝑥

≥ 𝜃2

2
‖𝑢‖2

𝜀
− 𝐶𝜃4‖𝑢‖4

𝜀
− 𝐶𝜃𝑝‖𝑢‖𝑝

𝜀
− 𝐶𝜃2∗𝑠‖𝑢‖2∗𝑠𝜀

and

𝑔′(𝜃) ≥ 𝜃‖𝑢‖2
𝜀
− 𝐶𝜃3∫ℝ3

|𝑢|4𝑑𝑥 − 𝐶𝜃𝑝−1 ∫ℝ3
|𝑢|𝑝𝑑𝑥 −𝑄max𝜃

2∗
𝑠
−1∫ℝ3

|𝑢|2∗𝑠 𝑑𝑥
≥ 𝜃‖𝑢‖2

𝜀
− 𝐶𝜃3‖𝑢‖4

𝜀
− 𝐶𝜃𝑝−1‖𝑢‖𝑝

𝜀
− 𝐶𝜃2∗𝑠−1‖𝑢‖2∗𝑠𝜀 .

Since 4 < 𝑝 < 2∗
𝑠
, 𝑔(𝜃) > 0 and 𝑔′(𝜃) > 0 for small 𝜃 > 0. Moreover, by Lemma 2.1(𝑖𝑖𝑖), we get

𝑔(𝜃) ≤ 𝜃2

2
‖𝑢‖2

𝜀
+ 𝐶𝜃4‖𝑢‖4

𝜀
−
𝑄min
2∗
𝑠

𝜃2
∗
𝑠∫ℝ3

|𝑢|2∗𝑠 𝑑𝑥.
Hence, 𝑔(𝜃) → −∞ as 𝜃 → ∞ and 𝑔 has a positive maximum and there exist 𝜃𝑢 > 0 such that 𝑔′(𝜃𝑢) = 0, 𝑔′(𝜃) > 0 for

0 < 𝜃 < 𝜃𝑢.
Next we claim that 𝑔′(𝜃) ≠ 0 for all 𝜃 > 𝜃𝑢. Indeed, if the conclusion is false, then, from the above arguments, there exists a

𝜃𝑢 < 𝜃
′
𝑢

such that 𝑔′
(
𝜃′
𝑢

)
= 0 and 𝑔(𝜃𝑢) ≥ 𝑔(𝜃′𝑢). However, (𝑓3) implies that

𝑔
(
𝜃′
𝑢

)
= 𝑔

(
𝜃′
𝑢

)
−
𝜃′
𝑢

4
𝑔′
(
𝜃′
𝑢

)
=
𝜃′
𝑢

2

4
‖𝑢‖2

𝜀
+ 1

4 ∫ℝ3
𝑃 (𝜀𝑥)

[
𝑓
(
𝜃′
𝑢
𝑢
)
𝜃′
𝑢
𝑢 − 4𝐹

(
𝜃′
𝑢
𝑢
)]
𝑑𝑥 + 4𝑠 − 3

12
𝜃′
𝑢

2∗
𝑠∫ℝ3

𝑄(𝜀𝑥)|𝑢|2∗𝑠 𝑑𝑥
>
𝜃2
𝑢

4
‖𝑢‖2

𝜀
+ 1

4 ∫ℝ3
𝑃 (𝜀𝑥)

[
𝑓 (𝜃𝑢𝑢)𝜃𝑢𝑢 − 4𝐹 (𝜃𝑢𝑢)

]
𝑑𝑥 + 4𝑠 − 3

12
𝜃
2∗
𝑠
𝑢 ∫ℝ3

𝑄(𝜀𝑥)|𝑢|2∗𝑠 𝑑𝑥
= 𝑔(𝜃𝑢) −

𝜃𝑢

4
𝑔′(𝜃𝑢)

= 𝑔(𝜃𝑢),

here we use 𝑠 >
3
4 , this is a contradiction. This claim is proved and then 𝑔 has a unique maximum at 𝜃𝑢. Moreover, notice that

𝑔′(𝜃) = 𝜃−1⟨′
𝜀
(𝜃𝑢), 𝜃𝑢⟩, then 𝑔′(𝜃𝑢) = 0 implies 𝜃𝑢𝑢 ∈ 𝜀. Thus (𝑖) holds.
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(𝑖𝑖) By 𝜃𝑢𝑢 ∈ 𝜀 and Lemma 2.1(𝑖𝑖𝑖), we have

𝐶1𝜃
2
𝑢
‖𝑢‖2 + 𝐶2𝜃

4
𝑢
‖𝑢‖4 ≥ 𝜃2

𝑢
‖𝑢‖2

𝜀
+ 𝜃4

𝑢 ∫ℝ3
𝜙𝑡
𝑢
𝑢2 𝑑𝑥

= 𝜃𝑢 ∫ℝ3
𝑃 (𝜀𝑥)𝑓 (𝜃𝑢𝑢)𝑢 𝑑𝑥 + 𝜃

2∗
𝑠
𝑢 ∫ℝ3

𝑄(𝜀𝑥)|𝑢|2∗𝑠 𝑑𝑥
≥ 𝐶3𝜃

2∗
𝑠
𝑢 ∫ℝ3

|𝑢|2∗𝑠 𝑑𝑥.
Thus, there exists a 𝑇2 > 0 independent of 𝜀 such that 𝜃𝑢 ≤ 𝑇2.

On the other hand, using 𝜃𝑢𝑢 ∈ 𝜀 again and Lemma 2.1(𝑖), we have

𝐶4𝜃
2
𝑢
‖𝑢‖2 ≤ 𝜃2

𝑢
‖𝑢‖2

𝜀
≤ 𝐶5𝜃

𝜎
𝑢∫ℝ3

|𝑢|𝜎𝑑𝑥 + 𝐶6𝜃
2∗
𝑠
𝑢 ∫ℝ3

|𝑢|2∗𝑠 𝑑𝑥 ≤ 𝐶𝜃𝜎
𝑢
‖𝑢‖𝜎 + 𝐶𝜃2∗𝑠𝑢 ‖𝑢‖2∗𝑠 ,

which yields that there exists a 𝑇1 > 0 independent of 𝜀 such that 𝜃𝑢 ≥ 𝑇1. □

Lemma 2.5. For any fixed 𝜀 > 0, we have the following facts:

(i) There exist 𝜌 > 0 such that 𝑐𝜀 = inf𝜀
𝜀 ≥ inf𝑆𝜌 𝜀 > 0, where 𝑆𝜌 =

{
𝑢 ∈ 𝐻𝜀 ∶ ‖𝑢‖𝜀 = 𝜌}.

(ii) There exists 𝑟∗ > 0 such that

‖𝑢‖𝜀 ≥ 𝑟∗, for all 𝑢 ∈ 𝜀.

Proof.

(i) For any 𝑢 ∈ 𝐻𝜀∖{0}, then by Lemma 2.1(𝑖) and (2.5), we have

𝜀(𝑢) = 1
2 ∫ℝ3

|||(−Δ) 𝑠2 𝑢|||2𝑑𝑥 + 1
2 ∫ℝ3

𝑉 (𝜀𝑥)𝑢2𝑑𝑥 + 1
4 ∫ℝ3

𝜙𝑡
𝑢
𝑢2𝑑𝑥 − ∫ℝ3

𝐹 (𝑢)𝑑𝑥 − 1
2∗
𝑠
∫ℝ3

|𝑢|2∗𝑠 𝑑𝑥
≥ 1

2 ∫ℝ3

|||(−Δ) 𝑠2 𝑢|||2𝑑𝑥 + 1
2 ∫ℝ3

𝑉 (𝜀𝑥)𝑢2𝑑𝑥 − 1
2∗
𝑠
∫ℝ3

|𝑢|2∗𝑠 𝑑𝑥 − 𝐶(∫ℝ3
𝑢4𝑑𝑥 + ∫ℝ3

|𝑢|𝑝𝑑𝑥)
≥ 1

2
‖𝑢‖2

𝜀
− 𝐶

(‖𝑢‖4
𝜀
+ ‖𝑢‖𝑝

𝜀
+ ‖𝑢‖2∗𝑠𝜀 ).

Hence, inf𝑆𝜌 𝜀 > 0 for sufficiently small 𝜌. Moreover, for any 𝑢 ∈ 𝜀, Lemma 2.4 implies that 𝜀(𝑢) = max𝜃≥0 𝜀(𝜃𝑢).
Taking a 𝑡0 > 0 with 𝑡0𝑢 ∈ 𝑆𝜌. Then

𝜀(𝑢) ≥ 𝜀(𝑡0𝑢) ≥ inf
𝑣∈𝑆𝜌

𝜀(𝑣).

This completes the proof of (𝑖).
(ii) For any 𝑢 ∈ 𝜀, similar to (𝑖), we have

0 =
⟨′

𝜀
(𝑢), 𝑢

⟩ ≥ ‖𝑢‖2
𝜀
− 𝐶

(‖𝑢‖4
𝜀
+ ‖𝑢‖𝑝

𝜀
+ ‖𝑢‖2∗𝑠𝜀 ),

from which we obtain that

‖𝑢‖𝜀 ≥ 𝑟∗ > 0

for some 𝑟∗ > 0 in view of 𝑢 ∈ 𝜀 ⊂ 𝐻𝜀∖{0}.

□

Lemma 2.6. If  is a compact subset of 𝐻𝜀 ⧵ {0}, then there exists 𝑅 > 0 such that 𝜀(𝑢) ≤ 0 on
(
ℝ+)

∖𝐵𝑅(0) for each
𝑢 ∈  .
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Proof. Assume that this is not true. Then there exist sequences
{
𝑢𝑛
}
⊂ and {𝑡𝑛} ⊂ ℝ+ such that 𝜀(𝑡𝑛𝑢𝑛) ≥ 0 and 𝑡𝑛 → +∞

as 𝑛 → ∞. By the compactness of  , we can assume that 𝑢𝑛 → 𝑢 ∈  in 𝐻𝜀 and ‖𝑢𝑛‖𝜀 ≤ 𝐶 for all 𝑛. Set Ω ∶=
{
𝑥 ∈ ℝ3 ∶

𝑢(𝑥) ≠ 0
}

. Then 𝑚𝑒𝑎𝑠(Ω) > 0. Hence, for 𝑥 ∈ Ω, |𝑡𝑛𝑢𝑛(𝑥)| → +∞. Consequently, by Fatou’s lemma, one has

∫ℝ3
𝑡
2∗
𝑠
−4

𝑛 𝑄(𝜀𝑥)|𝑢𝑛|2∗𝑠 𝑑𝑥 ≥ 𝑄min ∫Ω 𝑡
2∗
𝑠
−4

𝑛 |𝑢𝑛|2∗𝑠 𝑑𝑥→ +∞.

Therefore,

0 ≤ 𝜀(𝑡𝑛𝑢𝑛)
𝑡4
𝑛

= 1
2𝑡2
𝑛

‖𝑢𝑛‖2𝜀 + 1
4 ∫ℝ3

𝜙𝑡
𝑢𝑛
𝑢2
𝑛
𝑑𝑥 −

𝑡
2∗
𝑠
−4

𝑛

2∗
𝑠

∫ℝ3
𝑄(𝜀𝑥)|𝑢𝑛|2∗𝑠 𝑑𝑥 − 1

𝑡4
𝑛
∫ℝ3

𝑃 (𝜀𝑥)𝐹
(
𝑡𝑛𝑢𝑛

)
𝑑𝑥

≤ 𝐶 −
𝑄min𝑡

2∗
𝑠
−4

𝑛

2∗
𝑠

∫Ω |𝑢𝑛|2∗𝑠 𝑑𝑥→ −∞,

a contradiction. This completes the proof. □

Lemma 2.7. 𝜀 is coercive on 𝜀, i.e., 𝜀(𝑢) → ∞ as ‖𝑢‖𝜀 → ∞, 𝑢 ∈ 𝜀.

Proof. Since 𝑢 ∈ 𝜀, we have

𝜀(𝑢) = 𝜀(𝑢) − 1
4
⟨′

𝜀
(𝑢), 𝑢

⟩
= 1

4 ∫ℝ3

|||(−Δ) 𝑠2 𝑢𝑛|||2𝑑𝑥 + 1
4 ∫ℝ3

𝑉 (𝜀𝑥)𝑢2
𝑛
𝑑𝑥 +

(
1
4
− 1

2∗
𝑠

)
∫ℝ3

𝑄(𝜀𝑥)|𝑢𝑛|2∗𝑠 𝑑𝑥
+ 1

4 ∫ℝ3
𝑃 (𝜀𝑥)

[
𝑓
(
𝑢𝑛
)
𝑢𝑛 − 4𝐹

(
𝑢𝑛
)]
𝑑𝑥

≥ 1
4
‖𝑢‖2

𝜀
.

Thus, 𝜀 is coercive on 𝜀. □

Define the mapping 𝑚̃𝜀 ∶ 𝐻𝜀∖{0} → 𝜀 and 𝑚𝜀 ∶ 𝑆𝜀 → 𝜀 by setting

𝑚̃𝜀(𝑢) = 𝜃𝑢𝑢 and 𝑚𝜀 = 𝑚̃𝜀|𝑆𝜀 ,
where 𝜃𝑢 is as in Lemma 2.4, 𝑆𝜀 =

{
𝑢 ∈ 𝐻𝜀 ∶ ‖𝑢‖𝜀 = 1

}
.

We also consider the functionals Υ̃𝜀 ∶ 𝐻𝜀∖{0} → ℝ and Υ𝜀 ∶ 𝑆𝜀 → ℝ defined by

Υ̃𝜀(𝑢) = 𝜀(𝑚̃𝜀(𝑢)) and Υ𝜀 = Υ̃𝜀|𝑆𝜀 . (2.7)

Since 𝐻𝜀 is a Hilbert space, Lemma 2.4, Lemma 2.5(𝑖𝑖) and Lemma 2.6 imply that the hypotheses
(
𝐴1
)
,
(
𝐴2
)

and 𝐴3 in [33]

(see, Chapter 3) are satisfied. Hence, we have the following Lemmas 2.8–2.9.

Lemma 2.8. (See[33]) The mapping 𝑚̃𝜀 ∶ 𝐻𝜀∖{0} → 𝜀 is continuous and 𝑚𝜀 is a homeomorphism between 𝑆𝜀 and 𝜀, and
the inverse of 𝑚𝜀 is given by 𝑚−1

𝜀
(𝑢) = 𝑢‖𝑢‖𝜀 .

Lemma 2.9. (See[33]) For each 𝜀 > 0, we have

(i) Υ𝜀 ∈ 1(𝑆𝜀,ℝ) and for each 𝑤 ∈ 𝑆𝜀, one has⟨
Υ′
𝜀
(𝑤), 𝑧

⟩
= ‖𝑚𝜀(𝑤)‖𝜀⟨′

𝜀
(𝑚𝜀(𝑤)), 𝑧

⟩
for all 𝑧 ∈ 𝑇𝑤

(
𝑆𝜀
)
=
{
𝑣 ∈ 𝐻𝜀 ∶ ⟨𝑤, 𝑣⟩ = 0

}
.

(ii) If
{
𝑤𝑛

}
is a (𝑃𝑆) sequence for Υ𝜀, then

{
𝑚𝜀
(
𝑤𝑛

)}
is a (𝑃𝑆) sequence for 𝜀. If

{
𝑢𝑛
}
⊂𝜀 is a bounded (𝑃𝑆) sequence

for 𝜀, then
{
𝑚−1
𝜀

(
𝑢𝑛
)}

is a (𝑃𝑆) sequence for Υ𝜀.
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(iii) 𝑤 is a critical point of Υ𝜀 if and only if 𝑚𝜀(𝑤) is a nontrivial point of 𝜀. Moreover, the corresponding values of Υ𝜀 and
𝜀 coincide and inf𝑆𝜀Υ𝜀 = inf𝜀

𝜀.
Moreover, we also have

Lemma 2.10.

𝑐𝜀 = inf
𝑢∈𝜀

𝜀(𝑢) = inf
𝑢∈𝐻𝜀∖{0}

max
𝜃≥0 𝜀(𝜃𝑢) = inf

𝑢∈𝑆𝜀
max
𝜃≥0 𝜀(𝜃𝑢) > 0.

3 THE AUTONOMOUS PROBLEM

In the section, we shall prove some properties of the least energy solutions of the autonomous problem. Precisely, for any

𝑎, 𝑏, 𝑐 > 0, we consider the following constant coefficient problem{
(−Δ)𝑠𝑢 + 𝑎𝑢 + 𝜙𝑢 = 𝑏𝑓 (𝑢) + 𝑐|𝑢|2∗𝑠−2𝑢, in ℝ3,

(−Δ)𝑡𝜙 = 𝑢2, in ℝ3,
(3.1)

and the corresponding energy functional

𝑎𝑏𝑐(𝑢) = 1
2
‖𝑢‖2

𝑎
+ 1

4 ∫ℝ3
𝜙𝑡
𝑢
𝑢2𝑑𝑥 − 𝑏∫ℝ3

𝐹 (𝑢) 𝑑𝑥 − 𝑐

2∗
𝑠
∫ℝ3

|𝑢|2∗𝑠 𝑑𝑥,
defined for 𝑢 ∈ 𝐻𝑠

(
ℝ3), where ‖𝑢‖𝑎 = ( ∫ℝ3

|||(−Δ) 𝑠2 𝑢|||2𝑑𝑥 + 𝑎 ∫ℝ3 𝑢
2𝑑𝑥

) 1
2
. The Nehari mainfold corresponding to 𝑎𝑏𝑐 is

defined by

𝑎𝑏𝑐 =
{
𝑢 ∈ 𝐻𝑠

(
ℝ3)∖{0} ∶

⟨′
𝑎𝑏𝑐

(𝑢), 𝑢
⟩
= 0

}
.

We define the least energy associated with (3.1) by

𝛾𝑎𝑏𝑐 = inf
𝑢∈𝑎𝑏𝑐

𝑎𝑏𝑐(𝑢).

The number 𝛾𝑎𝑏𝑐 and the manifold 𝑎𝑏𝑐 have properties similar to those of 𝑐𝜀 and 𝜀 stated in Lemmas 2.4–2.7. Hence, for

each 𝑢 ∈ 𝐻𝑠
(
ℝ3) ⧵ {0}, there exists a unique 𝜃𝑢 > 0 such that 𝜃𝑢𝑢 ∈ 𝑎𝑏𝑐 . Recall that 𝑆𝑎 =

{
𝑢 ∈ 𝐻𝑠

(
ℝ3) ∶ ‖𝑢‖𝑎 = 1

}
and

define the mapping 𝑚̃𝑎𝑏𝑐 ∶ 𝐻𝑠
(
ℝ3)∖{0} → 𝑎𝑏𝑐 by 𝑚̃𝑎𝑏𝑐(𝑢) = 𝜃𝑢𝑢, and 𝑚𝑎𝑏𝑐 = 𝑚̃𝑎𝑏𝑐|𝑆𝑎 . Moreover, the inverse of 𝑚𝑎𝑏𝑐 is given

by 𝑚−1
𝑎𝑏𝑐

(𝑢) = 𝑢‖𝑢‖𝑎 . Let the functional Υ̃𝑎𝑏𝑐 ∶ 𝐻𝑠
(
ℝ3)∖{0} → ℝ be

Υ̃𝑎𝑏𝑐(𝑢) = 𝑎𝑏𝑐(𝑚̃𝑎𝑏𝑐(𝑢)) and Υ𝑎𝑏𝑐 = Υ̃𝑎𝑏𝑐|𝑆𝑎 .
Moreover, we also have

𝛾𝑎𝑏𝑐 = inf
𝑢∈𝑎𝑏𝑐

𝑎𝑏𝑐(𝑢) = inf
𝑢∈𝐻𝑠

(
ℝ3
)
∖{0}

max
𝜃≥0 𝑎𝑏𝑐(𝜃𝑢) = inf

𝑢∈𝑆𝑎
max
𝜃≥0 𝑎𝑏𝑐(𝜃𝑢) > 0.

Lemma 3.1. For any 𝑎, 𝑏, 𝑐 > 0, the following inequality holds:

0 < 𝛾𝑎𝑏𝑐 <
𝑠

3𝑐
3−2𝑠
2𝑠

 3
2𝑠
𝑠 .

Proof. The proof is similar to the proof of Lemma 3.3 in [35]. For the sake of completeness, we give the details here.

We define

𝑢𝜀(𝑥) = 𝜓(𝑥)𝑈𝜀(𝑥), 𝑥 ∈ ℝ3,
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where 𝑈𝜀(𝑥) = 𝜀
−3−2𝑠

2 𝑢∗
(
𝑥

𝜀

)
, 𝑢∗(𝑥) =

𝑢̃
(
𝑥∕

1
2𝑠
𝑠

)
‖𝑢̃‖2∗𝑠 , 𝜅 ∈ ℝ∖{0}, 𝜇0 > 0 and 𝑥0 ∈ ℝ3 are fixed constants, 𝑢̃(𝑥) =

𝜅
(
𝜇20 + |𝑥 − 𝑥0|2)−3−2𝑠

2 (see [31, Section 4]), and 𝜓 ∈ ∞(ℝ3) such that 0 ≤ 𝜓 ≤ 1 in ℝ3, 𝜓 ≡ 1 in 𝐵𝑟 and 𝜓 ≡ 0 in

ℝ3 ⧵ 𝐵2𝑟. From [31, Proposition 21 and Proposition 22], we know that

∫ℝ3

|||(−Δ) 𝑠2 𝑢𝜀(𝑥)|||2𝑑𝑥 ≤  3
2𝑠
𝑠 + 𝑂

(
𝜀3−2𝑠

)
, (3.2)

∫ℝ3
|𝑢𝜀(𝑥)|2∗𝑠 𝑑𝑥 =  3

2𝑠
𝑠 + 𝑂

(
𝜀3
)
, (3.3)

and

∫ℝ3
|𝑢𝜀(𝑥)|𝑟𝑑𝑥 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑂

(
𝜀

3(2−𝑟)+2𝑠𝑟
2

)
, 𝑟 >

3
3−2𝑠 ,

𝑂

(
𝜀

3(2−𝑟)+2𝑠𝑟
2 | log 𝜀|), 𝑟 = 3

3−2𝑠 ,

𝑂

(
𝜀

3−2𝑠
2 𝑟

)
, 𝑟 <

3
3−2𝑠 .

(3.4)

From (𝑓4), we have

𝑎𝑏𝑐(𝑢) = 1
2 ∫ℝ3

|||(−Δ) 𝑠2 𝑢|||2𝑑𝑥 + 𝑎

2 ∫ℝ3
𝑢2𝑑𝑥 + 1

4 ∫ℝ3
𝜙𝑡
𝑢
𝑢2𝑑𝑥 − 𝑏∫ℝ3

𝐹 (𝑢) 𝑑𝑥 − 𝑐

2∗
𝑠
∫ℝ3

|𝑢|2∗𝑠 𝑑𝑥
≤ 1

2 ∫ℝ3

|||(−Δ) 𝑠2 𝑢|||2𝑑𝑥 + 𝑎

2 ∫ℝ3
𝑢2𝑑𝑥 + 1

4 ∫ℝ3
𝜙𝑡
𝑢
𝑢2𝑑𝑥 − 𝑐2𝑏∫ℝ3

|𝑢|𝜎𝑑𝑥 − 𝑐

2∗
𝑠
∫ℝ3

|𝑢|2∗𝑠 𝑑𝑥 ∶= Ψ𝑎𝑏𝑐(𝑢).

By a direct calculation, we have

Ψ𝑎𝑏𝑐(𝜃𝑢) =
𝜃2

2 ∫ℝ3

|||(−Δ) 𝑠2 𝑢|||2𝑑𝑥 + 𝜃2𝑎

2 ∫ℝ3
𝑢2𝑑𝑥 + 𝜃4

4 ∫ℝ3
𝜙𝑡
𝑢
𝑢2𝑑𝑥 − 𝑐2𝑏𝜃𝜎∫ℝ3

|𝑢|𝜎𝑑𝑥 − 𝜃2
∗
𝑠 𝑐

2∗
𝑠

∫ℝ3
|𝑢|2∗𝑠 𝑑𝑥.

Define 𝑔(𝜃) = 𝜃2

2 ∫ℝ3
|||(−Δ) 𝑠2 𝑢𝜀|||2 𝑑𝑥 − 𝜃2

∗
𝑠 𝑐

2∗
𝑠

∫ℝ3 |𝑢𝜀|2∗𝑠 𝑑𝑥 for 𝜃 ≥ 0. We note that 𝑔(𝜃) attains its maximum at

𝜃0 =
⎛⎜⎜⎜⎝
∫ℝ3

|||(−Δ) 𝑠2 𝑢𝜀|||2𝑑𝑥
𝑐 ∫ℝ3 |𝑢𝜀|2∗𝑠 𝑑𝑥

⎞⎟⎟⎟⎠
3−2𝑠
4𝑠

.

Moreover, by (3.2)–(3.3), using the elementary inequality (𝛼 + 𝛽)𝑞 ≤ 𝛼𝑞 + 𝑞(𝛼 + 𝛽)𝑞−1𝛽 which holds for 𝑞 ≥ 1 and 𝛼, 𝛽 ≥ 0, we

deduce that

max
𝜃≥0 𝑔(𝜃) = 𝑔(𝜃0) =

1
2

(∫ℝ3 |(−Δ) 𝑠2 𝑢𝜀|2𝑑𝑥
𝑐 ∫ℝ3 |𝑢𝜀|2∗𝑠 𝑑𝑥

) 3−2𝑠
2𝑠

∫ℝ3

|||(−Δ) 𝑠2 𝑢𝜀|||2𝑑𝑥 − 1
2∗
𝑠

(∫ℝ3 |(−Δ) 𝑠2 𝑢𝜀|2𝑑𝑥
𝑐 ∫ℝ3 |𝑢𝜀|2∗𝑠 𝑑𝑥

) 3
2𝑠

𝑐 ∫ℝ3
|𝑢𝜀|2∗𝑠 𝑑𝑥

= 𝑠

3
‖(−Δ) 𝑠2 𝑢𝜀‖ 3

𝑠

2

𝑐
3−2𝑠
2𝑠 ‖𝑢𝜀‖ 3

𝑠

2∗
𝑠
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≤ 𝑠

3𝑐
3−2𝑠
2𝑠

(
 3

2𝑠
𝑠 + 𝑂(𝜀3−2𝑠)

) 3
2𝑠

( 3
2𝑠
𝑠 + 𝑂(𝜀3)

) 3−2𝑠
2𝑠

≤ 𝑠

3𝑐
3−2𝑠
2𝑠

(
 3

2𝑠
𝑠

) 3
2𝑠
+ 𝑂(𝜀3−2𝑠)

(
 3

2𝑠
𝑠 + 𝑂(𝜀3)

) 3−2𝑠
2𝑠

≤ 𝑠

3𝑐
3−2𝑠
2𝑠

 3
2𝑠
𝑠 + 𝑂

(
𝜀3−2𝑠

)
. (3.5)

Since 𝑎𝑏𝑐(𝜃𝑢𝜀) → −∞ as 𝜃 → ∞, by standard argument, there exists 𝜃𝜀 > 0 such that

0 < 𝛾𝑎𝑏𝑐 ≤ max
𝜃≥0 𝑎𝑏𝑐(𝜃𝑢𝜀) = 𝑎𝑏𝑐(𝜃𝜀𝑢𝜀) ≤ Ψ𝑎𝑏𝑐

(
𝜃𝜀𝑢𝜀

)
, (3.6)

which implies that 𝜃𝜀 ≥ 𝐴1 > 0 for some constant 𝐴1. On the other hand, from (3.2)–(3.4), for any 𝜀 > 0, we have that

0 < 𝛾𝑎𝑏𝑐 ≤ Ψ𝑎𝑏𝑐
(
𝜃𝜖𝑢𝜖

) ≤ 𝐶1𝜃
2
𝜀
+ 𝐶2𝜃

4
𝜀
− 𝐶3𝜃

2∗
𝑠
𝜀 ,

which implies that there exists 𝐴2 > 0 such that 𝜃𝜀 ≤ 𝐴2 and thus 0 < 𝐴1 ≤ 𝜃𝜀 ≤ 𝐴2 for any 𝜀 > 0.

Now, by (3.2)–(3.6), we deduce that

Ψ𝑎𝑏𝑐
(
𝜃𝜀𝑢𝜀

) ≤ 𝑠

3𝑐
3−2𝑠
2𝑠

 3
2𝑠
𝑠 + 𝑂

(
𝜀3−2𝑠

)
+
𝜃2
𝜀
𝑎

2 ∫ℝ3
𝑢2
𝜀
𝑑𝑥 +

𝜃4
𝜀

4 ∫ℝ3
𝜙𝑡
𝑢𝜀
𝑢2
𝜀
𝑑𝑥 − 𝑐2𝑏𝜃𝜎𝜀∫ℝ3

|𝑢𝜀|𝜎𝑑𝑥
≤ 𝑠

3𝑐
3−2𝑠
2𝑠

 3
2𝑠
𝑠 + 𝑂

(
𝜀3−2𝑠

)
+
𝐴2
2𝑎

2 ∫ℝ3
𝑢2
𝜀
𝑑𝑥 +

𝐴4
2
4 ∫ℝ3

𝜙𝑡
𝑢𝜀
𝑢2
𝜀
𝑑𝑥 − 𝑐2𝑏𝐴𝜎1∫ℝ3

|𝑢𝜀|𝜎𝑑𝑥
≤ 𝑠

3𝑐
3−2𝑠
2𝑠

 3
2𝑠
𝑠 + 𝑂

(
𝜀3−2𝑠

)
+
𝐴2
2𝑎

2 ∫ℝ3
𝑢2
𝜀
𝑑𝑥 + 𝐶𝐴4

2

(
∫ℝ3

|𝑢𝜀| 12
3+2𝑡 𝑑𝑥

) 3+2𝑡
3

− 𝐴𝜎1∫ℝ3
|𝑢𝜀|𝜎𝑑𝑥.

Since 𝑠 >
3
4 , then

3
3−2𝑠 > 2 and

∫ℝ3
𝑢2
𝜀
𝑑𝑥 = 𝑂

(
𝜀3−2𝑠

)
.

Therefore,

Ψ𝑎𝑏𝑐
(
𝜃𝜀𝑢𝜀

) ≤ 𝑠

3𝑐
3−2𝑠
2𝑠

 3
2𝑠
𝑠 + 𝑂

(
𝜀3−2𝑠

)
+ 𝐶

(
∫ℝ3

|𝑢𝜀| 12
3+2𝑡 𝑑𝑥

) 3+2𝑡
3

− 𝐶 ∫ℝ3
|𝑢𝜀|𝜎𝑑𝑥.

Moreover, we deduce that

lim
𝜀→0

(∫ℝ3 |𝑢𝜀(𝑥)| 12
3+2𝑡 𝑑𝑥

) 3+2𝑡
3

𝜀3−2𝑠
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

lim
𝜀→0

𝑂
(
𝜀4𝑠+2𝑡−3

)
𝜀3−2𝑠

= 0, 12
3+2𝑡 >

3
3−2𝑠 ,

lim
𝜀→0

𝑂

(
𝜀4𝑠+2𝑡−3| log 𝜀| 3+2𝑡3

)
𝜀3−2𝑠

= 0, 12
3+2𝑡 =

3
3−2𝑠 ,

lim
𝜀→0

𝑂
(
𝜀6−4𝑠

)
𝜀3−2𝑠

= 0, 12
3+2𝑡 <

3
3−2𝑠 ,
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and we also have
3

3−2𝑠 <
4𝑠

3−2𝑠 < 4 ≤ 𝜎 < 2∗
𝑠
, then we deduce that

lim
𝜀→0

∫ℝ3 |𝑢𝜀(𝑥)|𝜎𝑑𝑥
𝜀3−2𝑠

= lim
𝜀→0

𝑂

(
𝜀
3− 3−2𝑠

2 𝜎
)

𝜀3−2𝑠
= +∞.

Therefore, the above arguments imply that

0 < 𝛾𝑎𝑏𝑐 ≤ 𝑎𝑏𝑐(𝜃𝜀𝑢𝜀) ≤ Ψ𝑎𝑏𝑐
(
𝜃𝜀𝑢𝜀

)
<

𝑠

3𝑐
3−2𝑠
2𝑠

 3
2𝑠
𝑠 .

Thus we complete the proof. □

Lemma 3.2. For any 𝑎, 𝑏, 𝑐 > 0, sytem (3.1) has a positive ground state solution in 𝐻𝑠
(
ℝ3).

Proof. If 𝑢 ∈ 𝑎𝑏𝑐 satisfies 𝑎𝑏𝑐(𝑢) = 𝛾𝑎𝑏𝑐 , then

Υ𝑎𝑏𝑐
(
𝑚−1
𝑎𝑏𝑐

(𝑢)
)
= 𝑎𝑏𝑐(𝑚𝑎𝑏𝑐(𝑚−1

𝑎𝑏𝑐
(𝑢)
))

= 𝑎𝑏𝑐(𝑢) = 𝛾𝑎𝑏𝑐 = inf
𝑆𝑎

Υ𝑎𝑏𝑐(𝑢).

That is, 𝑚−1
𝑎𝑏𝑐

(𝑢) is a minimizer of Υ𝑎𝑏𝑐 , and hence a critical point of Υ𝑎𝑏𝑐 . Therefore, similar to Lemma 2.9, we see that 𝑢 is a

critical point of 𝑎𝑏𝑐 . It remains to show that there exists a minimizer 𝑢 of 𝑎𝑏𝑐|𝑎𝑏𝑐
. By Ekeland’s variational principle in [14],

there exists a sequence
{
𝑤𝑛

}
⊂ 𝑆𝑎 with Υ𝑎𝑏𝑐

(
𝑤𝑛

)
→ 𝛾𝑎𝑏𝑐,Υ′

𝑎𝑏𝑐

(
𝑤𝑛

)
→ 0 as 𝑛 → ∞. In fact, set

𝑔𝑎(𝑢) = ‖𝑢‖2
𝑎
− 1, for all 𝑢 ∈ 𝐻𝑠

(
ℝ3).

Notice that 𝑆𝑎 =
{
𝑢 ∈ 𝐻𝑠

(
ℝ3) ∶ 𝑔𝑎(𝑢) = 0

}
and for each 𝑢 ∈ 𝑆𝑎, one has⟨

𝑔′
𝑎
(𝑢), 𝑢

⟩
= 2‖𝑢‖2

𝑎
= 2 > 0.

By Proposition 9 in [33], we know that Υ̃𝑎𝑏𝑐 ∈ 𝐶1(𝐻𝑠
(
ℝ3) ⧵ {0},ℝ) and

⟨
Υ̃′
𝑎𝑏𝑐

(𝑢), 𝑣
⟩
=
‖𝑚̃(𝑢)‖𝑎‖𝑢‖𝑎 ⟨′

𝑎𝑏𝑐
(𝑚̃𝑎𝑏𝑐(𝑢)), 𝑣

⟩
, for all 0 ≠ 𝑢, 𝑣 ∈ 𝐻𝑠

(
ℝ3).

Hence, by Corollary 3.4 in [14] there exists a sequence
{
𝑤𝑛

}
⊂ 𝑆𝑎 such that Υ𝑎𝑏𝑐

(
𝑤𝑛

)
→ 𝛾𝑎𝑏𝑐 and there exists 𝛼𝑛 ∈ 𝑅 such

that
‖‖‖Υ′

𝑎𝑏𝑐

(
𝑤𝑛

)
− 𝛼𝑛𝑔′𝑎

(
𝑤𝑛

)‖‖‖𝑎 → 0. It implies

𝛼𝑛 =
⟨
Υ′
𝑎𝑏𝑐

(
𝑤𝑛

)
, 𝑔′
𝑎

(
𝑤𝑛

)⟩
‖𝑔′

𝑎

(
𝑤𝑛

)‖2
𝑎

+ 𝑜(1).

Hence, Υ′
𝑎𝑏𝑐

(
𝑤𝑛

)
−
⟨
Υ′
𝑎𝑏𝑐

(
𝑤𝑛

)
,𝑔′
𝑎

(
𝑤𝑛

)⟩
‖𝑔′
𝑎

(
𝑤𝑛

)‖2
𝑎

𝑔′
𝑎

(
𝑤𝑛

)
= 𝑜(1), i.e., Υ′

𝑎𝑏𝑐

(
𝑤𝑛

)
= 𝑜(1). Let 𝑢𝑛 = 𝑚𝑎𝑏𝑐

(
𝑤𝑛

)
, by the definition of 𝑚𝑎𝑏𝑐 , we

know 𝑢𝑛 ∈ 𝑎𝑏𝑐 for all 𝑛 ∈ ℕ. Similar to Lemma 2.9, one has 𝑎𝑏𝑐(𝑢𝑛) → 𝛾𝑎𝑏𝑐,′
𝑎𝑏𝑐

(
𝑢𝑛
)
→ 0 as 𝑛→ ∞. Similar to Lemma 2.7,

we know that
{
𝑢𝑛
}

is bounded in 𝐻𝑠
(
ℝ3).

Next, we claim that there exists a sequence {𝑦𝑛} ⊂ ℝ3 and 𝑅, 𝛿 > 0 such that

∫𝐵𝑅(𝑦𝑛) |𝑢𝑛|2𝑑𝑥 ≥ 𝛿, 𝑛 ∈ ℕ. (3.7)

Otherwise, by Lemma 2.3, we have

𝑢𝑛 → 0 in 𝐿𝑟
(
ℝ3) for 2 < 𝑟 < 2∗

𝑠
.

Thus, by (2.5), we have

∫ℝ3
𝐹
(
𝑢𝑛
)
𝑑𝑥 → 0, ∫ℝ3

𝑓
(
𝑢𝑛
)
𝑢𝑛 𝑑𝑥 → 0 as 𝑛→ ∞. (3.8)
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Moreover, by Lemma 2.1 (𝑖𝑖𝑖), we can obtain

∫ℝ3
𝜙𝑡
𝑢𝑛
𝑢2
𝑛
𝑑𝑥 → 0 as 𝑛→ ∞. (3.9)

Notice that

𝑎𝑏𝑐(𝑢𝑛) − 1
2∗
𝑠

⟨′
𝑎𝑏𝑐

(
𝑢𝑛
)
, 𝑢𝑛

⟩
= 𝑠

3
‖𝑢𝑛‖2 + 4𝑠 − 3

12 ∫ℝ3
𝜙𝑡
𝑢𝑛
𝑢2
𝑛
𝑑𝑥 − 𝑏∫ℝ3

𝐹
(
𝑢𝑛
)
𝑑𝑥 + 𝑏

2∗
𝑠
∫ℝ3

𝑓
(
𝑢𝑛
)
𝑢𝑛 𝑑𝑥.

Therefore, (3.8)–(3.9) imply that

∫ℝ3

|||(−Δ) 𝑠2 𝑢𝑛|||2𝑑𝑥 ≤ 3
𝑠
𝛾𝑎𝑏𝑐 + 𝑜(1).

Similarly, we have

∫ℝ3
|𝑢𝑛|2∗𝑠 𝑑𝑥 = 3

𝑠𝑐
𝛾𝑎𝑏𝑐 + 𝑜(1).

Moreover,

∫ℝ3

|||(−Δ) 𝑠2 𝑢𝑛|||2𝑑𝑥 − 𝑐 ∫ℝ3
|𝑢𝑛|2∗𝑠 𝑑𝑥 ≤ 𝑜(1),

which implies

𝛾𝑎𝑏𝑐 ≥ 𝑠

3𝑐
3−2𝑠
2𝑠

 3
2𝑠
𝑠 ,

which is a contradiction with Lemma 3.1. Let 𝑣𝑛(𝑥) = 𝑢𝑛(𝑥 + 𝑦𝑛), then {𝑣𝑛} is bounded in𝐻𝑠
(
ℝ3) by the boundedness of

{
𝑢𝑛
}

and, up to a subsequence, we assume that 𝑣𝑛 ⇀ 𝑣 in𝐻𝑠
(
ℝ3). By (3.7), we see that 𝑣 ≠ 0 and it is easy check that 𝑎𝑏𝑐(𝑣) = 𝛾𝑎𝑏𝑐 .

Moreover, by Lemma 2.2(𝑖𝑖) and Lemma 2.3, we can obtain ′
𝑎𝑏𝑐

(𝑣) = 0
Next we only need to prove that 𝑣 is positive. Put 𝑣± = max{±𝑣, 0}, the positive (negative) part of 𝑣. We note that all the

calculations above can be repeated word by word, replacing +
𝑎𝑏𝑐

(𝑢) with the functional

+
𝑎𝑏𝑐

(𝑣) = 1
2∫ℝ3

|||(−Δ) 𝑠2 𝑣|||2𝑑𝑥 + 1
2∫ℝ3

𝑎𝑣2𝑑𝑥 + 1
4∫ℝ3

𝜙𝑠
𝑣
𝑣2𝑑𝑥 − 𝑏∫ℝ3

𝐹
(
𝑣+
)
𝑑𝑥 − 𝑐

2∗
𝑠
∫ℝ3

|𝑣+|2∗𝑠 𝑑𝑥.
In this way we get a ground state solution 𝑣 of the equation

(−Δ)𝑠𝑣 + 𝑎𝑣 + 𝜙𝑡
𝑣
𝑣 = 𝑏𝑓

(
𝑣+
)
+ 𝑐|𝑣+|2∗𝑠−2𝑣+, in ℝ3. (3.10)

Using 𝑣− as a test function in (3.10) we obtain

∫ℝ3
(−Δ)

𝑠

2 𝑣 ⋅ (−Δ)
𝑠

2 𝑣−𝑑𝑥 + ∫ℝ3
𝑎|𝑣−|2𝑑𝑥 + ∫ℝ3

𝜙𝑡
𝑣
(𝑣−)2𝑑𝑥 = 0. (3.11)

On the other hand,

∫ℝ3
(−Δ)

𝑠

2 𝑣 ⋅ (−Δ)
𝑠

2 𝑣−𝑑𝑥 = 1
2
𝐶(𝑠)∬ℝ3×ℝ3

(𝑣(𝑥) − 𝑣(𝑦))(𝑣−(𝑥) − 𝑣−(𝑦))|𝑥 − 𝑦|3+2𝑠 𝑑𝑥 𝑑𝑦

≥ 1
2
𝐶(𝑠)

[
∬{𝑣>0}×{𝑣<0}

(𝑣(𝑥) − 𝑣(𝑦))(−𝑣−(𝑦))|𝑥 − 𝑦|3+2𝑠 𝑑𝑥 𝑑𝑦

+∬{𝑣<0}×{𝑣<0}

(𝑣−(𝑥) − 𝑣−(𝑦))2|𝑥 − 𝑦|3+2𝑠 𝑑𝑥 𝑑𝑦 +∬{𝑣<0}×{𝑣>0}

(𝑣(𝑥) − 𝑣(𝑦))𝑣−(𝑥)|𝑥 − 𝑦|3+2𝑠 𝑑𝑥 𝑑𝑦

]
≥ 0.
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Thus, it follows from (3.11) and Lemma 2.1(𝑖), we have 𝑣− = 0 and 𝑣 ≥ 0. Moreover, if 𝑣(𝑦0) = 0 for some 𝑦0 ∈ ℝ3, then

(−Δ)𝑠𝑣(𝑦0) = 0 and by (2.1), we have

(−Δ)𝑠𝑣(𝑦0) = −𝐶(𝑠)
2 ∫ℝ3

𝑣(𝑦0 + 𝑦) + 𝑣(𝑦0 − 𝑦) − 2𝑣(𝑦0)|𝑦|3+2𝑠 𝑑𝑦,

therefore,

∫ℝ3

𝑣(𝑦0 + 𝑦) + 𝑣(𝑦0 − 𝑦)|𝑦|3+2𝑠 𝑑𝑦 = 0,

yielding 𝑣 ≡ 0, a contradiction. □

The following lemma describes a comparison between the mountain pass values for different parameters 𝑎, 𝑏, 𝑐 > 0, which

will play an important role in proving the existence results in Section 4.

Lemma 3.3. Let 𝑎𝑗 > 0 and 𝑏𝑗 > 0, 𝑗 = 1, 2, with 𝑎1 ≤ 𝑎2, 𝑏1 ≥ 𝑏2 and 𝑐1 ≥ 𝑐2. Then 𝛾𝑎1𝑏1𝑐1 ≤ 𝛾𝑎2𝑏2𝑐2 . In particular, if one of
inequalities is strict, then 𝛾𝑎1𝑏1𝑐1 < 𝛾𝑎2𝑏2𝑐2 .

Proof. Let 𝑢 ∈ 𝑎2𝑏2𝑐2
be such that

𝛾𝑎2𝑏2𝑐2
= 𝑎2𝑏2𝑐2 (𝑢) = max

𝜃≥0 𝑎2𝑏2𝑐2 (𝜃𝑢).
Let 𝑢0 = 𝜃1𝑢 be such that 𝑎1𝑏1𝑐1

(
𝑢0
)
= max

𝜃≥0 𝑎1𝑏1𝑐1 (𝜃𝑢). One has

𝛾𝑎2𝑏2𝑐2
= 𝑎2𝑏2𝑐2 (𝑢) ≥ 𝑎2𝑏2𝑐2

(
𝑢0
)

= 𝑎1𝑏1𝑐1
(
𝑢0
)
+ 1

2
(
𝑎2 − 𝑎1

)
∫ℝ3

|𝑢0|2𝑑𝑥 + (
𝑏1 − 𝑏2

)
∫ℝ3

𝐹
(
𝑢0
)
𝑑𝑥 + 1

2∗
𝑠

(
𝑐1 − 𝑐2

)
∫ℝ3

|𝑢0|2∗𝑠 𝑑𝑥
≥ 𝛾𝑎1𝑏1𝑐1 .

The second part can be obtained similarly. Thus, we complete the proof. □

4 EXISTENCE OF GROUND STATE SOLUTIONS

In the section, we will prove the existence of ground state solutions to the sytem (2.2). Observing that for any 𝑥𝑃 ∈ 𝑃 , we set

𝑉 (𝑥) = 𝑉 (𝑥 + 𝑥𝑃 ), 𝑃 (𝑥) = 𝑃 (𝑥 + 𝑥𝑃 ) and 𝑄̃(𝑥) = 𝑄(𝑥 + 𝑥𝑃 ). Clearly, if 𝑢̃(𝑥) is a solution of{
(−Δ)𝑠𝑢̃ + 𝑉 (𝜀𝑥)𝑢̃ + 𝜙𝑢̃ = 𝑃 (𝜀𝑥)𝑓 (𝑢̃) + 𝑄̃(𝜀𝑥)|𝑢̃|2∗𝑠−2𝑢̃, in ℝ3,

(−Δ)𝑡𝜙 = 𝑢̃2, in ℝ3,

then 𝑢(𝑥) = 𝑢̃(𝑥 − 𝑥𝑃 ) solves (2.2). Thus, without loss of generality, we may assume that

𝑥𝑃 = 0 ∈ 𝑃 ,
so

𝑄(0) = 𝑄max, 𝑃 (0) = 𝑃 and 𝜈 ∶= 𝑉 (0) ≤ 𝑉 (𝑥) for all |𝑥| ≥ 𝑅. (4.1)

Lemma 4.1. lim sup𝜀→0 𝑐𝜀 ≤ 𝛾𝜈𝑃𝑄max
.

Proof. Denote 𝑉 𝑎
𝜀
(𝑥) = max{𝑎, 𝑉 (𝜀𝑥)}, 𝑃 𝑏

𝜀
(𝑥) = min{𝑏, 𝑃 (𝜀𝑥)} and 𝑄𝑐

𝜀
(𝑥) = min{𝑐,𝑄(𝜀𝑥)}, where 𝑎, 𝑏, 𝑐 are three positive

constants. Define the auxiliary functional as follows:

𝑎𝑏𝑐
𝜀

(𝑢) ∶= 1
2 ∫ℝ3

|||(−Δ) 𝑠2 𝑢|||2𝑑𝑥 + 1
2 ∫ℝ3

𝑉 𝑎
𝜀
(𝑥)𝑢2𝑑𝑥 + 1

4 ∫ℝ3
𝜙𝑡
𝑢
𝑢2𝑑𝑥 − ∫ℝ3

𝑃 𝑏
𝜀
(𝑥)𝐹 (𝑢) 𝑑𝑥 − 1

2∗
𝑠
∫ℝ3

𝑄𝑐
𝜀
(𝑥)|𝑢|2∗𝑠 𝑑𝑥,
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for any 𝑢 ∈ 𝐻𝑠
(
ℝ3), which implies that 𝑎𝑏𝑐(𝑢) ≤ 𝑎𝑏𝑐

𝜀
(𝑢), and thus 𝛾𝑎𝑏𝑐 ≤ 𝑐𝑎𝑏𝑐𝜀

, where 𝑐𝑎𝑏𝑐
𝜀

is the least energy of 𝑎𝑏𝑐
𝜀

. By the

definition of 𝑉min, 𝑃max and 𝑄max, we get 𝑉
𝑉min
𝜀 (𝑥) = 𝑉 (𝜀𝑥), 𝑃𝑃max

𝜀 (𝑥) = 𝑃 (𝜀𝑥) and 𝑄
𝑄max
𝜀 (𝑥) = 𝑄(𝜀𝑥). Therefore, we have

𝑉min𝑃max𝑄max
𝜀 (𝑢) = 𝜀(𝑢), (4.2)

and 𝑉
𝑉min
𝜀 (𝑥) → 𝑉 (0) = 𝜈, 𝑃

𝑃max
𝜀 (𝑥) → 𝑃 (0) = 𝑃, 𝑄

𝑄max
𝜀 (𝑥) → 𝑄(0) = 𝑄max on bounded sets of 𝑥 as 𝜀→ 0.

Now, we claim lim sup𝜀→0 𝑐
𝑉min𝑃max𝑄max
𝜀 ≤ 𝛾𝜈𝑃𝑄max

.

Indeed, let 𝑤 be a ground state solution of 𝜈𝑃𝑄max
by Lemma 3.2, that is, 𝜈𝑃𝑄max

(𝑤) = 𝛾𝜈𝑃𝑄max
, then there exists 𝜃𝜀 > 0

such that 𝜃𝜀𝑤 ∈  𝑉min𝑃max𝑄max
𝜀 , where  𝑉min𝑃max𝑄max

𝜀 is the Nehari manifold of the functional 𝑉min𝑃max𝑄max
𝜀 . Thus

𝑐
𝑉min𝑃max𝑄max
𝜀 ≤ 𝑉min𝑃max𝑄max

𝜀 (𝜃𝜀𝑤) = max
𝜃≥0 𝑉min𝑃max𝑄max

𝜀 (𝜃𝑤).

One has

𝑉min𝑃max𝑄max
𝜀 (𝜃𝜀𝑤) = 𝜈𝑃𝑄max

(𝜃𝜀𝑤) +
1
2∫ℝ3

(
𝑉
𝑉min
𝜀 (𝑥) − 𝜈

)|𝜃𝜀𝑤|2𝑑𝑥
+∫ℝ3

(
𝑃 − 𝑃𝑃max

𝜀 (𝑥)
)
𝐹 (𝜃𝜀𝑤) 𝑑𝑥 +

1
2∗
𝑠
∫ℝ3

(
𝑄max −𝑄

𝑄max
𝜀 (𝑥)

)|𝜃𝜀𝑤|2∗𝑠 𝑑𝑥. (4.3)

By Lemma 2.4(𝑖𝑖), we can assume that 𝜃𝜀 → 𝜃0 as 𝜀→ 0. Since 𝑤 ∈ 𝐿2(ℝ3), for any 𝜏 > 0, there exists a 𝑅 > 0 such that

∫ℝ3⧵𝐵𝑅(0)
|𝑤|2𝑑𝑥 < 𝜏.

Therefore,

∫ℝ3

(
𝑉
𝑉min
𝜀 (𝑥) − 𝜈

)|𝜃𝜀𝑤|2𝑑𝑥 = ∫ℝ3

(
𝑉
𝑉min
𝜀 (𝑥) − 𝜈

)|𝜃0𝑤|2𝑑𝑥 + 𝑜(1)
= ∫ℝ3⧵𝐵𝑅(0)

(
𝑉
𝑉min
𝜀 (𝑥) − 𝜈

)|𝜃0𝑤|2𝑑𝑥 + ∫𝐵𝑅(0)
(
𝑉
𝑉min
𝜀 (𝑥) − 𝜈

)|𝜃0𝑤|2𝑑𝑥 + 𝑜(1)
≤ 𝐶𝜃20𝜏 + 𝑜(1),

here we use the fact that 𝑉
𝑉min
𝜀 (𝑥) → 𝜈 in 𝑥 ∈ 𝐵𝑅(0). Thus, we obtain

∫ℝ3

(
𝑉
𝑉min
𝜀 (𝑥) − 𝜈

)|𝜃𝜀𝑤|2𝑑𝑥 = 𝑜(1).

Similarly, we have

∫ℝ3

(
𝑃 − 𝑃𝑃max

𝜀 (𝑥)
)
𝐹 (𝜃𝜀𝑤) 𝑑𝑥 = 𝑜(1), ∫ℝ3

(
𝑄max −𝑄

𝑄max
𝜀 (𝑥)

)|𝜃𝜀𝑤|2∗𝑠 𝑑𝑥 = 𝑜(1).

Thus, by (4.3), we have

𝑉min𝑃max𝑄max
𝜀 (𝜃𝜀𝑤) = 𝜈𝑃𝑄max

(𝜃𝜀𝑤) + 𝑜(1) → 𝜈𝑃𝑄max
(𝜃0𝑤) as 𝜀→ 0. (4.4)

Consequently

𝑐
𝑉min𝑃max𝑄max
𝜀 ≤ 𝑉min𝑃max𝑄max

𝜀 (𝜃𝜀𝑤) → 𝜈𝑃𝑄max
(𝜃0𝑤) ≤ max

𝜃≥0 𝜈𝑃𝑄max
(𝜃𝑤) = 𝜈𝑃𝑄max

(𝑤) = 𝛾𝜈𝑃𝑄max
.

From (4.2), we obtain 𝑐
𝑉min𝑃max𝑄max
𝜀 = 𝑐𝜀. This completes the proof. □

Next we only truncate the functional𝑉 (𝑥) and𝑃 (𝑥)with 𝑎 = 𝜈 and 𝑏 ∈ (𝑃∞, 𝑃𝑄) and consider the truncated energy functional

̃𝜈𝑏
𝜀
(𝑢) =1

2∫ℝ3

|||(−Δ) 𝑠2 𝑢|||2𝑑𝑥 + 1
2∫ℝ3

𝑉 𝜈
𝜀
(𝑥)𝑢2𝑑𝑥 + 1

4∫ℝ3
𝜙𝑡
𝑢
𝑢2𝑑𝑥 − ∫ℝ3

𝑃 𝑏
𝜀
(𝑥)𝐹 (𝑢)𝑑𝑥 − 1

2∗
𝑠
∫ℝ3

𝑄(𝜀𝑥)|𝑢|2∗𝑠 𝑑𝑥.
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The corresponding Nehari manifold and least energy are ̃ 𝜈𝑏
𝜀

and 𝑐𝜈𝑏
𝜀

, respectively.

We have an important lower bound for the least energy 𝑐𝜈𝑏
𝜀

.

Lemma 4.2. 𝑐𝜈𝑏
𝜀

≥ 𝛾𝜈𝑏𝑄max
.

Proof. Since 𝑉 𝜈
𝜀
(𝑥) ≥ 𝜈, 𝑃 𝑏

𝜀
(𝑥) ≤ 𝑏,𝑄(𝜀𝑥) ≤ 𝑄max, from the characterization of the value 𝛾𝜈𝑏𝑄max

, we know that

inf
𝑢∈𝐻𝜀∖{0}

max
𝜃≥0 ̃𝜈𝑏

𝜀
(𝜃𝑢) ≥ inf

𝑢∈𝐻𝜀∖{0}
max
𝜃≥0 𝜈𝑏𝑄max

(𝜃𝑢),

which gives

𝑐𝜈𝑏
𝜀

≥ 𝛾𝜈𝑏𝑄max
.

This completes the proof. □

Lemma 4.3. 𝑐𝜀 is attained at some positive 𝑢𝜀 for small 𝜀 > 0.

Proof. Similar to the arguments of Lemma 3.2, there exists a sequence
{
𝑤𝑛

}
⊂ 𝑆𝜀 with Υ𝜀

(
𝑤𝑛

)
→ 𝑐𝜀,Υ′

𝜀

(
𝑤𝑛

)
→ 0 as 𝑛 → ∞.

Let 𝑢𝑛 = 𝑚𝜀
(
𝑤𝑛

)
, by the definition of 𝑚𝜀, we know 𝑢𝑛 ∈ 𝜀 for all 𝑛 ∈ ℕ. By Lemma 2.9, one has 𝜀(𝑢𝑛) → 𝑐𝜀,′

𝜀

(
𝑢𝑛
)
→ 0

as 𝑛 → ∞. Moreover, we know that
{
𝑢𝑛
}

is bounded in 𝐻𝜀 by Lemma 2.7. Assume that 𝑢𝑛 ⇀ 𝑢𝜀 in 𝐻𝜀, then by Lemma 2.2(𝑖𝑖)
and Lemma 2.3, we have ′

𝜀
(𝑢𝜀) = 0. If 𝑢𝜀 ≠ 0, it is easy to check that 𝜀(𝑢𝜀) = 𝑐𝜀. Next we show that 𝑢𝜀 ≠ 0 for small 𝜀 > 0.

Assume by contradiction that there exists a sequence 𝜀𝑗 → 0 such that 𝑢𝜀𝑗 = 0, then 𝑢𝑛 ⇀ 0 in𝐻𝜀, and thus 𝑢𝑛 → 0 in 𝐿𝑟
𝑙𝑜𝑐

(
ℝ3)

for 𝑟 ∈
[
1, 2∗

𝑠

)
and 𝑢𝑛(𝑥) → 0 a.e. in 𝑥 ∈ ℝ3.

By
(
𝐴1
)
, choose 𝑏 ∈ (𝑃∞, 𝑃) and consider the functional ̃𝜈𝑏

𝜀𝑗
, where 𝜈 is defined in (4.1). Let 𝜃𝑛 > 0 be such that 𝜃𝑛𝑢𝑛 ∈

̃ 𝜈𝑏
𝜀𝑗

, from Lemma 2.4(𝑖𝑖), {𝜃𝑛} is bounded. Assume 𝜃𝑛 → 𝜃0 as 𝑛 → ∞. By
(
𝐴1
)

again, the set
{
𝑥 ∈ ℝ3 ∶ 𝑉𝜀(𝑥) < 𝜈

}
is

bounded. Thus,

∫ℝ3

(
𝑉 𝜈
𝜀
(𝑥) − 𝑉

(
𝜀𝑗𝑥

))|𝜃𝑛𝑢𝑛|2𝑑𝑥 = ∫{𝑉𝜀(𝑥)<𝜈}
(
𝜈 − 𝑉

(
𝜀𝑗𝑥

))|𝜃𝑛𝑢𝑛|2𝑑𝑥 = 𝑜(1). (4.5)

Similarly, since 𝑏 > 𝑃∞ implies
{
𝑥 ∈ ℝ3 ∶ 𝑃𝜀(𝑥) ≥ 𝑏} is bounded and 𝑓 is subcritical growth, we have

∫ℝ3

(
𝑃 (𝜀𝑗𝑥) − 𝑃 𝑏𝜀𝑗 (𝑥)

)
𝐹
(
𝜃𝑛𝑢𝑛

)
𝑑𝑥 = 𝑜(1). (4.6)

Therefore, by (4.5)–(4.6) and 𝜀𝑗
(
𝜃𝑛𝑢𝑛

) ≤ 𝜀𝑗
(
𝑢𝑛
)
, we have

𝑐𝜈𝑏
𝜀𝑗

≤ ̃𝜈𝑏
𝜀𝑗

(
𝜃𝑛𝑢𝑛

)
= 𝜀𝑗

(
𝜃𝑛𝑢𝑛

)
+ 1

2∫ℝ3

(
𝑉 𝜈
𝜀
(𝑥) − 𝑉

(
𝜀𝑗𝑥

))|𝜃𝑛𝑢𝑛|2𝑑𝑥 + ∫ℝ3

(
𝑃 (𝜀𝑗𝑥) − 𝑃 𝑏𝜀𝑗 (𝑥)

)
𝐹
(
𝜃𝑛𝑢𝑛

)
𝑑𝑥

= 𝜀𝑗
(
𝜃𝑛𝑢𝑛

)
+ 𝑜(1) ≤ 𝜀𝑗

(
𝑢𝑛
)
+ 𝑜(1),

which implies that 𝑐𝜈𝑏
𝜀𝑗

≤ 𝑐𝜀𝑗 as 𝑛 → ∞. Notice that 𝑐𝜈𝑏
𝜀𝑗

≥ 𝛾𝜈𝑏𝑄max
by Lemma 4.2. Thus, we have

𝛾𝜈𝑏𝑄max
≤ 𝑐𝜀𝑗 .

In virtue of Lemma 4.1, letting 𝜀𝑗 → 0 yields

𝛾𝜈𝑏𝑄max
≤ 𝛾𝜈𝑃𝑄max

.

Applying Lemma 3.3 and the fact that 𝑏 < 𝑃 yield a contradiction. Therefore, 𝑐𝜀 is attained at some 𝑢𝜀 ≠ 0 for small 𝜀 > 0.

Moreover, similar to Lemma 3.2, 𝑢𝜀 is a positive solution of the system (2.2) and the proof is completed. □
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5 CONCENTRATION AND CONVERGENCE OF GROUND STATE
SOLUTIONS

In this section, we are devoted to the concentration behavior of the ground state solutions 𝑢𝜀 as 𝜀→ 0. We will prove the following

results.

Theorem 5.1. Let 𝑢𝜀 be a solution of the system (2.2) given by Lemma 4.3, then 𝑢𝜀 possesses a global maximum point 𝑦𝜀 such
that, up to a subsequence, 𝜀𝑦𝜀 → 𝑥0 as 𝜀→ 0, lim𝜀→0 𝑑𝑖𝑠𝑡

(
𝜀𝑦𝜀,𝑃

)
= 0 and 𝑣𝜀(𝑥) ∶= 𝑢𝜀(𝑥 + 𝑦𝜀) converges in 𝐻𝑠

(
ℝ3) to a

positive ground state solution of{
(−Δ)𝑠𝑢 + 𝑉

(
𝑥0
)
𝑢 + 𝜙𝑢 = 𝑃

(
𝑥0
)
𝑓 (𝑢) +𝑄

(
𝑥0
)|𝑢|2∗𝑠−2𝑢, in ℝ3,

(−Δ)𝑡𝜙 = 𝑢2, in ℝ3.

In particular, if  ∩  ∩ ≠ ∅, then lim𝜀→0 𝑑𝑖𝑠𝑡(𝜀𝑦𝜀, ∩  ∩) = 0, and up to a subsequence, 𝑣𝜀 converges in 𝐻𝑠
(
ℝ3) to a

positive ground state solution of{
(−Δ)𝑠𝑢 + 𝑉min𝑢 + 𝜙𝑢 = 𝑃max𝑓 (𝑢) +𝑄max|𝑢|2∗𝑠−2𝑢, in ℝ3,

(−Δ)𝑡𝜙 = 𝑢2, in ℝ3.

Lemma 5.2. There exists 𝜀∗ > 0 such that, for all 𝜀 ∈ (0, 𝜀∗), there exist {𝑦𝜀} ⊂ ℝ3 and 𝑅̃, 𝛿 > 0 such that

∫𝐵𝑅̃(𝑦𝜀) 𝑢
2
𝜀
𝑑𝑥 ≥ 𝛿.

Proof. Assume by contradiction that there exists a sequence 𝜀𝑗 → 0 as 𝑗 → ∞, such that for any 𝑅 > 0,

lim
𝑗→∞

sup
𝑦∈ℝ3 ∫𝐵𝑅(𝑦) 𝑢

2
𝜀𝑗
𝑑𝑥 = 0.

Thus, by Lemma 2.3, we have

𝑢𝜀𝑗
→ 0 in 𝐿𝑟

(
ℝ3) for 2 < 𝑟 < 2∗

𝑠
,

Thus, since the potential function 𝑃 is bounded and (2.5), we have

∫ℝ3
𝑃
(
𝜀𝑗𝑥

)
𝐹

(
𝑢𝜀𝑗

)
𝑑𝑥 → 0, ∫ℝ3

𝑃
(
𝜀𝑗𝑥

)
𝑓

(
𝑢𝜀𝑗

)
𝑢𝜀𝑗

𝑑𝑥 → 0 as 𝑗 → ∞. (5.1)

Moreover, since 4𝑠 + 2𝑡 > 3, we have that 2 < 12
3+2𝑡 < 2∗

𝑠
, and by Lemma 2.1 (𝑖𝑖𝑖), we have

∫ℝ3
𝜙𝑡
𝑢𝜀𝑗
𝑢2
𝜀𝑗
𝑑𝑥 → 0 as 𝑗 → ∞. (5.2)

Notice that

𝜀𝑗
(
𝑢𝜀𝑗

)
− 1

2∗
𝑠

⟨′
𝜀𝑗

(
𝑢𝜀𝑗

)
, 𝑢𝜀𝑗

⟩
= 𝑠

3
‖𝑢𝜀𝑗‖2𝜀𝑗 + 4𝑠 − 3

12 ∫ℝ3
𝜙𝑡
𝑢𝜀𝑗
𝑢2
𝜀𝑗
𝑑𝑥 − ∫ℝ3

𝑃
(
𝜀𝑗𝑥

)
𝐹

(
𝑢𝜀𝑗

)
𝑑𝑥 + 1

2∗
𝑠
∫ℝ3

𝑃 (𝜀𝑗𝑥)𝑓 (𝑢𝜀𝑗 )𝑢𝜀𝑗 𝑑𝑥.

Thus, by (5.1)–(5.2), we have

∫ℝ3

|||(−Δ) 𝑠2 𝑢𝜀𝑗 |||2𝑑𝑥 ≤ 3
𝑠
𝑐𝜀𝑗

+ 𝑜(1).

Similarly, we have

∫ℝ3
𝑄
(
𝜀𝑗𝑥

)|𝑢𝜀𝑗 |2∗𝑠 𝑑𝑥 = 3
𝑠
𝑐𝜀𝑗

+ 𝑜(1).
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Moreover,

∫ℝ3

|||(−Δ) 𝑠2 𝑢𝜀𝑗 |||2𝑑𝑥 − ∫ℝ3
𝑄
(
𝜀𝑗𝑥

)|||𝑢𝜀𝑗 |||2∗𝑠 𝑑𝑥 ≤ 𝑜(1).
Thus, by the best constant of the Sobolev imbedding, we get

∫ℝ3

|||(−Δ) 𝑠2 𝑢𝜀𝑗 |||2𝑑𝑥 ≤ ∫ℝ3
𝑄
(
𝜀𝑗𝑥

)|||𝑢𝜀𝑗 |||2∗𝑠 𝑑𝑥 + 𝑜(1)
=
(
∫ℝ3

𝑄
(
𝜀𝑗𝑥

)|||𝑢𝜀𝑗 |||2∗𝑠 𝑑𝑥
) 2

2∗𝑠
(
∫ℝ3

𝑄
(
𝜀𝑗𝑥

)|||𝑢𝜀𝑗 |||2∗𝑠 𝑑𝑥
) 2𝑠

3
+ 𝑜(1)

=
(
∫ℝ3

𝑄max
|||𝑢𝜀𝑗 |||2∗𝑠 𝑑𝑥

) 2
2∗𝑠
(
∫ℝ3

𝑄
(
𝜀𝑗𝑥

)|||𝑢𝜀𝑗 |||2∗𝑠 𝑑𝑥
) 2𝑠

3
+ 𝑜(1)

≤ 𝑄

2
2∗𝑠
max
𝑠 ∫ℝ3

|||(−Δ) 𝑠2 𝑢𝜀𝑗 |||2𝑑𝑥
(
∫ℝ3

𝑄
(
𝜀𝑗𝑥

)|||𝑢𝜀𝑗 |||2∗𝑠 𝑑𝑥
) 2𝑠

3
+ 𝑜(1),

which implies

lim inf
𝑗→∞

𝑐𝜀𝑗
≥ 𝑠

3𝑄
3−2𝑠
2𝑠

max

 3
2𝑠
𝑠

a contradiction with Lemma 3.1 and Lemma 4.1. □

Set 𝑣𝜀(𝑥) ∶= 𝑢𝜀(𝑥 + 𝑦𝜀), then 𝑣𝜀 satisfies

(−Δ)𝑠𝑣𝜀 + 𝑉 (𝜀(𝑥 + 𝑦𝜀))𝑣𝜀 + 𝜙𝑡𝑣𝜀𝑣𝜀 = 𝑃 (𝜀(𝑥 + 𝑦𝜀))𝑓 (𝑣𝜀) +𝑄(𝜀(𝑥 + 𝑦𝜀))|𝑣𝜀|2∗𝑠−2𝑣𝜀, (5.3)

with energy

𝜀(𝑣𝜀) = 1
2 ∫ℝ3

|||(−Δ) 𝑠2 𝑣𝜀|||2𝑑𝑥 + 1
2 ∫ℝ3

𝑉 (𝜀(𝑥 + 𝑦𝜀))𝑣2𝜀 𝑑𝑥 +
1
4 ∫ℝ3

𝜙𝑡
𝑣𝜀
𝑣2
𝜀
𝑑𝑥

− ∫ℝ3
𝑃 (𝜀(𝑥 + 𝑦𝜀))𝐹 (𝑣𝜀) 𝑑𝑥 −

1
2∗
𝑠
∫ℝ3

𝑄(𝜀(𝑥 + 𝑦𝜀))|𝑣𝜀|2∗𝑠 𝑑𝑥
= 𝜀(𝑣𝜀) − 1

4
⟨ ′

𝜀
(𝑣𝜀), 𝑣𝜀⟩

= 1
4 ∫ℝ3

|||(−Δ) 𝑠2 𝑣𝜀|||2 𝑑𝑥 + 1
4∫ℝ3

𝑉 (𝜀(𝑥 + 𝑦𝜀))𝑣2𝜀 𝑑𝑥

+ 1
4 ∫ℝ3

𝑃 (𝜀(𝑥 + 𝑦𝜀))[𝑓 (𝑣𝜀)𝑣𝜀 − 4𝐹 (𝑣𝜀)] 𝑑𝑥 +
4𝑠 − 3
12 ∫ℝ3

𝑄(𝜀(𝑥 + 𝑦𝜀))|𝑣𝜀|2∗𝑠 𝑑𝑥
= 𝜀(𝑢𝜀) − 1

4
⟨′
𝜀
(𝑢𝜀), 𝑢𝜀⟩ = 𝜀(𝑢𝜀) = 𝑐𝜀.

We may assume 𝑣𝜀 ⇀ 𝑢 in 𝐻𝜀, and 𝑣𝜀 → 𝑢 in 𝐿𝑟
𝑙𝑜𝑐

(
ℝ3) for 𝑟 ∈

[
1, 2∗

𝑠

)
with 𝑢 ≠ 0.

By condition
(
𝐴0
)
, without loss of generality, we may assume that 𝑉 (𝜀𝑦𝜀) → 𝑉0, 𝑃 (𝜀𝑦𝜀) → 𝑃0 and 𝑄(𝜀𝑦𝜀) → 𝑄0 as 𝜀→ 0.

Lemma 5.3. 𝑢 is a positive ground state solution of

(−Δ)𝑠𝑢 + 𝑉0𝑢 + 𝜙𝑡𝑢𝑢 = 𝑃0𝑓 (𝑢) +𝑄0|𝑢|2∗𝑠−2𝑢, in ℝ3. (5.4)

Proof. By (5.3), for any 𝜑 ∈ 𝐶∞
0
(
ℝ3), there holds that

0 = lim
𝜀→0∫ℝ3

(
(−Δ)𝑠𝑣𝜀 + 𝑉 (𝜀(𝑥 + 𝑦𝜀))𝑣𝜀 + 𝜙𝑡𝑣𝜀𝑣𝜀 − 𝑃 (𝜀(𝑥 + 𝑦𝜀))𝑓 (𝑣𝜀) −𝑄(𝜀(𝑥 + 𝑦𝜀))|𝑣𝜀|2∗𝑠−2𝑣𝜀)𝜑𝑑𝑥. (5.5)
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Since 𝑉 , 𝑃 ,𝑄 are all continuous and bounded, we have

∫ℝ3
𝑉 (𝜀(𝑥 + 𝑦𝜀))𝑣𝜀𝜑 𝑑𝑥 → 𝑉0 ∫ℝ3

𝑢𝜑 𝑑𝑥, ∫ℝ3
𝑃 (𝜀(𝑥 + 𝑦𝜀))𝑓 (𝑣𝜀)𝜑𝑑𝑥 → 𝑃0 ∫ℝ3

𝑓 (𝑢)𝜑𝑑𝑥

and

∫ℝ3
𝑄(𝜀(𝑥 + 𝑦𝜀))|𝑣𝜀|2∗𝑠−2𝑣𝜀𝜑 𝑑𝑥 → 𝑄0 ∫ℝ3

|𝑢|2∗𝑠−2𝑢𝜑 𝑑𝑥,
which combined with (5.5) implies that

(−Δ)𝑠𝑢 + 𝑉0𝑢 + 𝜙𝑡𝑢𝑢 = 𝑃0𝑓 (𝑢) +𝑄0|𝑢|2∗𝑠−2𝑢, in ℝ3,

that is, 𝑢 solves (5.4) with energy

𝑉0𝑃0𝑄0
(𝑢) = 1

2 ∫ℝ3

|||(−Δ) 𝑠2 𝑢|||2𝑑𝑥 + 1
2
𝑉0 ∫ℝ3

𝑢2𝑑𝑥 + 1
4 ∫ℝ3

𝜙𝑡
𝑢
𝑢2𝑑𝑥 − 𝑃0 ∫ℝ3

𝐹 (𝑢) 𝑑𝑥 − 1
2∗
𝑠

𝑄0 ∫ℝ3
|𝑢|2∗𝑠 𝑑𝑥

= 𝑉0𝑃0𝑄0
(𝑢) − 1

4
⟨′

𝑉0𝑃0𝑄0
(𝑢), 𝑢

⟩
= 1

4 ∫ℝ3

|||(−Δ) 𝑠2 𝑢|||2𝑑𝑥 + 1
4
𝑉0∫ℝ3

𝑢2𝑑𝑥 + 1
4
𝑃0 ∫ℝ3

[𝑓 (𝑢)𝑢 − 4𝐹 (𝑢)] 𝑑𝑥 + 4𝑠 − 3
12

𝑄0 ∫ℝ3
|𝑢|2∗𝑠 𝑑𝑥

≥ 𝛾𝑉0𝑃0𝑄0
.

By Fatou’s lemma and the proof of Lemma 4.1, we have

𝛾𝑉0𝑃0𝑄0
≤ 1

4 ∫ℝ3

|||(−Δ) 𝑠2 𝑢|||2𝑑𝑥 + 1
4
𝑉0∫ℝ3

𝑢2𝑑𝑥 + 1
4
𝑃0∫ℝ3

[𝑓 (𝑢)𝑢 − 4𝐹 (𝑢)] 𝑑𝑥 + 4𝑠 − 3
12

𝑄0∫ℝ3
|𝑢|2∗𝑠 𝑑𝑥

≤ lim inf
𝜀→0

[
1
4 ∫ℝ3

|||(−Δ) 𝑠2 𝑣𝜀|||2𝑑𝑥 + 1
4 ∫ℝ3

𝑉 (𝜀(𝑥 + 𝑦𝜀))𝑣2𝜀 𝑑𝑥 +
1
4 ∫ℝ3

𝑃 (𝜀(𝑥 + 𝑦𝜀))[𝑓 (𝑣𝜀)𝑣𝜀 − 4𝐹 (𝑣𝜀)] 𝑑𝑥

+ 4𝑠 − 3
12 ∫ℝ3

𝑄(𝜀(𝑥 + 𝑦𝜀))|𝑣𝜀|2∗𝑠 𝑑𝑥]
= lim inf

𝜀→0
𝜀(𝑣𝜀)

≤ lim sup
𝜀→0

𝜀(𝑢𝜀)
≤ 𝛾𝑉0𝑃0𝑄0

.

Consequently,

lim
𝜀→0

𝜀(𝑣𝜀) = lim
𝜀→0

𝑐𝜀 = 𝑉0𝑃0𝑄0
(𝑢) = 𝛾𝑉0𝑃0𝑄0

. (5.6)

Thus, 𝑢 is a ground state solution of Equation (5.4). As in the proof of Lemma 3.2, 𝑢 is positive. □

Lemma 5.4. {𝜀𝑦𝜀} is bounded.

Proof. Suppose to the contrary that, after passing to a subsequence, |𝜀𝑦𝜀| → ∞. Since 𝑃 (0) = 𝑃 and 𝜈 = 𝑉 (0) ≤ 𝑉 (𝑥) for all|𝑥| ≥ 𝑅, we deduce that 𝑃0 < 𝑃 and 𝜈 ≤ 𝑉0. So it follows from Lemma 3.3 that 𝛾𝑉0𝑃0𝑄0
> 𝛾𝜈𝑃𝑄max

. However, by (5.6) and

Lemma 4.1, 𝑐𝜀 → 𝛾𝑉0𝑃0𝑄0
≤ 𝛾𝜈𝑃𝑄max

, which is a contradiction. Therefore, {𝜀𝑦𝜀} is bounded. □

After extracting a subsequence, we may assume 𝜀𝑦𝜀 → 𝑥0 as 𝜀→ 0, then 𝑉0 = 𝑉
(
𝑥0
)
, 𝑃0 = 𝑃

(
𝑥0
)

and 𝑄0 = 𝑄
(
𝑥0
)
.

Lemma 5.5. lim
𝜀→0

𝑑𝑖𝑠𝑡
(
𝜀𝑦𝜀,𝑃

)
= 0.
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Proof. It suffices to show that 𝑥0 ∈ 𝑃 . We argue by contradiction, if 𝑥0 ∉ 𝑃 , then it is easy to check that

𝛾𝑉 (𝑥0)𝑃 (𝑥0)𝑄(𝑥0) > 𝛾𝜈𝑃𝑄max
by

(
𝐴1
)

and Lemma 3.3. Therefore, by Lemma 4.1, we have

lim
𝜀→0

𝑐𝜀 = 𝛾𝑉 (𝑥0)𝑃 (𝑥0)𝑄(𝑥0) > 𝛾𝜈𝑃𝑄max
≥ lim
𝜀→0

𝑐𝜀,

which is absurd. □

Lemma 5.6. 𝑣𝜀 → 𝑢 in 𝐻𝑠
(
ℝ3).

Proof. Recall that 𝑢 is a ground state solution of (5.4), we have

1
4 ∫ℝ3

|||(−Δ) 𝑠2 𝑢|||2𝑑𝑥 ≤ lim inf
𝜀→0

1
4 ∫ℝ3

|||(−Δ) 𝑠2 𝑣𝜀|||2𝑑𝑥
≤ lim sup

𝜀→0

1
4 ∫ℝ3

|||(−Δ) 𝑠2 𝑣𝜀|||2𝑑𝑥
≤ lim sup

𝜀→0

1
4 ∫ℝ3

|||(−Δ) 𝑠2 𝑣𝜀|||2𝑑𝑥 + lim inf
𝜀→0

1
4 ∫ℝ3

𝑉 (𝜀(𝑥 + 𝑦𝜀))𝑣2𝜀 𝑑𝑥 −
1
4
𝑉0∫ℝ3

𝑢2𝑑𝑥

+ lim inf
𝜀→0

1
4 ∫ℝ3

𝑃 (𝜀(𝑥 + 𝑦𝜀))[𝑓 (𝑣𝜀)𝑣𝜀 − 4𝐹 (𝑣𝜀)] 𝑑𝑥 −
1
4
𝑃0∫ℝ3

[𝑓 (𝑢)𝑢 − 4𝐹 (𝑢)] 𝑑𝑥

+ lim inf
𝜀→0

4𝑠 − 3
12 ∫ℝ3

𝑄(𝜀(𝑥 + 𝑦𝜀))|𝑣𝜀|2∗𝑠 𝑑𝑥 − 4𝑠 − 3
12

𝑄0∫ℝ3
|𝑢|2∗𝑠 𝑑𝑥

≤ lim sup
𝜀→0

[
1
4∫ℝ3

|||(−Δ) 𝑠2 𝑣𝜀|||2𝑑𝑥 + 1
4 ∫ℝ3

𝑉 (𝜀(𝑥 + 𝑦𝜀))𝑣2𝜀 𝑑𝑥

+ 1
4 ∫ℝ3

𝑃 (𝜀(𝑥 + 𝑦𝜀))[𝑓 (𝑣𝜀)𝑣𝜀 − 4𝐹 (𝑣𝜀)] 𝑑𝑥 +
4𝑠 − 3
12 ∫ℝ3

𝑄(𝜀(𝑥 + 𝑦𝜀))|𝑣𝜀|2∗𝑠 𝑑𝑥]

− 1
4
𝑉0 ∫ℝ3

𝑢2𝑑𝑥 − 1
4
𝑃0 ∫ℝ3

[𝑓 (𝑢)𝑢 − 4𝐹 (𝑢)] 𝑑𝑥 − 4𝑠 − 3
12

𝑄0 ∫ℝ3
|𝑢|2∗𝑠 𝑑𝑥

= 1
4 ∫ℝ3

|||(−Δ) 𝑠2 𝑢|||2𝑑𝑥.
Consequently,

lim
𝜀→0∫ℝ3

|||(−Δ) 𝑠2 𝑣𝜀|||2𝑑𝑥 = ∫ℝ3

|||(−Δ) 𝑠2 𝑢|||2𝑑𝑥.
Similarly, we have

lim
𝜀→0∫ℝ3

𝑉 (𝜀(𝑥 + 𝑦𝜀))𝑣2𝜀 𝑑𝑥 = 𝑉0∫ℝ3
𝑢2𝑑𝑥.

Notice that

lim
𝜀→0

(
∫ℝ3

𝑉
(
𝜀(𝑥 + 𝑦𝜀)

)
𝑣2
𝜀
𝑑𝑥 − 𝑉0 ∫ℝ3

𝑣2
𝜀
𝑑𝑥

)
= 0.

Thus

lim
𝜀→0

{
∫ℝ3

|||(−Δ) 𝑠2 𝑣𝜀|||2𝑑𝑥 + 𝑉0∫ℝ3
𝑣2
𝜀
𝑑𝑥

}
= ∫ℝ3

|||(−Δ) 𝑠2 𝑢|||2𝑑𝑥 + 𝑉0 ∫ℝ3
𝑢2𝑑𝑥.

Together with 𝑣𝜀 ⇀ 𝑢 in 𝐻𝑠
(
ℝ3), we have 𝑣𝜀 → 𝑢 in 𝐻𝑠

(
ℝ3). □

To establish the 𝐿∞-estimate of ground state solutions, we first recall the following result which can be found in [13, (5.1.1)

and (5.1.2)]. (See [42] for the proof.)
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Lemma 5.7. Suppose that 𝑔 ∶ ℝ → ℝ is convex and Lipschitz continuous with the Lipschitz constant𝐿, 𝑔(0) = 0. Then for each
𝑢 ∈ 𝐻𝑠

(
ℝ3), 𝑔(𝑢) ∈ 𝐻𝑠

(
ℝ3) and

(−Δ)𝑠𝑔(𝑢) ≤ 𝑔′(𝑢)(−Δ)𝑠𝑢 (5.7)

in the weak sense.

Remark 5.8. In fact, from the above arguments, one can see that (5.7) holds for a.e. 𝑥 ∈ ℝ3. Moreover, Lemma 5.7 is true for

general dimension 𝑁 .

The following lemma plays a fundamental role in the study of behavior of the maximum points of the solutions, whose proof

is related to the Moser iterative method [23].

Lemma 5.9. Let 𝜀𝑛 → 0 and 𝑣𝜀𝑛 be a solution of the following equation

(−Δ)𝑠𝑣𝜀𝑛 + 𝑉
(
𝜀𝑛
(
𝑥 + 𝑦𝜀𝑛

))
𝑣𝜀𝑛

+ 𝜙𝑡
𝑣𝜀𝑛
𝑣𝜀𝑛

= 𝑃
(
𝜀𝑛
(
𝑥 + 𝑦𝜀𝑛

))
𝑓
(
𝑣𝜀𝑛

)
+𝑄

(
𝜀𝑛
(
𝑥 + 𝑦𝜀𝑛

))|𝑣𝜀𝑛 |2∗𝑠−2𝑣𝜀𝑛 , in ℝ3, (5.8)

where 𝑦𝜀𝑛 is given in Lemma 5.2. Then 𝑣𝜀𝑛 ∈ 𝐿
∞(ℝ3) and there exists 𝐶 > 0 such that

‖𝑣𝜀𝑛‖∞ ≤ 𝐶, uniformly in 𝑛 ∈ ℕ.

Moreover, 𝑣𝜀𝑛 → 𝑢 in 𝐿𝑞
(
ℝ3), for all 𝑞 ∈ [2,+∞).

Proof. For simplicity of notations, we denote 𝑣𝜀𝑛 and 𝑦𝜀𝑛 by 𝑣𝑛 and 𝑦𝑛, respectively. Define

ℎ(𝑥, 𝑣𝑛) ∶= 𝑃 (𝜀𝑛(𝑥 + 𝑦𝑛))𝑓 (𝑣𝑛) +𝑄(𝜀𝑛(𝑥 + 𝑦𝑛))|𝑣𝑛|2∗𝑠−2𝑣𝑛 − 𝑉 (𝜀𝑛(𝑥 + 𝑦𝑛))𝑣𝑛 − 𝜙𝑡𝑣𝑛𝑣𝑛.

From Lemma 5.6, {𝑣𝑛} is bounded in 𝐻𝑠
(
ℝ3), and hence in 𝐿𝑞

(
ℝ3) for any 𝑞 ∈ [2, 2∗

𝑠
]. So there exists some 𝐶 > 0 such that

‖𝑣𝑛‖𝑞 ≤ 𝐶,
uniformly in 𝑛. Since 𝑣𝑛 is a solution of (5.8), then

𝜙𝑡
𝑣𝑛
(𝑥) = ∫ℝ3

𝑣2
𝑛
(𝑦)|𝑥 − 𝑦|3−2𝑡 𝑑𝑦 = ∫{|𝑥−𝑦|≤1}

𝑣2
𝑛
(𝑦)|𝑥 − 𝑦|3−2𝑡 𝑑𝑦 + ∫{|𝑥−𝑦|>1}

𝑣2
𝑛
(𝑦)|𝑥 − 𝑦|3−2𝑡 𝑑𝑦

≤ ∫{|𝑥−𝑦|≤1}
𝑣2
𝑛
(𝑦)|𝑥 − 𝑦|3−2𝑡 𝑑𝑦 + ∫{|𝑥−𝑦|>1} 𝑣2𝑛(𝑦) 𝑑𝑦

≤
(
∫{|𝑥−𝑦|≤1}

1|𝑥 − 𝑦|(3−2𝑡)𝑟′ 𝑑𝑦
) 1

𝑟′
(
∫{|𝑥−𝑦|≤1} 𝑣2𝑟𝑛 (𝑦) 𝑑𝑦

) 1
𝑟

+ 𝐶

≤ 𝐶,
where 𝑟′(3 − 2𝑡) < 3, 2𝑟 ∈

[
2, 2∗

𝑠

]
,

1
𝑟
+ 1

𝑟′
= 1 since 2𝑠 + 2𝑡 > 3. Therefore, we have

|ℎ(𝑥, 𝑣𝑛)| ≤ 𝐶(|𝑣𝑛| + |𝑣𝑛|𝑝−1) ≤ 𝐶(1 + |𝑣𝑛|2∗𝑠−1). (5.9)

Let 𝑇 > 0, we follow [13] and define

𝐻(𝜃) =

⎧⎪⎪⎨⎪⎪⎩

0, if 𝜃 ≤ 0,

𝜃𝛽 , if 0 < 𝜃 < 𝑇 ,

𝛽𝑇 𝛽−1(𝜃 − 𝑇 ) + 𝑇 𝛽, if 𝜃 ≥ 𝑇 ,
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with 𝛽 > 1 to be determined later. Since 𝐻 is convex and Lipschitz with constant 𝐿0 = 𝛽𝑇 𝛽−1 and 𝐻(0) = 0, by Lemma 5.7,

we have 𝐻(𝑣𝑛) ∈ 𝑠,2 (ℝ3) and

(−Δ)𝑠𝐻(𝑣𝑛) ≤ 𝐻 ′(𝑣𝑛)(−Δ)𝑠𝑣𝑛 (5.10)

in the weak sense. Thus, from 𝐻(𝑣𝑛) ∈ 𝑠,2(ℝ3), the self-adjointness of the operator (−Δ)𝑠∕2 and (5.9)–(5.10), we have

‖𝐻(𝑣𝑛)‖22∗
𝑠
≤ 𝐶 ∫ℝ3

|||(−Δ) 𝑠2𝐻(𝑣𝑛)
|||2𝑑𝑥 = 𝐶 ∫ℝ3

𝐻(𝑣𝑛)(−Δ)𝑠𝐻(𝑣𝑛) 𝑑𝑥

≤ 𝐶 ∫ℝ3
𝐻(𝑣𝑛)𝐻 ′(𝑣𝑛)(−Δ)𝑠𝑣𝑛 𝑑𝑥 = 𝐶 ∫ℝ3

𝐻(𝑣𝑛)𝐻 ′(𝑣𝑛)ℎ(𝑥, 𝑣𝑛) 𝑑𝑥

≤ 𝐶 ∫ℝ3
𝐻(𝑣𝑛)𝐻 ′(𝑣𝑛) 𝑑𝑥 + 𝐶 ∫ℝ3

𝐻(𝑣𝑛)𝐻 ′(𝑣𝑛)𝑣
2∗
𝑠
−1

𝑛 𝑑𝑥.

Using the fact that 𝐻(𝑣𝑛)𝐻 ′(𝑣𝑛) ≤ 𝛽2𝑣2𝛽−1𝑛 and 𝑣𝑛𝐻
′(𝑣𝑛) ≤ 𝛽𝐻(𝑣𝑛), we have

(
∫ℝ3

(
𝐻(𝑣𝑛)

)2∗
𝑠 𝑑𝑥

) 2
2∗𝑠 ≤ 𝐶𝛽2

(
∫ℝ3

𝑣2𝛽−1
𝑛

𝑑𝑥 + ∫ℝ3

(
𝐻(𝑣𝑛)

)2
𝑣
2∗
𝑠
−2

𝑛 𝑑𝑥

)
, (5.11)

where 𝐶 is a positive constant that does not depend on 𝛽. Notice that the last integral is well defined for 𝑇 in the definition of

𝐻 . Indeed

∫ℝ3

(
𝐻(𝑣𝑛)

)2
𝑣
2∗
𝑠
−2

𝑛 𝑑𝑥 = ∫{𝑣𝑛≤𝑇 }
(
𝐻(𝑣𝑛)

)2
𝑣
2∗
𝑠
−2

𝑛 𝑑𝑥 + ∫{𝑣𝑛>𝑇 }
(
𝐻(𝑣𝑛)

)2
𝑣
2∗
𝑠
−2

𝑛 𝑑𝑥

≤ 𝑇 2𝛽−2 ∫ℝ3
𝑣
2∗
𝑠
𝑛 𝑑𝑥 + 𝐶 ∫ℝ3

𝑣
2∗
𝑠
𝑛 𝑑𝑥 <∞.

We choose now 𝛽 in (5.11) such that 2𝛽 − 1 = 2∗
𝑠
, and we name it 𝛽1, that is

𝛽1 ∶=
2∗
𝑠
+ 1
2

. (5.12)

Let 𝑅̂ > 0 to be fixed later. Attending to the last integral in (5.11) and applying Holder’s inequality with exponents 𝛾 ∶= 2∗
𝑠

2 and

𝛾 ′ ∶= 2∗
𝑠

2∗
𝑠
−2 ,

∫ℝ3

(
𝐻(𝑣𝑛)

)2
𝑣
2∗
𝑠
−2

𝑛 𝑑𝑥 = ∫{𝑣𝑛≤𝑅̂}
(
𝐻(𝑣𝑛)

)2
𝑣
2∗
𝑠
−2

𝑛 𝑑𝑥 + ∫{𝑣𝑛>𝑅̂}
(
𝐻(𝑣𝑛)

)2
𝑣
2∗
𝑠
−2

𝑛 𝑑𝑥

≤ ∫{𝑣𝑛≤𝑅̂}
(
𝐻(𝑣𝑛)

)2
𝑣𝑛

𝑅̂2∗
𝑠
−1𝑑𝑥 +

(
∫ℝ3

(
𝐻(𝑣𝑛)

)2∗
𝑠 𝑑𝑥

) 2
2∗𝑠
(
∫{𝑣𝑛>𝑅̂} 𝑣

2∗
𝑠
𝑛 𝑑𝑥

) 2∗𝑠−2
2∗𝑠
. (5.13)

By the monotone convergence theorem, we can choose 𝑅̂ large enough so that

(
∫{𝑣𝑛>𝑅̂} 𝑣

2∗
𝑠
𝑛 𝑑𝑥

) 2∗𝑠−2
2∗𝑠 ≤ 1

2𝐶𝛽21
,

where 𝐶 is the constant appearing in (5.11). Therefore, we can absorb the last term in (5.13) by the left hand side of (5.11)

to get

(
∫ℝ3

(
𝐻(𝑣𝑛)

)2∗
𝑠 𝑑𝑥

) 2
2∗𝑠 ≤ 2𝐶𝛽21

(
∫ℝ3

𝑣
2∗
𝑠
𝑛 𝑑𝑥 + 𝑅̂2∗

𝑠
−1∫ℝ3

(
𝐻(𝑣𝑛)

)2
𝑣𝑛

𝑑𝑥

)
.
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Now we use the fact that 𝐻(𝑣𝑛) ≤ 𝑣𝛽1𝑛 and (5.12) once again in the right hand side and we take 𝑇 → ∞ we obtain

(
∫ℝ3

𝑣
2∗
𝑠
𝛽1

𝑛 𝑑𝑥

) 2
2∗𝑠 ≤ 2𝐶𝛽21

(
∫ℝ3

𝑣
2∗
𝑠
𝑛 𝑑𝑥 + 𝑅̂2∗

𝑠
−1∫ℝ3

𝑣
2∗
𝑠
𝑛 𝑑𝑥

)
,

and therefore

𝑣𝑛 ∈ 𝐿2∗
𝑠
𝛽1
(
ℝ3), for all 𝑛, (5.14)

and

‖𝑣𝑛‖2∗
𝑠
𝛽1

≤ 𝐶, (5.15)

uniformly in 𝑛.

Let us suppose now 𝛽 > 𝛽1. Thus, using that 𝐻(𝑣𝑛) ≤ 𝑣𝛽𝑛 in the right hand side of (5.11) and letting 𝑇 → ∞ we get

(
∫ℝ3

𝑣
2∗
𝑠
𝛽

𝑛 𝑑𝑥

) 2
2∗𝑠 ≤ 𝐶𝛽2

(
∫ℝ3

𝑣2𝛽−1
𝑛

𝑑𝑥 + 𝑅̂2∗
𝑠
−1∫ℝ3

𝑣
2𝛽+2∗

𝑠
−2

𝑛 𝑑𝑥

)
. (5.16)

Set 𝑟0 ∶=
2∗
𝑠
(2∗
𝑠
−1)

2(𝛽−1) and 𝑟1 ∶= 2𝛽 − 1 − 𝑟0. Notice that, since 𝛽 > 𝛽1, then 0 < 𝑟0 < 2∗
𝑠
, 𝑟1 > 0. Hence, applying Young’s inequal-

ity with exponents 𝛾 ∶= 2∗
𝑠
∕𝑟0 and 𝛾 ′ ∶= 2∗

𝑠
∕2∗

𝑠
− 𝑟0, we have

∫ℝ3
𝑣2𝛽−1
𝑛

𝑑𝑥 ≤ 𝑟0
2∗
𝑠
∫ℝ3

𝑣
2∗
𝑠
𝑛 𝑑𝑥 +

2∗
𝑠

2∗
𝑠
− 𝑟0 ∫ℝ3

𝑣

2∗𝑠 𝑟1
2∗𝑠−𝑟0
𝑛 𝑑𝑥

≤ ∫ℝ3
𝑣
2∗
𝑠
𝑛 𝑑𝑥 + ∫ℝ3

𝑣
2𝛽+2∗

𝑠
−2

𝑛 𝑑𝑥

≤ 𝐶
(
1 + ∫ℝ3

𝑣
2𝛽+2∗

𝑠
−2

𝑛 𝑑𝑥

)
,

with 𝐶 > 0 independent of 𝛽. Plugging into (5.16),

(
∫ℝ3

𝑣
2∗
𝑠
𝛽

𝑛 𝑑𝑥

) 2
2∗𝑠 ≤ 𝐶𝛽2

(
1 + ∫ℝ3

𝑣
2𝛽+2∗

𝑠
−2

𝑛 𝑑𝑥

)
,

with 𝐶 changing from line to line, but remaining independent of 𝛽. Therefore

(
1 + ∫ℝ3

𝑣
2∗
𝑠
𝛽

𝑛 𝑑𝑥

) 1
2∗𝑠 (𝛽−1) ≤ (

𝐶𝛽2
) 1
2(𝛽−1)

(
1 + ∫ℝ3

𝑣
2𝛽+2∗

𝑠
−2

𝑛 𝑑𝑥

) 1
2(𝛽−1)

. (5.17)

Repeating this argument we will define a sequence 𝛽𝑚, 𝑚 ≥ 1 such that

2𝛽𝑚+1 + 2∗
𝑠
− 2 = 2∗

𝑠
𝛽𝑚.

Thus,

𝛽𝑚+1 − 1 =
(2∗

𝑠

2

)𝑚(
𝛽1 − 1

)
.

Replacing it in (5.17) one has

(
1 + ∫ℝ3

𝑣
2∗
𝑠
𝛽𝑚+1

𝑛 𝑑𝑥

) 1
2∗𝑠 (𝛽𝑚+1−1) ≤ (

𝐶𝛽2
𝑚+1

) 1
2(𝛽𝑚+1−1)

(
1 + ∫ℝ3

𝑣
2∗
𝑠
𝛽𝑚

𝑛 𝑑𝑥

) 1
2∗𝑠 (𝛽𝑚−1)

.
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Defining 𝐶𝑚+1 ∶= 𝐶𝛽2𝑚+1 and

𝐴𝑚 ∶=
(
1 + ∫ℝ3

𝑣
2∗
𝑠
𝛽𝑚

𝑛 𝑑𝑥

) 1
2∗𝑠 (𝛽𝑚−1)

.

So

𝐴𝑚+1 ≤ (𝐶𝑚+1)
1

2(𝛽𝑚+1−1)𝐴𝑚, 𝑚 = 1, 2,… .

Now from an iterative procedure we conclude that there exists a constant 𝐶0 > 0 independent of 𝑚, such that

𝐴𝑚 ≤
𝑚∏
𝑘=1

𝐶

1
2(𝛽𝑘−1)
𝑘

𝐴1 ≤ 𝐶0𝐴1, for all 𝑚.

Thus, from (5.14),

‖𝑣𝑛‖∞ ≤ 𝐶0𝐴1 < ∞, (5.18)

and hence 𝑣𝑛 ∈ 𝐿∞(ℝ3). By (5.15),

‖𝑣𝑛‖∞ ≤ 𝐶, (5.19)

uniformly in 𝑛 ∈ ℕ, Finally, by interpolation on the 𝐿𝑞-spaces and 𝑣𝑛 → 𝑢 in 𝐿2(ℝ3), we have 𝑣𝑛 → 𝑢 in 𝐿𝑞
(
ℝ3), for all

𝑞 ∈ [2,+∞). This finishes the proof of Lemma 5.9. □

Lemma 5.10. 𝑣𝑛(𝑥) → 0 as |𝑥| → ∞ uniformly in 𝑛.

Proof. Since 𝑣𝑛 satisfies the equation

(−Δ)𝑠𝑣𝑛 + 𝑣𝑛 = Υ𝑛, 𝑥 ∈ ℝ3,

where

Υ𝑛(𝑥) = 𝑣𝑛(𝑥) − 𝑉 (𝜀𝑛(𝑥 + 𝑦𝑛))𝑣𝑛(𝑥) − 𝜙𝑡𝑣𝑛𝑣𝑛(𝑥) + 𝑃 (𝜀𝑛(𝑥 + 𝑦𝑛))𝑓 (𝑣𝑛(𝑥)) +𝑄(𝜀𝑛(𝑥 + 𝑦𝑛))𝑣
2∗
𝑠
−1

𝑛 (𝑥), 𝑥 ∈ ℝ3.

Putting Υ(𝑥) = 𝑢(𝑥) − 𝑉
(
𝑥0
)
𝑢(𝑥) − 𝜙𝑡

𝑢
𝑢(𝑥) + 𝑃

(
𝑥0
)
𝑓 (𝑢(𝑥)) +𝑄

(
𝑥0
)
𝑢2

∗
𝑠
−1(𝑥), by Lemma 5.9, we see that

Υ𝑛 → Υ in 𝐿𝑞
(
ℝ3), for all 𝑞 ∈ [2,+∞),

and there exists a 𝐶2 > 0 such that

‖Υ𝑛‖∞ ≤ 𝐶2, for all 𝑛 ∈ ℕ.

From [15], we have that

𝑣𝑛(𝑥) =  ∗ Υ𝑛 = ∫ℝ3
(𝑥 − 𝑦)Υ𝑛(𝑦) 𝑑𝑦,

where  is the Bessel kernel

(𝑥) = −1
(

1
1 + |𝜉|2𝑠

)
.

It is known from [15, Theorem 3.3] that,  is positive, radially symmetric and smooth in ℝ3∖{0}; there is 𝐶 > 0 such that

(𝑥) ≤ 𝐶|𝑥|3+2𝑠 , and  ∈ 𝐿𝑞
(
ℝ3), for all 𝑞 ∈

[
1, 3

3−2𝑠

)
. Now argue as in the proof of [1, Lemma 2.6], we conclude that

𝑣𝑛(𝑥) → 0 as |𝑥| → ∞, (5.20)

uniformly in 𝑛 ∈ ℕ. □
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Proof of Theorem 5.1. First we claim that there exists a 𝜌0 > 0 such that ‖𝑣𝑛‖∞ ≥ 𝜌0, for all 𝑛 ∈ ℕ. In fact, suppose that‖𝑣𝑛‖∞ → 0 as 𝑛 → ∞. Then, by (2.5), we have

∫ℝ3

|||(−Δ) 𝑠2 𝑣𝑛|||2𝑑𝑥 + ∫ℝ3
𝑉 (𝜀𝑛(𝑥 + 𝑦𝑛))𝑣2𝑛𝑑𝑥

≤ ∫ℝ3

|||(−Δ) 𝑠2 𝑣𝑛|||2𝑑𝑥 + ∫ℝ3
𝑉 (𝜀𝑛(𝑥 + 𝑦𝑛))𝑣2𝑛 𝑑𝑥 + ∫ℝ3

𝜙𝑡
𝑣𝑛
𝑣2
𝑛
𝑑𝑥

= ∫ℝ3
𝑃 (𝜀𝑛(𝑥 + 𝑦𝑛))𝑓 (𝑣𝑛)𝑣𝑛 𝑑𝑥 + ∫ℝ3

𝑄(𝜀𝑛(𝑥 + 𝑦𝑛))|𝑣𝑛|2∗𝑠 𝑑𝑥
≤ 𝑃max∫ℝ3

𝐶
(
𝑣4
𝑛
+ 𝑣𝑝

𝑛

)
𝑑𝑥 +𝑄max∫ℝ3

𝑣
2∗
𝑠
𝑛 𝑑𝑥

≤ 𝐶𝑃max‖𝑣𝑛‖2∞ ∫ℝ3
𝑣2
𝑛
𝑑𝑥 + 𝐶𝑃max‖𝑣𝑛‖𝑝−2∞ ∫ℝ3

𝑣2
𝑛
𝑑𝑥 +𝑄max‖𝑣𝑛‖2∗𝑠−2∞ ∫ℝ3

𝑣2
𝑛
𝑑𝑥

=
(
𝐶𝑃max‖𝑣𝑛‖2∞ + 𝐶𝑃max‖𝑣𝑛‖𝑝−2∞ +𝑄max‖𝑣𝑛‖2∗𝑠−2∞

)
∫ℝ3

𝑣2
𝑛
𝑑𝑥

≤ 𝑉min
2 ∫ℝ3

𝑣2
𝑛
𝑑𝑥

for 𝑛 large enough. This implies that ‖𝑣𝑛‖ = 0 for 𝑛 large enough, which is impossible because 𝑣𝑛 → 𝑢 in 𝐻𝑠
(
ℝ3) and 𝑢 ≠ 0.

Then, the claim is true.

From [32, Proposition 2.9], we see that 𝑣𝑛 ∈ 𝐶1,𝛼(ℝ3) for any 𝛼 < 2𝑠 − 1. Thus, we know that 𝑣𝑛 has a global maximum

point 𝑝𝑛 by (5.20) and the claim above, we also see that 𝑝𝑛 ∈ 𝐵𝑅0
(0) for some 𝑅0 > 0. Hence, the global maximum point of

𝑢𝜀𝑛
given by 𝑝𝑛 + 𝑦𝑛. Define 𝜓𝑛(𝑥) ∶= 𝑢𝜀𝑛 (𝑥 + 𝑦𝑛 + 𝑝𝑛), where 𝑢𝜀𝑛(𝑥) = 𝑣𝑛(𝑥 + 𝑦𝑛). Since {𝑝𝑛} ⊂ 𝐵𝑅0

(0) is bounded, then we

know that {𝜀𝑛(𝑝𝑛 + 𝑦𝑛)} is bounded and 𝜀𝑛(𝑝𝑛 + 𝑦𝑛) → 𝑥0 ∈ 𝑃 . It follows from the boundedness of
{
𝑢𝜀𝑛

}
that {𝜓𝑛} is bounded

in 𝐻𝑠
(
ℝ3), and we assume that 𝜓𝑛 ⇀ 𝜓 in 𝐻𝑠

(
ℝ3), 𝜓𝑛 → 𝜓 in 𝐿

𝑞

𝑙𝑜𝑐

(
ℝ3) for 𝑞 ∈

[
1, 2∗

𝑠

)
. On the other hand, by Lemma 4.1,

we have

∫𝐵𝑅̃+𝑅0 (0)
𝜓2
𝑛
(𝑥) 𝑑𝑥 ≥ ∫{|𝑥+𝑝𝑛|<𝑅̃} 𝜓

2
𝑛
(𝑥) 𝑑𝑥 = ∫𝐵𝑅̃(𝑦𝑛) 𝑢

2
𝜀𝑛
(𝑥) 𝑑𝑥 ≥ 𝜎,

so we obtain 𝜓 ≠ 0. Moreover, similar to the argument above, we know that 𝜓 is a ground state solution of (5.4) and 𝜓𝑛 → 𝜓 in

𝐻𝑠
(
ℝ3). Therefore, 𝜓𝑛 possesses a same properties as 𝑣𝑛, and we can assume that 𝑦𝑛 is a global maximum point of 𝑢𝜀𝑛 . Then,

by Lemma 5.2–5.6 above, one can obtain Theorem 5.1. □

6 DECAY ESTIMATES

In this section, we estimate the decay properties of 𝑣𝑛.

Lemma 6.1. There exist 𝐶 > 0 such that

𝑣𝑛(𝑥) ≤ 𝐶

1 + |𝑥|3+2𝑠 , for all 𝑥 ∈ ℝ3.

Proof. According to [15, Lemma 4.2], there exists a continuous function 𝜔̄ such that

0 < 𝜔̄(𝑥) ≤ 𝐶

1 + |𝑥|3+2𝑠 , (6.1)

and

(−Δ)𝑠𝜔̄ +
𝑉min
2
𝜔̄ = 0, inℝ3∖𝐵𝑅̄(0) (6.2)
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for some suitable 𝑅̄ > 0. Thanks to (5.20), we have that 𝑣𝑛(𝑥) → 0 as |𝑥| → ∞ uniformly in 𝑛. Therefore, for some large𝑅1 > 0,

we obtain

(−Δ)𝑠𝑣𝑛 +
𝑉min
2
𝑣𝑛 = (−Δ)𝑠𝑣𝑛 + 𝑉 (𝜀𝑛(𝑥 + 𝑦𝑛))𝑣𝑛 −

(
𝑉 (𝜀𝑛(𝑥 + 𝑦𝑛)) −

𝑉min
2

)
𝑣𝑛

= −𝜙𝑡
𝑣𝑛
𝑣𝑛 + 𝑃 (𝜀𝑛(𝑥 + 𝑦𝑛))𝑓 (𝑣𝑛) +𝑄(𝜀𝑛(𝑥 + 𝑦𝑛))|𝑣𝑛|2∗𝑠−2𝑣𝑛 −(

𝑉 (𝜀𝑛(𝑥 + 𝑦𝑛)) −
𝑉min
2

)
𝑣𝑛

≤
(
𝐶𝑃max

(
𝑣3
𝑛
+ 𝑣𝑝−1

𝑛

)
+𝑄max|𝑣𝑛|2∗𝑠−2𝑣𝑛 − 𝑉min

2

)
𝑣𝑛

=
(
𝐶𝑃max

(
𝑣2
𝑛
+ 𝑣𝑝−2

𝑛

)
+𝑄max𝑣

2∗
𝑠
−2

𝑛 −
𝑉min
2

)
𝑣𝑛

≤ 0, (6.3)

for 𝑥 ∈ ℝ3∖𝐵𝑅1
(0). Now we take 𝑅2 ∶= max

{
𝑅̄, 𝑅1

}
and set

𝑧𝑛 ∶= (𝑚 + 1)𝜔̄ − 𝑏𝑣𝑛, (6.4)

where 𝑚 ∶= sup𝑛∈ℕ ‖𝑣𝑛‖∞ < ∞ and 𝑏 ∶= min𝐵̄𝑅2 (0) 𝜔̄ > 0. We next show that 𝑧𝑛 ≥ 0 in ℝ3. For this we suppose by contradic-

tion that, there is a sequence
{
𝑥
𝑗
𝑛

}
such that

inf
𝑥∈ℝ3

𝑧𝑛(𝑥) = lim
𝑗→∞

𝑧𝑛
(
𝑥𝑗
𝑛

)
< 0. (6.5)

Notice that

lim|𝑥|→∞
𝜔̄(𝑥) = 0.

Jointly with (5.20), we obtain

lim|𝑥|→∞
𝑧𝑛(𝑥) = 0,

uniformly in 𝑛 ∈ ℕ. Consequently, the sequence
{
𝑥
𝑗
𝑛

}
is bounded and therefore, up to a subsequence, we may assume that

𝑥
𝑗
𝑛 → 𝑥∗

𝑛
as 𝑗 → ∞ for some 𝑥∗

𝑛
∈ ℝ3. Hence (6.5) becomes

𝑧𝑛
(
𝑥∗
𝑛

)
= inf
𝑥∈ℝ3

𝑧𝑛(𝑥) < 0. (6.6)

From (6.6) and (2.1), we have

(−Δ)𝑠𝑧𝑛
(
𝑥∗
𝑛

)
= −𝐶(𝑠)

2 ∫ℝ3

𝑧𝑛(𝑥∗𝑛 + 𝑦) + 𝑧𝑛(𝑥
∗
𝑛
− 𝑦) − 2𝑧𝑛

(
𝑥∗
𝑛

)
|𝑦|3+2𝑠 𝑑𝑦 ≤ 0. (6.7)

By (6.4), we get

𝑧𝑛(𝑥) ≥ 𝑚𝑏 + 𝜔̄ − 𝑚𝑏 > 0, in𝐵(0, 𝑅2).

Therefore, combining this with (6.6), we see that

𝑥∗
𝑛
∈ ℝ3∖𝐵𝑅2

(0). (6.8)

From (6.2)–(6.3), we conclude that

(−Δ)𝑠𝑧𝑛 +
𝑉min
2
𝑧𝑛 ≥ 0, 𝑖𝑛ℝ3∖𝐵𝑅2

(0). (6.9)
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Thinks to (6.8), we can evaluate (6.9) at the point 𝑥∗
𝑛
, and recall (6.6), (6.7), we conclude that

0 ≤ (−Δ)𝑠𝑧𝑛
(
𝑥∗
𝑛

)
+
𝑉min
2
𝑧𝑛
(
𝑥∗
𝑛

)
< 0,

this is a contradiction, so 𝑧𝑛(𝑥) ≥ 0 in ℝ3. That is to say, 𝑣𝑛 ≤ (𝑚 + 1)𝑏−1𝜔̄, which together with (6.1), implies that

𝑣𝑛(𝑥) ≤ 𝐶

1 + |𝑥|3+2𝑠 , for all 𝑥 ∈ ℝ3.

Then the proof is completed. □

Proof of Theorem 6.2. Define 𝜔𝑛(𝑥) ∶= 𝑢𝑛
( 𝑥
𝜀𝑛

)
, then 𝜔𝑛 is a positive ground state solution of the sytem (1.1) and 𝑥𝜀𝑛 ∶= 𝜀𝑛𝑦𝑛

is a maximum point of 𝜔𝑛, and by Theorem 5.1, we know that the Theorem 1.2(𝑖), (𝑖𝑖) hold. Moreover, we have

𝜔𝑛(𝑥) = 𝑢𝑛
(
𝑥

𝜀𝑛

)
= 𝑣𝑛

(
𝑥

𝜀𝑛
− 𝑦𝑛

)
≤ 𝐶

1 +
|||| 𝑥𝜀𝑛 − 𝑦𝑛||||3+2𝑠

=
𝐶𝜀3+2𝑠

𝑛

𝜀3+2𝑠𝑛 + |𝑥 − 𝜀𝑛𝑦𝑛|3+2𝑠
=

𝐶𝜀3+2𝑠
𝑛

𝜀3+2𝑠𝑛 + |𝑥 − 𝑥𝜀𝑛 |3+2𝑠 , for all 𝑥 ∈ ℝ3.

Thus, the proof of Theorem 1.2 is completed. □
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