
3rd Reading

May 30, 2018 18:44 WSPC/S0219-1997 152-CCM 1850027

Communications in Contemporary Mathematics
(2018) 1850027 (46 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S021919971850027X

Concentration behavior of ground state solutions
for a fractional Schrödinger–Poisson
system involving critical exponent

Zhipeng Yang, Yuanyang Yu and Fukun Zhao∗

Department of Mathematics, Yunnan Normal University
Kunming 650500, P. R. China

∗fukunzhao@163.com

Received 15 March 2017
Revised 1 March 2018

Accepted 28 March 2018
Published 1 June 2018

We are concerned with the existence and concentration behavior of ground state solutions
of the fractional Schrödinger–Poisson system with critical nonlinearity(

ε2s(−∆)su + V (x)u + φu = λ|u|p−2u + |u|2∗s−2u in R3,

ε2t(−∆)tφ = u2 in R3,

where ε > 0 is a small parameter, λ > 0, 4s+2t
s+t

< p < 2∗s = 6
3−2s

, (−∆)α denotes the
fractional Laplacian of order α = s, t ∈ (0, 1) and satisfies 2t + 2s > 3. The potential
V is continuous and positive, and has a local minimum. We obtain a positive ground
state solution for ε > 0 small, and we show that these ground state solutions concentrate
around a local minimum of V as ε → 0.

Keywords: Concentration; fractional Schrödinger–Poisson equation; critical point; criti-
cal exponent.

Mathematics Subject Classification 2010: 35Q40, 35J50, 58E05

1. Introduction and the Main Results

In this paper, we study the existence and concentration of ground state solutions
for the following fractional Schrödinger–Poisson system:{

ε2s(−∆)su+ V (x)u + φu = λ|u|p−2u+ |u|2∗
s−2u in R

3,

ε2t(−∆)tφ = u2 in R
3,

(1.1)

where ε > 0 is a small parameter, λ > 0, 4s+2t
s+t < p < 2∗s, s, t ∈ (0, 1) and 2s+2t > 3,

2∗s := 6
3−2s is the fractional critical exponent. For ε > 0 sufficiently small, these

∗Corresponding author.
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standing waves are referred to as semiclassical states. In what follows, we assume
that the potential function V satisfies the following conditions:

(V1) V ∈ C(R3,R) and infx∈R3 V (x) > 0.
(V2) There is a bounded domain Λ such that

V0 := inf
Λ
V (x) < min

∂Λ
V (x).

Without loss of generality, we may assume that M = {x ∈ Λ : V (x) = V0} �= ∅ and
0 ∈ M.

Our motivation to study (1.1) mainly comes from the fact that solutions
(u(x), φ(x)) of (1.1) corresponding to standing wave solutions (e−iEt/�u(x), φ(x))
of the time-dependent system

i�
∂Ψ
∂t

= �
2s(−∆)sΨ + Ṽ (x)Ψ + µφΨ − f̃(x, |Ψ|)Ψ in R

3 × R,

�
2t(−∆)tφ = |Ψ|2 in R

3,

(1.2)

where i is the imaginary unit, � is the Planck constant, Ṽ (x) = V (x) + E and
f̃(x, |u|)u = f(x, u).

The first equation in (1.2) was introduced by Laskin [37], which is the so-
called fractional Schrödinger equation, describes quantum (nonrelativistic) particles
interacting with the electromagnetic field generated by the motion. An interesting
Schrödinger equation class is when the potential φ(x) is determined by the charge of
wave function itself, that is, when the second equation in (1.2) (Poisson equation)
holds. For this reason, (1.2) is referred to as a fractional nonlinear Schrödinger–
Poisson system (also called fractional Schrödinger–Maxwell system). When s = 1

2

and t = 1, such a system becomes more interesting in Physics. It comes from the
semi-relativistic theory in the repulsive (plasma physics) Coulomb case (see e.g.
[1]). If one put the second equation into the first equation, such a system reduces to
the semi-relativistic Hartree equation which arise in the quantum theory of boson
stars [38].

When s = t = 1, (1.1) is the following classical Schrödinger–Poisson system:{
−ε2∆u+ V (x)u + µφu = f(x, u) in R

3,

−ε2∆φ = u2 in R
3,

(1.3)

which was proposed by Benci and Fortunato [9] in 1998 on a bounded domain, and
is related to the Hartree equation [39]. In the past several years, the existence and
multiplicity of solutions to the systems similar to (1.3) with ε = 1 has been studied
extensively by means of variational tools, we refer the interested readers to see [3, 5,
6, 16, 29, 33, 57] and the references therein. In particular, when f(x, u) = up−1(2 <
p < 6), V ≡ 1 and µ > 0 is a positive parameter, Ruiz [44] obtained some general
results about existence and nonexistence of positive solutions. In the case p < 4, the
problem (1.3) becomes more delicate since the corresponding energy function does
not possesses the mountain pass geometry in general. To overcome this difficulty,
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Ruiz considered a new constrained minimization problem on a new manifold which
is obtained by combining the usual Nehari manifold and the Pohožaevs identity.
After that, Wang and Zhou [51] proved that (1.3) has a positive solution for µ
small and has no any nontrivial solution for µ large when the nonlinearity f(x, s)
is asymptotically linear with respect to s at infinity. The existence of solutions
of (1.3) involving nonconstant positive potentials was considered independently
in [7, 58]. Ambrosetti and Ruiz [4] constructed multiple solutions to (1.3) with a
potential vanishing at infinity. A system under the effect of a general nonlinear
term was considered in [5, 6]. The existence of sign-changing solutions for (1.3) was
established in [17, 28, 31, 35, 47, 52] for different conditions on V (x) and f(x, u).
Recently, in [40], Liu, Wang and Zhang obtained the existence of infinitely many
sign-changing solutions to (1.3) with a general nonlinearity f(u) ∼ |u|p−1u(3 <

p < 5) and a coercive potential by using the method of invariant sets of descending
flow.

There are also some works concerning with the semiclassical state of (1.3).
In [18], D’Aprile and Wei constructed a family of radially symmetric solutions
concentrating around a sphere. Ianni and Vaira [30] proved the existence of single-
bump solutions which concentrates around the critical points of V (x). When the
potential V satisfies the global condition

(V3) 0 < infx∈RN V (x) < lim inf |x|→∞ V (x) = V∞,

which was introduced by Rabinowitz [43], He [23] studied the multiplicity of posi-
tive solutions and proved that these positive solutions concentrate around the global
minimum of the potential V . Wang et al. [50] studied the existence and the concen-
tration behavior of ground state solutions for a subcritical problem with competing
potentials. The critical case was considered in [26], He and Zou proved that sys-
tem (1.3) possesses a positive ground state solution which concentrates around the
global minimum of V . In [25], under the local condition (V2), the author studied
the existence and concentration of positive ground state solutions for the following
system involving critical exponent:{−ε2∆u+ V (x)u + φu = λ|u|p−2u+ |u|2∗

s−2u in R
3,

−ε2∆φ = u2 in R
3,

(1.4)

with p ∈ (3, 4]. Using a version of quantitative deformation lemma due to
Figueiredo, Ikoma and Santos Junior [22], they construct a special bounded Palais–
Smale sequence and recover the compactness by using a penalization method which
was introduced in [14].

To the best of our knowledge, there are only few papers that considered the
existence and multiplicity of solutions to the fractional Schrödinger–Poisson sys-
tem (1.1). The system (1.1) is different with the local one (1.4) since the frac-
tional Laplacian operator is a nonlocal one. Therefore, the standard techniques
that were developed for the local Laplacian do not work immediately. In [56],
the authors studied the existence of radial solutions by using the constrained
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minimization methods for system (1.1) with ε = 1, V (x) = 0 and Berestycki–Lions-
type conditions [10]. In [48, 49], Teng consider the fractional Schrödinger–Poisson
system (1.1) with subcritical and critical nonlinearity, respectively. By the mono-
tone trick, concentration-compactness principle and a global compactness lemma
he establishes the existence of ground state solutions.

It seems that the only works concerning the concentration behavior of solu-
tions are due to Liu and Zhang [41], and Yu, Zhao and Zhao [54]. Assuming the
global condition (V3) and f(u) ∼ |u|p−2u(4 < p < 2∗s), the authors obtained the
multiplicity and concentration of positive solutions for the following system:{

ε2s(−∆)su+ V (x)u + φu = f(u) + |u|2∗
s−2u in R

3,

ε2t(−∆)tφ = u2 in R
3,

(1.5)

via the standard Nehari manifold method. The concentration behavior of ground
state solutions for a subcritical case with two competing positive potentials was
obtained in [54].

Different to [41, 54], in this paper, we devote to establishing the existence and
concentration of positive ground state solutions for the fractional Schrödinger–
Poisson system (1.1) under the local condition (V2). The main motivations for
considering the critical problem comes from the famous paper [12] due to Brézis and
Nirenberg in 1983. Since the nonlinearity λ|u|p−2u + |u|2∗

s−2u with p ∈ (4s+2t
s+t , 2

∗
s)

does not satisfy Ambrosetti–Rabinowitz condition and the fact that the function
λ|u|p−1+|u|2∗s−1

u3 is not increasing for u > 0, these prevent us from obtaining a
bounded Palais–Smale sequence and using the Nehari manifold in a standard way.
So the arguments in [41] cannot be applied in our case.

To overcome these difficulties, inspired by [13, 22, 25], we use a version of quan-
titative deformation lemma to construct a special bounded and convergent Palais–
Smale sequence. And we need to use a penalization method introduced in [14],
which helps us to overcome the obstacle caused by the non-compactness due to the
unboundedness of the domain and the lack of Ambrosetti–Rabinowitz condition.
Proceeding by the standard arguments, the existence of ground state solution uε

follows. Finally, we use some estimate to verity that the critical point uε is indeed
a solution of the original problem (1.1).

Now we state our main results as follows.

Theorem 1.1. Assume that V satisfies (V1) and (V2), if p ∈ (4s+2t
s+t ,

4s
3−2s ], then

there exist ε∗ > 0 and λ∗ > 0 such that for each λ ∈ [λ∗,∞) and ε ∈ (0, ε∗), the
system (1.1) possesses a positive ground state solution (uε, φε) ∈ Hs(R3)×Dt,2(R3).
And if p ∈ ( 4s

3−2s , 2
∗
s), then there exists ε∗ > 0 such that for any λ > 0 and ε ∈

(0, ε∗), the system (1.1) possesses a positive ground state solution. Moreover, if
xε ∈ Λ is a maximum point of uε, then

lim
ε→0

V (xε) = V0,
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and there exists a constant C > 0 (independent of ε) such that

uε(x) ≤ Cε3+2s

ε3+2s + |x− xε|3+2s
, ∀x ∈ R

3.

This paper is organized as follows. In Sec. 2, besides describing the functional
setting to study problem (1.1), we prove some preliminary Lemmas which will be
used later. In Sec. 3, we study the limit problem associated with (1.1) and we prove
the existence of positive ground state solutions. In Sec. 4, we study the existence and
concentration phenomenon of these ground state solutions for system (1.1). Finally,
we give the decay estimate of solution, which is polynomial instead of exponential
form.

2. Variational Settings and Preliminary Results

Throughout this paper, we denote ‖·‖p the usual norm of the space Lp(R3), 1 ≤ p <

∞, Br(x) denotes the open ball with center at x and radius r, C or Ci (i = 1, 2, . . .)
denote some positive constants may change from line to line. an ⇀ a and an → a

mean the weak and strong convergence, respectively, as n→ ∞.

2.1. The functional space setting

First, fractional Sobolev spaces are the convenient setting for our problem, so we will
give some sketches of the fractional Sobolev spaces and the complete introduction
can be found in [19]. We recall that, for any α ∈ (0, 1), the fractional Sobolev space
Hα(R3) = Wα,2(R3) is defined as follows:

Hα(R3) =
{
u ∈ L2(R3) :

∫
R3

(|ξ|2α|F(u)|2 + |F(u)|2)dξ <∞
}
,

whose norm is defined as

‖u‖2
Hα(R3) =

∫
R3

(|ξ|2α|F(u)|2 + |F(u)|2)dξ,

where F denotes the Fourier transform. We also define the homogeneous fractional
Sobolev space Dα,2(R3) as the completion of C∞

0 (R3) with respect to the norm

‖u‖Dα,2(R3) :=
(∫∫

R3×R3

|u(x) − u(y)|2
|x− y|3+2α

dxdy

) 1
2

= [u]Hα(R3).

The embedding Dα,2(R3) ↪→ L2∗
α(R3) is continuous and for any α ∈ (0, 1), there

exists a best constant Sα > 0 such that

Sα := inf
u∈Dα,2(R3)

‖u‖2
Dα,2(R3)

‖u‖2
2∗

α(R3)

.

The fractional Laplacian, (−∆)αu of a smooth function u : R
3 → R is defined

by

F((−∆)αu)(ξ) = |ξ|2αF(u)(ξ), ξ ∈ R
3,

1850027-5
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that is

F(φ)(ξ) =
1

(2π)
3
2

∫
R3
e−iξ·xφ(x)dx,

for functions φ in the Schwartz class. Also (−∆)αu can be equivalently represented
as (see [19])

(−∆)αu(x) = −1
2
C(α)

∫
R3

u(x+ y) + u(x− y) − 2u(x)
|y|3+2α

dy, ∀x ∈ R
3,

where

C(α) =
(∫

R3

(1 − cos ξ1)
|ξ|3+2α

dξ

)−1

, ξ = (ξ1, ξ2, ξ3).

Also, by the Plancherel formula in Fourier analysis, we have

[u]2Hα(R3) =
2

C(α)
‖(−∆)

α
2 u‖2

2.

As a consequence, the norms on Hα(R3) defined above

u �→
(∫

R3
|u|2dx+

∫∫
R3×R3

|u(x) − u(y)|2
|x− y|3+2α

dxdy

) 1
2

;

u �→
(∫

R3
(|ξ|2α|F(u)|2 + |F(u)|2)dξ

) 1
2

;

u �→
(∫

R3
|u|2dx+ ‖(−∆)

α
2 u‖2

2

) 1
2

are equivalent.
Making the change of variable x �→ εx, we can rewrite the system (1.1) as the

following equivalent system:{
(−∆)su+ V (εx)u + φu = λ|u|p−2u+ |u|2∗

s−2u in R
3,

(−∆)tφ = u2 in R
3.

(2.1)

If u is a solution of the system (2.1), then ω(x) := u(x
ε ) is a solution of the sys-

tem (1.1). Thus, to study the system (1.1), it suffices to study the system (2.1). In
view of the presence of potential V (x), we introduce the subspace

Hε =
{
u ∈ Hs(R3) :

∫
R3
V (εx)u2dx < +∞

}
,

which is a Hilbert space equipped with the inner product

(u, v)Hε =
∫

R3
(−∆)

s
2u(−∆)

s
2 vdx +

∫
R3
V (εx)uvdx,

and the norm

‖u‖2
Hε

= (u, u) =
∫

R3
|(−∆)

s
2u|2dx+

∫
R3
V (εx)u2dx.

We denote ‖ · ‖Hε by ‖ · ‖ in the sequel for convenience.
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For the reader’s convenience, we review the main embedding result for this class
of fractional Sobolev spaces.

Lemma 2.1 ([19]). Let 0 < α < 1, then there exists a constant C = C(α) > 0,
such that

‖u‖2
L2∗α(R3)

≤ C[u]2Hα(R3)

for every u ∈ Hα(R3), where 2∗α = 6
3−2α is the fractional critical exponent.

Moreover, the embedding Hα(R3) ↪→ Lr(R3) is continuous for any r ∈ [2, 2∗α] and
is locally compact whenever r ∈ [2, 2∗α).

Lemma 2.2 ([49]). If {un} is bounded in Hα(R3) and for some R > 0 we have

lim
n→∞ sup

y∈R3

∫
BR(y)

|un|2∗
αdx = 0,

then un → 0 in Lr(R3) for any 2 < r ≤ 2∗α.

2.2. The reduction method

It is clear that the system (2.1) is the Euler–Lagrange equations of the functional
J : Hε ×Dt,2(R3) → R defined by

J(u, φ) =
1
2
‖u‖2 − 1

4

∫
R3

|(−∆)
s
2φ|2dx +

1
2

∫
R3
φu2dx

− λ

p

∫
R3

|u|pdx− 1
2∗s

∫
R3

|u|2∗
sdx. (2.2)

Evidently, the action functional J ∈ C1(Hε×Dt,2(R3),R) and its critical points
are the solutions of (2.1). It is easy to know that J exhibits a strong indefiniteness,
namely it is unbounded both from below and from above on infinitely dimensional
subspaces. This indefiniteness can be removed using the reduction method described
in [9]. First of all, for a fixed u ∈ Hε, there exists a unique φt

u ∈ Dt,2(R3) which is
the solution of

(−∆)tφ = u2 in R
3.

We can write an integral expression for φt
u in the form

φt
u(x) = Ct

∫
R3

u2(y)
|x− y|3−2t

dy, ∀x ∈ R
3,

which is called t-Riesz potential (see [36]), where

Ct =
1
π

3
2

Γ(3 − 2t)
22tΓ(s)

.

Then the system (2.1) can be reduced to the first equation with φ represented
by the solution of the fractional Poisson equation. This is the basic strategy of
solving (2.1). To be more precise about the solution φ of the fractional Poisson
equation, we have the following lemma.
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Lemma 2.3 ([49]). For any u ∈ Hs(R3) and 4s+ 2t ≥ 3, we have:

(i) φt
u ≥ 0;

(ii) φt
u : Hs(R3) → Dt,2(R3) is continuous and maps bounded sets into bounded

sets;
(iii)

∫
R3 φ

t
uu

2dx ≤ S2
t ‖u‖4

12
3+2t

≤ C‖u‖4;

(iv) If un ⇀ u in Hs(R3), then φt
un
⇀ φt

u in Dt,2(R3);
(v) If un → u in Hs(R3), then φt

un
→ φt

u in Dt,2(R3) and
∫

R3 φ
t
un
u2

ndx →∫
R3 φ

t
uu

2dx.

Define N : Hs(R3) → R by

N(u) =
∫

R3
φt

uu
2dx,

it is clear that N(u(· + y)) = N(u) for any y ∈ R
3, u ∈ Hs(R3) and N is weakly

lower semi-continuous inHs(R3). Moreover, similarly to the well-known Brezis–Lieb
lemma [11], we have the next lemma.

Lemma 2.4 ([49]). Let un ⇀ u in Hs(R3) and un → u a.e.in R
3 with 2s+2t > 3.

Then:

(i) N(un − u) = N(un) −N(u) + o(1);
(ii) N ′(un − u) = N ′(un) −N ′(u) + o(1), in (Hs(R3))−1.

Putting φ = φt
u into the first equation of (2.1), we obtain a semilinear elliptic

equation

(−∆)su+ V (εx)u+ φt
uu = λ|u|p−2u+ |u|2∗

s−2u in R
3,

with a nonlocal term. The corresponding functional I : Hε → R is defined by

I(u) =
1
2

∫
R3

|(−∆)
s
2u|2dx+

1
2

∫
R3
V (εx)u2dx+

1
4

∫
R3
φt

uu
2dx− λ

p

∫
R3

|u|pdx

− 1
2∗s

∫
R3

|u|2∗
sdx.

Note that if 4s+ 2t ≥ 3, there holds 2 ≤ 12
3+2t ≤ 2∗s and thus Hs(R3) ↪→ L

12
3+2t (R3),

then by the Hölder inequality and the Sobolev inequality, we have∫
R3
φt

uu
2dx ≤

(∫
R3

|u| 12
3+2t dx

) 3+2t
6
(∫

R3
|φt

u|2
∗
t dx

) 1
2∗t

≤ S− 1
2

t

(∫
R3

|u| 12
3+2t dx

) 3+2t
6

‖φt
u‖Dt,2

≤ C‖u‖2‖φt
u‖Dt,2 <∞.

1850027-8

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
r.

 Z
hi

pe
ng

 Y
an

g 
on

 0
6/

02
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

May 30, 2018 18:44 WSPC/S0219-1997 152-CCM 1850027

Concentration behavior of ground state solutions

Therefore, the functional I is well-defined for every u ∈ Hs(R3) and belongs to
C1(Hs(R3),R). Moreover, for any u, v ∈ Hs(R3), we have

〈I ′(u), v〉 =
∫

R3
(−∆)

s
2u(−∆)

s
2 vdx +

∫
R3
V (εx)uvdx +

∫
R3
φt

uuvdx

−λ

∫
R3

|u|p−2uvdx−
∫

R3
|u|2∗

s−2uvdx.

It is standard to verify that a critical point u of the functional I corresponds to
a weak solution (u, φ) of (1.1) with φ = φt

u. Hence in the following, we consider
critical points of I using variational method.

2.3. A local compactness result

The next lemma is a variant of [8, Lemma 2.7], for reader’s convenience, we give a
detailed proof.

Lemma 2.5. Let N ≥ 2s and {un} ⊂ Hs
loc(R

N ) be a bounded sequence of functions
such that un ⇀ 0 in Hs(RN ). Suppose that there exist a bounded open set Q ⊂ R

N

and a positive constant γ > 0 such that∫
Q

|(−∆)sun|2dx ≥ γ > 0,
∫

Q

|un|2∗
sdx ≥ γ > 0. (2.3)

Moreover, suppose that

(−∆)sun − |un|2∗
s−2un = χn, (2.4)

where χn ∈ H−s(RN ) and

|〈χn, ϕ〉| ≤ εn‖ϕ‖Hs(RN ), ∀ϕ ∈ C∞
0 (U), (2.5)

where U is an open neighborhood of Q and εn is a sequence of positive numbers
converging to 0. Then there exist a sequence of points {yn} ⊂ R

N and a sequence
of positive numbers {σn} such that

vn := σ
(N−2s)

2
n un(σnx+ yn)

converges weakly in Ds,2(RN ) to a nontrivial solution v of

(−∆)su = |u|2∗
s−2u, u ∈ Ds,2(RN ). (2.6)

Moreover,

yn → ȳ ∈ Q̄ and σn → 0.

Because of the presence of nonlocal operator (−∆)s, the proof is different from
the one in [8, 24]. Indeed, the definition of nonlocal operator causes some techniques
developed for local case cannot be adapted immediately to nonlocal case. To over-
come these difficulties, we will use an approach due to Caffarelli and Silvestre [15],

1850027-9
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that is, we will apply the s-harmonic extension technique to transform a nonlocal
problem to a local one.

For this, we will denote R
N+1
+ := R

N × (0,+∞). Also, for a point A ∈ R
N+1
+ , we

will use the notation A = (x, y), with x ∈ R
N and y > 0. Moreover, for A ∈ R

N+1
+

and r > 0, we will denote by BN+1
r (A) the ball in R

N+1
+ centered at A with

radius r.

Definition 2.1. For any u ∈ Hs(RN ), we define that w = Es(u) is its s-harmonic
extension to the upper half-space RN+1

+ , if w is a solution of the problem{−div(y1−2s∇w) = 0 in R
N+1
+ ,

w = u on R
N × {y = 0}.

Moreover, we define the spaces Xs(RN+1
+ ) and Ḣs(RN ) as the completion of

C∞
0 (RN+1

+ ) and C∞
0 (RN ) under the norms

‖w‖2
Xs :=

∫
RN+1

+

κsy
1−2s|∇w|2dxdy,

‖w‖2
Ḣs :=

∫
RN

|(−∆)
s
2u|2dx,

where κs > 0 is a normalization constant.
Now we may reformulate the nonlocal problem (2.4) in a local way, that is

−div(y1−2s∇wn) = 0 in R
N+1
+ ,

−κs
∂wn

∂ν
(x, y) = |wn|2∗

s−2wn + χn on R
N × {y = 0},

(2.7)

where
∂wn

∂ν
= lim

y→0+

∂wn

∂y
(x, y) = − 1

κs
(−∆)sun(x).

If wn is a solution of (2.7), then the trace un(x) = Tr(wn) = wn(x, 0) is a solution
of (2.4). The converse is also true. Therefore, both formulations are equivalent. In
the sequel, we will use them both whenever we may take some advantage.

In order to establish the local compactness results, we need an extension of a
concentration-compactness result by Lions, that was proved in [20]. For this, we
recall the following definition.

Definition 2.2. We say a sequence {wn} is tight in Xs(RN+1
+ ) if for every δ > 0

there exists ρ > 0 such that∫
R

N+1
+ \B+

ρ

y1−2s|∇wn|2dxdy ≤ δ for any n ∈ N.

Lemma 2.6 ([20] Concentration-compactness Principle). Let {wn} be a
bounded tight sequence in Xs(RN+1

+ ), such that {wn} converges weakly to w in

1850027-10
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Xs(RN+1
+ ). Let µ, ν be two nonnegative measures on R

N+1
+ and R

N respectively
and such that

lim
n→∞ y1−2s|∇wn|2 = µ, lim

n→∞ |wn|2∗
s = ν,

in the sense of measures. Then there exist an at most countable set J and three
families {xj} ⊂ R

N , {µj}, {νj}, µj , νj ≥ 0 such that

(i) ν = |w(x, 0)|2∗
s +

∑
j∈J νjδxj ;

(ii) µ ≥ y1−2s|∇wn|2 +
∑

j∈J µjδ(xj ,0);

(iii) µj ≥ Ssν
2/2∗

s

j ,

for all j ∈ J, where δxj is the Dirac mass at xj ∈ R
N .

Proof of Lemma 2.5. It is easy to see that {wn} is bounded and tight in
Xs(RN+1

+ ), then by Lemma 2.6, we obtain an at most countable index set J ,
sequences {xj} ⊂ R

N and νj ⊂ (0,∞) such that

|wn|2∗
s ⇀

∑
j∈J

νjδxj ,

then there is at least one j0 ∈ J such that xj0 ∈ Q̄ with νj0 > 0. Otherwise, wn → 0
in L2∗

s (Q), which contradicts (2.3).
We define the concentration function

Gn(r) = sup
x∈Q̄

∫
Br(x)

|wn|2∗
sdx.

Fixing a small τ ∈ (0, S
N
2s
s ) and choosing σn = σn(τ) > 0, yn ∈ Q̄ such that∫

Bσn (yn)

|wn|2∗
sdx = Gn(σn) = τ. (2.8)

Denoting vn(x) = σ
N−2s

2
n wn(σnx+ yn), we see that

G̃n(r) := sup
x∈Q̄n

∫
Br(x)

|vn|2∗
sdx = sup

x∈Q̄

∫
Bσnr(x)

|wn|2∗
sdx = Gn(σnr), (2.9)

where Q̄n := {x ∈ R
N : σnx+ yn ∈ Q̄}. Equations (2.8) and (2.9) imply that

G̃n(1) =
∫

B1(0)

|vn|2∗
sdx =

∫
Bσn (yn)

|wn|2∗
sdx = Gn(σn) = τ. (2.10)

Now, we prove that there is a small τ ∈ (0, S
N
2s
s ) such that σn(τ) → 0 as n→ ∞.

Otherwise, for any ε > 0, there exists Mε > 0 such that σn(ε) ≥Mε, then∫
BMε (xj0 )

|wn|2∗
sdx ≤ sup

x∈Q̄

∫
Bσn(ε)(x)

|wn|2∗
sdx = Gn(σn(ε)) = ε.

In particular,

νj0 ≤
∫

BMε (xj0 )

|wn|2∗
sdx+ o(1) ≤ ε+ o(1), ∀ ε > 0, (2.11)

1850027-11
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where o(1) → 0 as n→ ∞. Letting n→ ∞ and ε→ 0 in (2.11), we see that νj0 ≤ 0
which contradicts to νj0 > 0.

Since ‖vn‖Ḣs(RN ) = ‖(−∆)
s
2 u‖2 and {wn} is bounded in Xs(RN+1

+ ), up to a
subsequence, there exists a v ∈ Ḣs(RN ) such that

vn ⇀ v in Ḣs(RN ). (2.12)

For any ϕ ∈ C∞
0 (RN ), denote ϕ̃n(x) := σ

N−2s
2

n ϕ(x−yn

σn
). Note that σn → 0 and

yn ∈ Q̄ imply that ϕ̃n(x) ∈ C∞
0 (U) for n large. Then, we get from (2.5) that∫

R
N+1
+

y1−2s∇vn∇ϕdxdy −
∫

RN

|vn|2∗
s−2vnϕdx

=
∫

RN

(−∆)
s
2 un(−∆)

s
2 ϕ̃ndx−

∫
RN

|un|2∗
s−2unϕ̃ndx

= o(1)‖ϕ̃n‖Hs(RN ). (2.13)

Letting n→ ∞ in (2.13), we see that v is a solution of (2.6).
Next, we claim that up to a subsequence,

wn → w in L2∗
s (B1(0)). (2.14)

By Lemma 2.6, we obtain an at most countable index set J , sequences {xj} ⊂ R
N

and {µj}, {νj} ⊂ (0,∞) such that

µ≥ y1−2s|∇wn|2 +
∑
j∈J

µjδ(xj,0), ν= |w(x, 0)|2∗
s +

∑
j∈J

νjδxj and Ssν
N−2s

N
j ≤µj .

(2.15)

To prove (2.14), it suffices to show that {xj} ∩ B1(0) = ∅. Suppose, by con-
tradiction, that there is a xj0 ∈ B1(0) for some j0 ∈ J . Define for ρ > 0, the
function ϕρ(x, y) := ϕ(x−xj0

ρ , y
ρ ), where ϕ ∈ C∞

0 (RN+1
+ , [0, 1]) is such that ϕ ≡ 1

on BN+1
1 (0), ϕ ≡ 0 on R

N+1
+ \BN+1

2 (0) and |∇ϕ| ≤ C. We suppose that ρ is
chosen in such way that the support of ϕρ(x, 0) is contained in B1(0). Denote
ϕ̃ρ,n(x, y) := ϕρ((x−yn

σn
), y

σn
) by the facts that yn ∈ Q̄, xj0 ∈ B1(0) and σn → 0 as

n → ∞, we see that for n large, supp ϕ̃ρ,n ⊂ B2σnρ(yn + σnxj0 ) ⊂ UN+1
+ ⊂ R

N+1
+ ,

then ϕ̃ρ,nwn ∈ Xs
0(UN+1

+ ). Direct computations show that {ϕ̃ρ,nwn} is bounded
and the bound is independent of ρ. By (2.5) and the fact that C∞

0 (UN+1
+ ) is dense

in Xs
0(UN+1

+ ), we get∫
R

N+1
+

y1−2s∇wn∇(ϕρwn)dxdy −
∫

RN

|wn(x, 0)|2∗
s−2wnϕρwndx

=
∫

R
N+1
+

y1−2s|∇wn|2ϕρdxdy +
∫

R
N+1
+

y1−2s∇wn∇(ϕρ)wndxdy

−
∫

RN

|wn(x, 0)|2∗
s−2wnϕρwndx

1850027-12
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=
∫

R
N+1
+

y1−2s|∇wn|2ϕ̃ρ,ndxdy +
∫

R
N+1
+

y1−2s∇wn∇(ϕ̃ρ,n)wndxdy

−
∫

RN

|wn(x, 0)|2∗
s−2wnϕ̃ρ,nwndx

=
∫

R
N+1
+

y1−2s∇wn∇(ϕ̃ρ,nwn)dxdy −
∫

RN

|wn(x, 0)|2∗
s−2wnϕ̃ρ,nwndx

= o(1)‖ϕ̃ρ,nwn‖Xs = o(1). (2.16)

As ρ→ 0,

lim sup
n→∞

∣∣∣∣∣
∫

R
N+1
+

y1−2s(∇wn∇ϕρ)wndxdy

∣∣∣∣∣
≤ lim sup

n→∞

(∫
R

N+1
+

y1−2s|∇wn|2dxdy
) 1

2
(∫

BN+1
2ρ (xj0 )

y1−2s|∇ϕρ|2w2
ndxdy

) 1
2

≤ C

(∫
BN+1

2ρ (xj0 )

|∇ϕρ|2w2dxdy

) 1
2

≤ C

(∫
BN+1

2ρ (xj0 )

|∇ϕρ|N
s dxdy

) s
N
(∫

BN+1
2ρ (xj0)

w2∗
sdxdy

) 1
2∗s

≤ C

(∫
BN+1

2ρ (xj0 )

w2∗
sdxdy

) 1
2∗s

→ 0.

Hence, we see from (2.16) that µj0 ≤ νj0 , then by (2.15) we get νj0 ≥ S
N
2s
s . By (2.10),

there holds

S
N
2s
s ≤ νj0 ≤

∫
B1(0)

|vn|2∗
sdx + o(1) = τ + o(1), (2.17)

where o(1) → 0 as n → ∞. Letting n → ∞ in (2.17), we see that S
N
2s
s ≤ τ ,

which contradicts S
N
2s
s > τ , hence {xj} ∩B1(0) = ∅, (2.14) holds. Equations (2.10)

and (2.14) imply that∫
B1(0)

|v|2∗
sdx = lim

n→∞

∫
B1(o)

|vn|2∗
sdx = τ > 0,

which means that v is nontrivial.

We collect some regularity results which are useful in our problem.

Lemma 2.7 ([20]). Let u ∈ Ḣs(RN ) be a nonnegative solution to the problem

(−∆)su = f(x, u) in R
N ,

1850027-13
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and assume that |f(x, t)| ≤ C(1 + |t|p), for some 1 ≤ p ≤ 2∗s − 1 and C > 0. Then
u ∈ L∞(RN ).

3. The Limiting Problem

In this section, we consider the existence of a ground state solution to the following
limiting problem, that is the constant potential case{

(−∆)su+ au+ φt
uu = λ|u|p−2u+ |u|2∗

s−2u,

u > 0, u ∈ Hs(R3),
(3.1)

where a > 0 and the norm on the Hs(R3) is taken as

‖u‖ =
(∫

R3
(|(−∆)

s
2 u|2 + au2)dx

) 1
2

.

We define the energy functional for the limiting problem (3.1) by

Ia(u) =
1
2

∫
R3

(|(−∆)
s
2u|2 + au2)dx +

1
4

∫
R3
φt

uu
2dx− λ

p

∫
R3

|u|pdx− 1
2∗s

∫
R3

|u|2∗
sdx

=
1
2
‖u‖2 +

1
4

∫
R3
φt

uu
2dx − λ

p

∫
R3

|u|pdx− 1
2∗s

∫
R3

|u|2∗
sdx,

which is of C1 class and whose derivative is given by

〈I ′a(u), v〉 =
∫

R3
((−∆)

s
2 u(−∆)

s
2 v + auv)dx+

∫
R3
φt

uuvdx− λ

∫
R3

|u|p−2uvdx

−
∫

R3
|u|2∗

s−2uvdx,

for all v ∈ Hs(R3). Hence the critical points of Ia in Hs(R3) are weak solutions of
problem (3.1).

In view of [48], if u ∈ Hs(R3) is a weak solution to problem (3.1), then we have
the following Pohožaev identity:

Pa(u) =
3 − 2s

2

∫
R3

|(−∆)
s
2u|2dx+

3a
2

∫
R3
u2dx+

2t+ 3
4

∫
R3
φt

uu
2dx

− 3λ
p

∫
R3

|u|pdx− 3
2∗s

∫
R3

|u|2∗
sdx = 0.

Similarly in [44], define Ga : Hs(R3) → R as

Ga(u) = (s+ t)〈I ′a(u), u〉 − Pa(u)

=
4s+ 2t− 3

2

∫
R3

|(−∆)
s
2 u|2dx+

2s+ 2t− 3
2

∫
R3
au2dx

+
4s+ 2t− 3

4

∫
R3
φt

uu
2dx− p(s+ t) − 3

p
λ

∫
R3

|u|pdx

− (s+ t)2∗s − 3
2∗s

∫
R3

|u|2∗
sdx.

1850027-14
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Next we study the functional Ia restricted on the manifold Ma defined as

Ma := {u ∈ Hs(R3)\{0} : Ga(u) = 0}.
Obviously, if u ∈ Hs(R3) is a nontrivial critical point of Ia, then u ∈Ma. Hence, if
(u, φ) ∈ Hs(R3) ×Dt,2(R3) is a solution of (3.1), then u ∈Ma.

Lemma 3.1. For any u ∈ Hs(R3)\{0}, there is a unique θ0 > 0 such that uθ0 ∈
Ma, where uθ0(x) := θs+t

0 u(θ0x). Moreover,

Ia(uθ0) = max
θ>0

Ia(uθ).

Proof. For any u ∈ Hs(R3)\{0} and θ > 0, set uθ(x) := θs+tu(θx). Consider the
function

τ(θ) := Ia(uθ) =
θ4s+2t−3

2

∫
R3

|(−∆)
s
2 u|2dx+

θ2s+2t−3

2

∫
R3
au2dx

+
θ4s+2t−3

4

∫
R3
φt

uu
2dx− θ(s+t)p−3

p
λ

∫
R3

|u|pdx− θ(s+t)2∗
s−3

2∗s

∫
R3

|u|2∗
sdx.

Clearly, by elementary computations, τ(θ) is positive for small θ and tends to −∞
as θ → +∞. Moreover, τ(θ) has a unique critical point θ0 > 0 corresponding to its
maximum, that is

τ(θ0) = max
θ>0

τ(θ) and τ ′(θ0) = 0,

which means that uθ0 ∈Ma.

Lemma 3.2. Ia possesses the mountain pass geometry, that is

(i) there exist α, ρ > 0 such that Ia(u) ≥ α for ‖u‖ = ρ;
(ii) there exists an e ∈ Hs(R3) satisfying ‖e‖ > ρ such that Ia(e) < 0.

Proof. (i) There exist α, ρ > 0 small and constants C1, C2 > 0 such that

Ia(u) =
1
2

∫
R3

(|(−∆)
s
2 u|2 + au2)dx+

1
4

∫
R3
φt

uu
2dx− λ

p

∫
R3

|u|pdx

− 1
2∗s

∫
R3

|u|2∗
sdx

≥ 1
2
‖u‖2 − C1λ‖u‖p − C2‖u‖2∗

s ≥ α > 0

for ‖u‖ = ρ > 0.
(ii) Fix u ∈ Hs(R3)\{0}, set uθ(x) := θs+tu(θx), then we have

Ia(uθ) =
θ4s+2t−3

2

∫
R3

|(−∆)
s
2u|2dx+

θ2s+2t−3

2

∫
R3
au2dx

1850027-15
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+
θ4s+2t−3

4

∫
R3
φt

uu
2dx− θ(s+t)p−3

p
λ

∫
R3

|u|pdx

− θ(s+t)2∗
s−3

2∗s

∫
R3

|u|2∗
sdx < 0,

for θ > 0 large, then there exists θ0 > 0 such that e = uθ0 and Ia(e) < 0.

Hence we can define the mountain pass level of Ia:

ca := inf
γ∈Γa

sup
h∈[0,1]

Ia(γ(h)),

where the set of paths is defined as

Γa := {γ ∈ C([0, 1], Hs(R3)) : γ(0) = 0 and Ia(γ(1)) < 0}.
Next, we will construct a Palais–Smale sequence {un} for Ia at the level ca

which satisfies Ga(un) → 0 as n→ ∞.

Lemma 3.3. There exists a sequence {un} ⊂ Hs(R3) such that

Ia(un) → ca, I ′a(un) → 0, Ga(un) → 0 as n→ ∞. (3.2)

Proof. In order to construct a Pohožaev–Palais–Smale sequence, following Jean-
jean [32], for θ ∈ R, v ∈ Hs(R3) and x ∈ R

3 we define the map Φ : R ×Hs(R3) by

Φ(θ, v) := e(s+t)θv(eθx).

Then the functional Ia ◦ Φ is computed as

Ia(Φ(θ, v)) =
e(4s+2t−3)θ

2

∫
R3

|(−∆)
s
2 v|2dx+

e(2s+2t−3)θ

2

∫
R3
av2dx

+
e(4s+2t−3)θ

4

∫
R3
φt

vv
2dx− e((s+t)p−3)θ

p
λ

∫
R3

|v|pdx

− e((s+t)2∗
s−3)θ

2∗s

∫
R3

|v|2∗
sdx.

In view of Lemma 3.2, we can easily check that Ia(Φ(θ, v)) > 0 for all (θ, v) with
|θ|, ‖v‖ small and Ia(Φ(0, e)) < 0. That is Ia ◦ Φ possesses the mountain pass
geometry in R ×Hs(R3). Hence we can define the mountain pass level of Ia ◦ Φ:

c̃a := inf
γ̃∈Γ̃a

sup
h∈[0,1]

Ia(γ̃(h)),

where the set of paths is defined as

Γ̃a := {γ̃ ∈ C([0, 1], Hs(R3)) : γ̃(0) = 0 and Ia(γ̃(1)) < 0}.
Note that Γa = {Φ ◦ γ̃ : γ̃ ∈ Γ̃a}, we see that mountain pass levels of Ia and

Ia ◦ Φ coincide, i.e. ca = c̃a. By the General Minimax Principle [53, Theorem 2.8],
there exists a sequence {(θn, vn)} ⊂ R ×Hs(R3) such that as n→ ∞,

(Ia ◦ Φ)(θn, vn) → ca, (Ia ◦ Φ)′(θn, vn) → 0 in (R ×Hs(R3))−1, θn → 0.
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Because for every (h,w) ∈ R ×Hs(R3),

〈(Ia ◦ Φ)′(θn, vn), (h,w)〉 = 〈I ′a(Φ(θn, vn)),Φ(θn, w)〉 +Ga(Φ(θn, vn))h.

We take h = 1, w = 0, then as n→ ∞, we get

Ga(Φ(θn, vn)) → 0. (3.3)

For any v ∈ Hs(R3), set w(x) = e−(s+t)θnv(e−θnx), h = 0 in (3.3), we get

〈I ′a(Φ(θn, vn)),Φ(θn, w)〉 = 〈I ′a(Φ(θn, vn)), v〉 = o(1)‖v‖.
Denote un := Φ(θn, vn), then we get a bounded sequence {un} ⊂ Hs(R3) that
satisfies (3.2).

Set

c∗a = inf
u∈Hs(R3)\{0}

max
θ>0

Ia(uθ), c∗∗a = inf
u∈Ma

Ia(u).

Similarly to the proof of [48, Lemma 3.4], we can obtain the following lemma.

Lemma 3.4. The following equalities hold :

ca = c∗a = c∗∗a > 0.

For the mountain pass level ca for Ia, we have the following estimate of upper
boundedness.

Lemma 3.5 ([49]). The following inequality holds :

0 < ca <
s

3
S

3
2s
s ,

if one of the following conditions is satisfied

(i) s > 3
4 : p ∈ ( 4s

3−2s , 2
∗
s) and any λ > 0;

(ii) s > 3
4 : p ∈ (4s+2t

s+t ,
4s

3−2s ] and any λ > 0 large enough;

(iii) 1
2 < s ≤ 3

4 : p ∈ (4s+2t
s+t , 2

∗
s) and any λ > 0.

Proof. The strategy is coming from [12]. For the sake of completeness, we give the
details here.

We define

uε(x) = ψ(x)Uε(x), x ∈ R
3,

where Uε(x) = ε−
3−2s

2 u∗(x
ε ), u∗(x) = ũ(x/S

1
2s
s )

‖ũ‖2∗s
, ũ(x) = κ(µ2

0 + |x− x0|2)− 3−2s
2 (see

[46, Sec. 4]), κ ∈ R\{0}, µ0 > 0 and x0 ∈ R
3 are fixed constants, and ψ ∈ C∞

0 (R3)
such that 0 ≤ ψ ≤ 1 in R

3, ψ ≡ 1 in Br and ψ ≡ 0 in R
3\B2r. From [46,

Propositions 21 and 22], we know that∫
R3

|(−∆)
s
2uε(x)|2dx ≤ S

3
2s
s +O(ε3−2s), (3.4)∫

R3
|uε(x)|2∗

sdx = S
3
2s
s +O(ε3), (3.5)
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and

∫
R3

|uε(x)|rdx =



O(ε
3(2−r)+2sr

2 ), r >
3

3 − 2s
,

O(ε
3(2−r)+2sr

2 |log ε|), r =
3

3 − 2s
,

O(ε
3−2s

2 r), r <
3

3 − 2s
.

(3.6)

Define

g(θ) =
θ4s+2t−3

2

∫
R3

|(−∆)
s
2uε|2dx− θ(s+t)2∗

s−3

2∗s

∫
R3

|uε|2∗
sdx for θ ≥ 0.

By a direct calculation, we have that g(θ) attains its maximum at

θ0 =

 2∗s(4s+ 2t− 3)
2((s+ t)2∗s − 3)

∫
R3

|(−∆)
s
2uε|2dx∫

R3
|uε|2∗

sdx


1

(s+t)2∗s−4s−2t

=


∫

R3
|(−∆)

s
2uε|2dx∫

R3
|uε|2∗

sdx


1

(s+t)2∗s−4s−2t

.

Moreover, by (3.4) and (3.5), using the elementary inequality (α+β)q ≤ αq +q(α+
β)q−1β which holds for q ≥ 1 and α, β ≥ 0, and 2∗

s(4s+2t−3)
2((s+t)2∗

s−3) = 1, 4s+2t−3
(s+t)2∗

s−4s−2t =
3−2s
2s , we deduce that

max
θ≥0

g(θ) = g(θ0) =
1
2


∫

R3
|(−∆)

s
2uε|2dx∫

R3
|uε|2∗

sdx


4s+2t−3

(s+t)2∗s−4s−2t ∫
R3

|(−∆)
s
2uε|2dx

− 1
2∗s


∫

R3
|(−∆)

s
2 uε|2dx∫

R3
|uε|2∗

sdx


(s+t)2∗s−3

(s+t)2∗s−4s−2t

c

∫
R3

|uε|2∗
sdx

=
s

3
‖(−∆)

s
2uε‖

(s+t)2∗s−3
(s+t)2∗s−4s−2t

2

‖uε‖
2∗s (4s+2t−3)

(s+t)2∗s−4s−2t

2∗
s

≤ s

3
(S

3
2s
s +O(ε3−2s))

(s+t)2∗s−3
(s+t)2∗s−4s−2t

(S
3
2s
s +O(ε3))

4s+2t−3
(s+t)2∗s−4s−2t
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≤ s

3
(S

3
2s
s )

(s+t)2∗s−3
(s+t)2∗s−4s−2t +O(ε3−2s)

(S
3
2s
s +O(ε3))

4s+2t−3
(s+t)2∗s−4s−2t

≤ s

3
S

3
2s
s +O(ε3−2s). (3.7)

Since Ia((uε)θ) → −∞ as θ → +∞, by a standard argument, there exists θε > 0
such that

0 < ca ≤ max
θ≥0

Ia((uε)θ) = Ia((uε)θε), (3.8)

which implies that θε ≥ θ1 > 0 for some constant θ1. On the other hand, from (3.4)–
(3.6), for any ε > 0, we have that

0 < ca ≤ Ia((uε)θε) ≤ C1θ
4s+2t−3
ε + C2θ

2s+2t−3
ε − C3θ

(s+t)2∗
s−3

ε ,

which implies that there exists θ2 > 0 such that θε ≤ θ2 and thus 0 < θ1 ≤ θε ≤ θ2
for any ε > 0.

Now, by (3.4)–(3.8), we deduce that

Ia((uε)θε) ≤
s

3
S

3
2s
s +O(ε3−2s) +

θ2s+2t−3
ε a

2

∫
R3
u2

εdx +
θ4s+2t−3

ε

4

∫
R3
φt

uε
u2

εdx

−λ
θ
(s+t)p−3
ε

p

∫
R3

|uε|pdx − θ
(s+t)2∗

s−3
ε

2∗s

∫
R3

|uε|2∗
sdx

≤ s

3
S

3
2s
s +O(ε3−2s) +

θ2
2s+2t−3a

2

∫
R3
u2

εdx +
θ2

4s+2t−3

4

∫
R3
φt

uε
u2

εdx

−λ
θ1

(s+t)p−3

p

∫
R3

|uε|pdx

≤ s

3
S

3
2s
s +O(ε3−2s) +

θ2
2s+2t−3a

2

∫
R3
u2

εdx

+Cθ2
4s+2t−3

(∫
R3

|uε| 12
3+2t dx

) 3+2t
3

− λ
θ1

(s+t)p−3

p

∫
R3

|uε|pdx.

Next, we separate three cases:

Case 1. s > 3
4 ⇔ 3

3−2s > 2. In this case, we have∫
R3
u2

εdx = O(ε3−2s).

Therefore,

Ia((uε)θε) ≤
s

3
S

3
2s
s +O(ε3−2s) + C

(∫
R3

|uε| 12
3+2t dx

) 3+2t
3

− C

∫
R3

|uε|pdx.
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Moreover, we deduce that

lim
ε→0

(∫
R3

|uε(x)| 12
3+2t dx

) 3+2t
3

ε3−2s

≤



lim
ε→0

O(ε4s+2t−3)
ε3−2s

= 0,
12

3 + 2t
>

3
3 − 2s

,

lim
ε→0

O(ε4s+2t−3|log ε| 3+2t
3 )

ε3−2s
= 0,

12
3 + 2t

=
3

3 − 2s
,

lim
ε→0

O(ε6−4s)
ε3−2s

= 0,
12

3 + 2t
<

3
3 − 2s

,

and we also have 2s− 3−2s
2 p < 0 if 4s

3−2s < p < 2∗s, then we deduce that

lim
ε→0

λ

∫
R3

|uε(x)|pdx
ε3−2s

=



lim
ε→0

λ
O(ε3−

3−2s
2 p)

ε3−2s
= +∞,

4
3 − 2s

< p < 2∗s,

lim
ε→0

λ
O(ε3−

3−2s
2 p)

ε3−2s
,

3
3 − 2s

< p ≤ 4s
3 − 2s

,

lim
ε→0

λ
O(ε3−

3−2s
2 p|log ε|)

ε3−2s
, p =

3
3 − 2s

,

lim
ε→0

λ
O(ε

3−2s
2 p)

ε3−2s
,

4s+ 2t
s+ t

< p <
3

3 − 2s
,

where we can choosing λ large enough such that the above three limits equal to +∞.

Case 2. s = 3
4 ⇔ 3

3−2s = 2. In this case, we have∫
R3
u2

εdx = O(ε2s|log ε|).

Therefore,

Ia((uε)θε) ≤
s

3
S

3
2s
s +O(ε2s|log ε|) + C

(∫
R3

|uε| 12
3+2t dx

) 3+2t
3

− C

∫
R3

|uε|pdx.

Moreover, since 12
3+2t >

3
3−2s , then we have

lim
ε→0

(∫
R3

|uε(x)| 12
3+2t dx

) 3+2t
3

ε2s|log ε| ≤ lim
ε→0

O(ε4s+2t−3)
ε2s|log ε| = 0,

and also

lim
ε→0

λ

∫
R3

|uε(x)|pdx
ε2s|log ε| ≤ lim

ε→0
λ
O(ε3−

3−2s
2 p)

ε2s|log ε| = +∞,

in view of 4s+2t
s+t < p < 2∗s and for any λ > 0.
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Case 3. s < 3
4 ⇔ 3

3−2s < 2. In this case, we have∫
R3
u2

εdx = O(ε2s).

Therefore,

Ia((uε)θε) ≤
s

3
S

3
2s
s +O(ε2s) + C

(∫
R3

|uε| 12
3+2t dx

) 3+2t
3

− C

∫
R3

|uε|pdx.

Since 12
3+2t >

3
3−2s and 4s+2t

s+t < p < 2∗s, we have

lim
ε→0

(∫
R3

|uε(x)| 12
3+2t dx

) 3+2t
3

ε2s
= lim

ε→0

O(ε4s+2t−3)
ε2s

= 0

and for any λ > 0

lim
ε→0

λ

∫
R3

|uε(x)|pdx
ε2s

= lim
ε→0

λ
O(ε3−

3−2s
2 p)

ε2s
= +∞.

Therefore, Cases 1–3 imply that

0 < ca ≤ Ia((uε)θε) <
s

3
S

3
2s
s .

Thus we complete the proof.

Lemma 3.6. There is a sequence {xn} ⊂ R
3 and R > 0, β > 0 such that∫

BR(xn)

u2
n ≥ β,

where {un} is the sequence given in (3.2).

Proof. It is easy to see from Lemma 3.5 that {un} in (3.2) is bounded in Hs(R3).
Suppose by contradiction that the lemma does not hold. Then by the Vanishing
Theorem [45] it follows that as n→ ∞,∫

R3
|un|rdx→ 0 for all 2 ≤ r < 2∗s,

and then ∫
R3
φt

un
|un|2dx→ 0.

Using 〈(I ′a(un), un)〉 = o(1), we get∫
R3

(|(−∆)
s
2un|2 + au2

n)dx −
∫

R3
|un|2∗

sdx = o(1).

By Ia(un) → ca, we have
1
2
‖un‖2 − 1

2∗s

∫
R3

|un|2∗
sdx = ca + o(1).

Let � ≥ 0 be such that

‖un‖2 → �,
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and ∫
R3

|u|2∗
sdx→ �.

It is easy to check that � > 0, otherwise ‖un‖ → 0 as n → ∞ which contradicts
ca > 0.

By the definition of Ss, we have that

Ss‖un‖2
2∗

s
≤ ‖un‖2,

which implies that � ≥ S
3
2s
s . Therefore, we get

ca =
s

3
� ≥ s

3
S

3
2s
s ,

which contradicts to Lemma 3.5.

Lemma 3.7 ([49]). Let {un} ⊂Ma be a minimizing sequence for ca which is given
by Lemma 3.4. Then there exists {yn} ⊂ R

3 such that for any ε > 0, there exists
an R > 0 satisfying∫

R3\BR(yn)

(∫
R3

|un(x) − un(y)|2
|x− y|3+2s

dy + au2
n

)
dx ≤ ε.

We have the following theorem.

Theorem 3.1. Problem (3.1) has a positive ground state solution u ∈ Hs(R3).

Proof. By Lemma 3.2 we see that the functional Ia possesses the mountain pass
structure. Let {un} be a sequence given in (3.2) and ca be the mountain pass value
for Ia, respectively. By Lemma 3.7, there exists {yn} ⊂ R

3 such that for any ε > 0,
there exists an R > 0 satisfying∫

R3\BR(yn)

(∫
R3

|un(x) − un(y)|2
|x− y|3+2s

dy + au2
n

)
dx ≤ ε. (3.9)

Define ũn(x) = un(x − yn) ∈ Hs(R3), then φtfun
= φt

un
(· − yn) and thus ũn ∈ Ma.

This means that ũn is also a minimizing sequence for ca. Hence, by (3.9), we have
for any ε > 0, there exists an R > 0 such that∫

R3\BR(0)

(∫
R3

|ũn(x) − ũn(y)|2
|x− y|3+2s

dy + aũn
2

)
dx ≤ ε. (3.10)

Since ũn is bounded in Hs(R3), up to a subsequence, we may assume that there is
a ũ ∈ Hs(R3) such that as n→ ∞,

ũn ⇀ ũ in Hs(R3),

ũn → ũ in Lr
loc(R

3), 2 ≤ r < 2∗s,

ũn(x) → ũ(x) a.e. in R
3.

(3.11)
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By Fatou’s Lemma and (3.10), we get∫
R3\BR(0)

(∫
R3

|ũ(x) − ũ(y)|2
|x− y|3+2s

dy + aũ2

)
dx ≤ ε. (3.12)

By (3.10)–(3.12), and Sobolev’s Imbedding Theorem, we have that for any r ∈
[2, 2∗s) and any ε > 0, there exists a C > 0 such that∫

R3
|ũn − ũ|rdx =

∫
BR(0)

|ũn − ũ|rdx+
∫

R3\BR(0)

|ũn − ũ|rdx

≤ ε+ C(‖ũn‖Hs(R3\BR(0)) + ‖ũ‖Hs(R3\BR(0))) ≤ Cε.

Hence we have proved that

ũn → ũ in Lr(R3), 2 ≤ r < 2∗s. (3.13)

Since ũn ∈Ma, by Lemma 3.6, ũ is nontrivial.
Finally, we show that ũn → ũ in Hs(R3). By Lemma 2.3 and (3.13), we deduce

that

φtfun
⇀ φteu in Dt,2(R3),

and thus ∫
R3
φtfun

ũn
2
dx→

∫
R3
φteuũ2dx. (3.14)

Set ṽn = ũn − ũ, by (3.11), we have that

‖ũn‖2 − ‖ũ‖2 = ‖ṽn‖2 + on(1),

which implies that

‖(−∆)
s
2 ũn‖2

2 − ‖(−∆)
s
2 ũ‖2

2 = ‖(−∆)
s
2 ṽn‖2

2 + on(1). (3.15)

By Lemma 2.4 and (3.11) we have that

‖ũn‖2∗
s

2∗
s
− ‖ũ‖2∗

s
2∗

s
= ‖ṽn‖2∗

s
2∗

s
+ on(1). (3.16)

Hence, from (3.11), (3.14)–(3.16), it follows that

ca − Ia(ũ) = Ia(ũn) − Ia(ũ) + on(1)

=
1
2
‖(−∆)

s
2 ṽn‖2

2 −
1
2∗s

‖ṽn‖2∗
s

2∗
s

+ on(1). (3.17)

Note that Ia(ũ) ≥ 0, hence, by Lemma 3.5 and (3.17) we have that
1
2
‖(−∆)

s
2 ṽn‖2

2 −
1
2∗s

‖ṽn‖2∗
s

2∗
s

+ on(1) = ca − Ia(ũ) <
s

3
S

3
2s
s . (3.18)

On the other hand, it follows from (3.11) that

‖(−∆)
s
2 ṽn‖2

2 − ‖ṽn‖2∗
s

2∗
s

= on(1).

We may assume that

lim
n→∞ ‖(−∆)

s
2 ṽn‖2

2 = lim
n→∞ ‖ṽn‖2∗

s
2∗

s
= � ≥ 0. (3.19)
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If � > 0, from the definition of Ss, we have that

Ss ≤ ‖(−∆)
s
2 ṽn‖2

2

‖ṽn‖2
2∗

s

which implies that � ≥ S
3
2s
s . Therefore, we get

lim
n→∞

{
1
2
‖(−∆)

s
2 ṽn‖2

2 −
1
2∗s

‖ṽn‖2∗
s

2∗
s

}
=
s

3
� ≥ s

3
S

3
2s
s

which contradicts (3.18). Hence, � = 0, that is ũn → ũ in Hs(R3) and so we con-
clude that ũ ∈Ma and Ia(ũ) = ca.

Next we prove that the solution u is positive. Put u± = max{±u, 0} the positive
(negative) part of u. We note that we get a ground state solution u of the equation

(−∆)su+ au+ φt
uu = λ(u+)p−1 + (u+)2

∗
s in R

3. (3.20)

Using u− as a test function in (3.20) we obtain∫
R3

(−∆)
s
2u · (−∆)

s
2u−dx+

∫
R3
a|u−|2dx+

∫
R3
φt

u(u−)2dx = 0. (3.21)

On the other hand,∫
R3

(−∆)
s
2 u · (−∆)

s
2 u−dx =

1
2
C(s)

∫∫
R3×R3

(u(x) − u(y))(u−(x) − u−(y))
|x− y|3+2s

dxdy

≥ 1
2
C(s)

[∫
{u>0}×{u<0}

(u(x) − u(y))(−u−(y))
|x− y|3+2s

dxdy

+
∫
{u<0}×{u<0}

(u−(x) − u−(y))2

|x− y|3+2s
dxdy

+
∫
{u<0}×{u>0}

(u(x) − u(y))u−(x)
|x− y|3+2s

dxdy

]
≥ 0.

Thus, it follows from (3.21) and Lemma 2.3(i), we have u− = 0 and u ≥ 0. Moreover,
if u(x0) = 0 for some x0 ∈ R

3, then (−∆)su(x0) = 0 and by [19, Lemma 3.2], we
have

(−∆)su(x0) = −C(s)
2

∫
R3

u(x0 + y) + u(x0 − y) − 2u(x0)
|y|3+2s

dy,

therefore, ∫
R3

u(x0 + y) + u(x0 − y)
|y|3+2s

dy = 0,

yielding u ≡ 0, a contradiction. Therefore, u is a positive solution of the system (3.1)
and the proof is completed.
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Let Ωa be the set of ground state solutions U of (3.1) satisfying U(0) =
maxx∈R3 U(x). Then, we obtain the following compactness of Ωa.

Lemma 3.8. For each a > 0, Ωa is compact in Hs(R3).

Proof. It is easy to see that Ωa is bounded in Hs(R3). Then for any sequence
{Uk} ⊂ Ωa, up to a subsequence, we assume that there is a U0 ∈ Hs(R3) such that

Uk ⇀ U0 in Hs(R3),

and U0 satisfies

(−∆)sU0 + aU0 + φt
U0
U0 = λUp−1

0 + U
2∗

s−1
0 in R

3, U0 ≥ 0.

Next, we will show that U0 is nontrivial. Indeed, similar to the proof in Lemma 2.5,
we can claim that, up to a subsequence,

Uk → U0 in L2∗
s

loc(R
3).

By Lemma 2.7, we check that

‖Uk‖L∞
loc(R

3) ≤ C.

In view of [34] and Schauder’s estimate, we see that there exists α ∈ (0, 1) such
that ‖Uk‖C2,α

loc (R3) ≤ C and the Arzela–Ascoli’s Theorem show that

Uk(0) → U0(0) as k → ∞.

Since (−∆)sUk(0) ≥ 0, from (3.1), we can check that there exists C0 > 0 such that
Uk(0) ≥ C0 > 0, hence U0(0) ≥ C0 > 0, which means that U0 is nontrivial. Similar
to Theorem 3.1, we get Ia(U0) = ca and Uk → U0 in Hs(R3), which completes the
proof that Ωa is compact in Hs(R3).

4. Proof of Theorem 1.1

Observe that (1.1) can be rewritten as{
(−∆)su+ V (εx)u+ φu = λ|u|p−2u+ |u|2∗

s−2u in R
3,

(−∆)sφ = u2 in R
3,

(4.1)

and the corresponding energy functional for (4.1) is

Iε(u) =
1
2

∫
R3

(|(−∆)
s
2u|2 + V (εx)u2)dx+

1
4

∫
R3
φt

uu
2dx− λ

p

∫
R3

|u|pdx

− 1
2∗s

∫
R3

|u|2∗
sdx

=
1
2
‖u‖2 +

1
4

∫
R3
φt

uu
2dx− λ

p

∫
R3

|u|pdx− 1
2∗s

∫
R3

|u|2∗
sdx,
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for u ∈ Hε, where Hε := {u ∈ Hs(R3) :
∫

R3 V (εx)u2dx < ∞} endowed with the
norm

‖u‖ =
(∫

R3
(|(−∆)

s
2 u|2 + V (εx)u2)dx

) 1
2

.

Now, for each ε > 0, we define

χε(x) =


0 if x ∈ Λ

ε
,

ε−1 if x /∈ Λ
ε
,

and

Qε(u) =
(∫

R3
χεu

2 − 1
)2

+

.

Note that this type of penalization was first introduced in [14] which will act as a
penalization to force the concentration phenomena to occur inside Λ. Finally, set
Jε : Hε → R be given by

Jε(u) = Iε(u) +Qε(u).

It is standard to show that Jε ∈ C1(Hε,R). To find solutions of (4.1) which con-
centrate around the local minimum of V in Λ as ε → 0, we shall search critical
points of Jε for which Qε is zero.

Let cV0 = IV0(U) for U ∈ ΩV0 and δ := 1
10dist{M,R3\Λ}, we fix β ∈ (0, δ) and

a cut-off function ϕ ∈ C∞
0 (R3) such that 0 ≤ ϕ(x) ≤ 1 and

ϕ(x) = 1 for |x| ≤ β,

ϕ(x) = 0 for |x| > 2β,

|∇ϕ| ≤ C

β
.

We will find a solution of (4.1) near the set

Xε :=
{
ϕ

(
x− x′

ε

)
U

(
x− x′

ε

)
: x′ ∈ Mβ, U ∈ ΩV0

}
for sufficiently small ε > 0, where

Mβ :=
{
y ∈ R

3 : inf
z∈M

|y − z| ≤ β

}
.

Similarly, for A ⊂ Hε, we use the notation

Aa :=
{
u ∈ Hε : inf

v∈A
‖u− v‖ ≤ a

}
.

For U∗ ∈ ΩV0 arbitrary but fixed, we define Wε,θ := θs+tϕ(εx)U∗(θx), we will show
that Jε possesses the mountain pass geometry.
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Denote U∗
θ := θs+tU∗(θx), we have as θ → ∞

IV0(U
∗
θ ) =

θ4s+2t−3

2

∫
R3

|(−∆)
s
2U∗|2dx+

θ2s+2t−3

2

∫
R3
V0(U∗)2dx

+
θ4s+2t−3

4

∫
R3
φt

U∗(U∗)2dx− θ(s+t)p−3

p
λ

∫
R3

|U∗|pdx

− θ(s+t)2∗
s−3

2∗s

∫
R3

|U∗|2∗
sdx→ −∞,

then there exists a θ0 > 0 such that IV0(U∗
θ0

) < −3.
We can easily check that Qε(Wε,θ0) = 0, then

Jε(Wε,θ0) = Iε(Wε,θ0) =
1
2
‖Wε,θ0‖2 +

1
4

∫
R3
φt

Wε,θ0
W 2

ε,θ0
dx− λ

p

∫
R3

|Wε,θ0 |pdx

− 1
2∗s

∫
R3

|Wε,θ0 |2
∗
sdx

x̃=θ0x=
θ4s+2t−3
0

2

∫
R3

∣∣∣∣(−∆)
s
2ϕ

(
εx̃

θ0

)
U∗(x̃)

∣∣∣∣2 dx̃
+
θ2s+2t−3
0

2

∫
R3
V0

(
εx̃

θ0

)
ϕ2

(
εx̃

θ0

)
(U∗(x̃))2dx̃

+
θ4s+2t−3
0

4

∫
R3
φt

ϕ
“

εx̃
θ0

”
U∗(x̃)

ϕ2

(
εx̃

θ0

)
(U∗(x̃))2dx̃

− θ
(s+t)p−3
0

p
λ

∫
R3
ϕp

(
εx̃

θ0

)
|U∗(x̃)|pdx̃

− θ
(s+t)2∗

s−3
0

2∗s

∫
R3
ϕ2∗

s

(
εx̃

θ0

)
|U∗(x̃)|2∗

sdx̃

= IV0(U
∗
θ0

) + o(1) < −2

for ε > 0 small. Using Sobolev’s Imbedding Theorem, we have

Jε(u) ≥ Iε(u) ≥ 1
2
‖u‖2 − λ

p

∫
R3

|u|pdx − 1
2∗s

∫
R3

|u|2∗
sdx

≥ 1
2
‖u‖2 − C1λ‖u‖p − C2‖u‖2∗

s

> 0

for ‖u‖ small since p > 2.
Hence, we can define the mountain pass value of Jε as

cε := inf
γ∈Γε

sup
h∈[0,1]

Jε(γ(h)),
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where the set of paths is defined as

Γε := {γ ∈ C([0, 1], Hε) : γ(0) = 0 and γ(1) = Wε,θ0}.
We start with the following lemma.

Lemma 4.1.

lim
ε→0

cε = cV0 .

Proof. We split the proof into two steps.

Step 1.

lim sup
ε→0

cε ≤ cV0 .

Denote Wε,0 = limθ→0Wε,θ in Hε sense, then Wε,0 = 0. Thus, setting γ(h) :=
Wε,hθ0(0 ≤ h ≤ 1), we have γ(h) ∈ Γε, then

cε ≤ max
h∈[0,1]

Jε(γ(h)) = max
θ∈[0,θ0]

Jε(Wε,θ),

and we just need to verify that

lim sup
ε→0

max
θ∈[0,θ0]

Jε(Wε,θ) ≤ cV0 .

Indeed, similar to the argument above we have that

max
θ∈[0,θ0]

Jε(Wε,θ) = max
θ∈[0,θ0]

IV0(U
∗
θ ) + o(1) ≤ max

θ∈[0,∞)
IV0(U

∗
θ ) + o(1)

= IV0(U
∗) + o(1) = cVo + o(1).

Step 2.

lim inf
ε→0

cε ≥ cV0 .

Assuming to the contrary that lim infε→0 cε < cV0 , then, there exist δ0 > 0, εn → 0
and γn ∈ Γε satisfying

Jεn(γn(h)) < cV0 − δ0

for h ∈ [0, 1]. We can fix an εn such that
1
2
V0εn(1 + (1 + cV0)

1
2 ) < min{δ0, 1}. (4.2)

Since Iεn(γn(0)) = 0 and Iεn(γn(1)) ≤ Jεn(γn(1)) = Jεn(Wεn,θ0) < −2, we can find
an hn ∈ (0, 1) such that Iεn(γn(h)) ≥ −1 for h ∈ [0, hn] and Iεn(γn(hn)) = −1.
Then, for any h ∈ [0, hn],

Qεn(γn(h)) = Jεn(γn(h)) − Iεn(γn(h)) ≤ cV0 − δ0 + 1,

which implies that∫
R3\(Λ/εn)

γ2
n(h)dx ≤ εn(1 + (1 + cV0)

1
2 ) for h ∈ [0, hn].

1850027-28

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
r.

 Z
hi

pe
ng

 Y
an

g 
on

 0
6/

02
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

May 30, 2018 18:44 WSPC/S0219-1997 152-CCM 1850027

Concentration behavior of ground state solutions

Then, for h ∈ [0, hn],

Iεn(γn(h)) = IV0(γn(h)) +
1
2

∫
R3

(V (εnx) − V0)γ2
n(h)dx

≥ IV0(γn(h)) +
1
2

∫
R3\(Λ/εn)

(V (εnx) − V0)γ2
n(h)dx

≥ IV0(γn(h)) − 1
2
V0εn(1 + (1 + cV0)

1
2 ),

then

IV0(γn(h)) ≤ Iεn(γn(h)) +
1
2
V0εn(1 + (1 + cV0)

1
2 )

= −1 +
1
2
V0εn(1 + (1 + cV0)

1
2 ) < 0

and we have

max
h∈[0,hn]

IV0(γn(h)) ≥ cV0 .

Hence, we deduce that

cV0 − δ0 ≥ max
h∈[0,1]

Jεn(γn(h)) ≥ max
h∈[0,1]

Iεn(γn(h)) ≥ max
h∈[0,hn]

Iεn(γn(h))

≥ max
h∈[0,hn]

IV0(γn(h)) − 1
2
V0εn(1 + (1 + cV0)

1
2 ),

that is

0 < δ0 ≤ 1
2
V0εn(1 + (1 + cV0)

1
2 ),

which contradicts (4.2).

Lemma 4.1 implies that

lim
ε→0

(
max

h∈[0,1]
Jε(γε(h)) − cε

)
= 0,

where

γε(h) = Wε,hθ0 for h ∈ [0, 1].

Denote

c̃ε := max
h∈[0,1]

Jε(γε(h)).

We see that

cε ≤ c̃ε and lim
ε→0

cε = lim
ε→0

c̃ε = cV0 .

In order to state the next lemma, we need some notations. For each R > 0, we
regard Hs

0(BR(0)) as a subspace of Hε. Namely, for any u ∈ Hs
0(BR(0)), we extend

u by defining u(x) = 0 for |x| > R, then ‖ · ‖ is equivalent to the standard norm of
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Hs
0(BR(0)) for each R > 0, ε > 0. Using ‖ · ‖Hε , for each T ∈ (Hs

0(BR(0)))−1, we
define

‖T ‖∗,ε,R := sup{Tu : u ∈ Hs
0(BR(0)), ‖u‖Hε ≤ 1}.

Note also that ‖ · ‖∗,ε,R is equivalent to the standard norm of (Hs
0(BR(0)))−1.

We use the notation

Ja
ε := {u ∈ E : Jε ≤ a}

and fix a R0 > 0 such that Λ ⊂ BR0(0).
Inspired by [22, 55], we have the following lemma and this lemma is a key for

the proof of Theorem 1.1.

Lemma 4.2. There exists a d0 > 0 such that for any {εi}, {Rεi}, {uεi} with
lim

i→∞
εi = 0, Rεi ≥

R0

εi
, uεi ∈ Xd0

εi
∩Hs

0(BRεi
(0)),

lim
i→∞

Jεi(uεi) ≤ cV0 and lim
i→∞

‖J ′
εi

(uεi)‖∗,εi,Rεi
= 0,

(4.3)

then there exist, up to a subsequence, {yi} ⊂ R
3, x0 ∈ M, U ∈ ΩV0 such that

lim
i→∞

|εiyi − x0| = 0 and lim
i→∞

‖uεi − ϕ(εix− εiyi)U(x− yi)‖Hεi
= 0.

If we drop Rεi and replace (4.3) by

lim
i→∞

εi = 0, uεi ∈ Xd0
εi
, lim

i→∞
Jεi(uεi) ≤ cV0 and lim

i→∞
‖J ′

εi
(uεi)‖∗,εi,Rεi

= 0,

then the same conclusion still holds.

Proof. Since the second assertion can be prove in the same way to the first one,
we only treat the first case. For notational simplicity, we write ε for εi and still use
ε after taking a subsequence. By the definition of Xd0

ε and the compactness of ΩV0

and Mβ, we see that there exist U0 ∈ ΩV0 , {xε} ⊂ Mβ such that for ε > 0 small,∥∥∥uε − ϕ(εx− xε)U0

(
x− xε

ε

)∥∥∥
Hε

≤ 2d0 and xε → x0 ∈ Mβ(ε→ 0). (4.4)

We divide the proof into several steps.

Step 1. We claim that

lim
ε→0

sup
y∈Aε

∫
B1(y)

|uε|2∗
sdx = 0, (4.5)

where Aε = B 3β
ε

(xε

ε )\B β
2ε

(xε

ε ).
If the claim is true, by Lemma 2.2, we see that

lim
ε→0

∫
Bε

|uε|2∗
sdx = 0, (4.6)
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where Bε = B 2β
ε

(xε

ε )\B β
ε
(xε

ε ). Indeed, since

sup
y∈Aε

∫
B1(y)

|uε|2∗
sdx ≥ sup

y∈R3

∫
B1(y)

|uε · χA1
ε
|2∗

sdx,

where A1
ε = B 3β

ε −1(
xε

ε )\B β
2ε +1(

xε

ε ), then

lim
ε→0

sup
y∈R3

∫
B1(y)

|uε · χA1
ε
|2∗

sdx = 0.

By Lemma 2.2, we have∫
R3

|uε · χA1
ε
|2∗

sdx→ 0 as ε→ 0.

Since Bε ⊂ A1
ε for ε > 0 small, (4.6) holds.

Next, we will prove (4.5). Assume by contradiction that there is a r > 0 such
that

lim
ε→0

sup
y∈Aε

∫
B1(y)

|uε|2∗
sdx = 2r > 0,

then there exists yε ∈ Aε such that for ε > 0 small,
∫

B1(yε)
|uε|2∗

sdx ≥ r > 0. Note
that yε ∈ Aε and there exists x∗ ∈ M4β ⊂ Λ such that εyε → x∗ as ε → 0. Let
vε(x) = uε(x+ yε), then, for ε > 0 small,∫

B1(0)

|vε|2∗
sdx ≥ r > 0, (4.7)

and up to a subsequence, vε ⇀ v in Hs(R3) and v satisfies

(−∆)sv + V (x∗)v + φt
vv = λvp−1 + v2∗

s−1 in R
3, v ≥ 0.

Case 1. If v �= 0, then

cV (x∗) ≤ IV (x∗)(v) − 1
4s+ 2t− 3

GV (x∗)(v)

=
s

4s+ 2t− 3
V (x∗)

∫
R3
v2dx+

p(s+ t) − 4s− 2t
4s+ 2t− 3

λ

p

∫
R3
vpdx

+
2∗s(s+ t) − 4s− 2t

(4s+ 2t− 3)2∗s

∫
R3
v2∗

sdx,

and hence we have

‖V ‖L∞(Λ̄)

∫
R3
v2dx+

p(s+ t) − 4s− 2t
sp

λ

∫
R3
vpdx+

2∗s(s+ t) − 4s− 2t
s2∗s

∫
R3
v2∗

sdx

≥ V (x∗)
∫

R3
v2dx+

p(s+ t) − 4s− 2t
sp

λ

∫
R3
vpdx

+
2∗s(s+ t) − 4s− 2t

s2∗s

∫
R3
v2∗

sdx

≥ 4s+ 2t− 3
s

cV (x∗) ≥ 4s+ 2t− 3
s

cV0 .
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Therefore, for sufficiently large R,

lim inf
ε→0

{
‖V ‖L∞(Λ̄)

∫
BR(yε)

u2
εdx+

p(s+ t) − 4s− 2t
sp

λ

∫
BR(yε)

up
εdx

+
2∗s(s+ t) − 4s− 2t

s2∗s

∫
BR(yε)

u
2∗

s
ε dx

}

= lim inf
ε→0

{
‖V ‖L∞(Λ̄)

∫
BR(0)

v2
εdx+

p(s+ t) − 4s− 2t
sp

λ

∫
BR(0)

vp
εdx

+
2∗s(s+ t) − 4s− 2t

s2∗s

∫
BR(0)

v
2∗

s
ε dx

}

≥
{
‖V ‖L∞(Λ̄)

∫
BR(0)

v2dx+
p(s+ t) − 4s− 2t

sp
λ

∫
BR(0)

vpdx

+
2∗s(s+ t) − 4s− 2t

s2∗s

∫
BR(0)

v2∗
sdx

}

≥ 1
2

{
‖V ‖L∞(Λ̄)

∫
R3
v2dx+

p(s+ t) − 4s− 2t
sp

λ

∫
R3
vpdx

+
2∗s(s+ t) − 4s− 2t

s2∗s

∫
R3
v2∗

sdx

}
≥ 4s+ 2t− 3

2s
cV0 > 0.

On the other hand, by Sobolev’s Imbedding Theorem and (4.4),

‖V ‖L∞(Λ̄)

∫
BR(yε)

u2
εdx+

p(s+ t) − 4s− 2t
sp

λ

∫
BR(yε)

up
εdx

+
2∗s(s+ t) − 4s− 2t

s2∗s

∫
BR(yε)

u
2∗

s
ε dx

≤ C1d0 + C2

∫
BR(yε)

∣∣∣ϕ(εx− xε)U0

(
x− xε

ε

)∣∣∣2 dx
+C3λ

∫
BR(yε)

∣∣∣ϕ(εx− xε)U0

(
x− xε

ε

)∣∣∣p dx
+C4

∫
BR(yε)

∣∣∣ϕ(εx− xε)U0

(
x− xε

ε

)∣∣∣2∗
s

dx

≤ C1d0 + C2

∫
BR(yε− xε

ε )

|U0(x)|2dx+ C3λ

∫
BR(yε− xε

ε )

|U0(x)|pdx
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+C4

∫
BR(yε− xε

ε )

|U0(x)|2∗
sdx

= Cd0 + o(1), (4.8)

where o(1) → 0 as ε→ 0, and we have used the fact that |yε − xε

ε | ≥ β
2ε . This leads

to a contradiction if d0 is small enough.

Case 2. If v = 0, that is, vε ⇀ 0 in Hs(R3), then vε → 0 in Lr
loc(R

3) for r ∈ [2, 2∗s).
Thus, by (4.7) and Sobolev’s Imbedding Theorem, there exists C > 0 (independent
of ε) such that for ε > 0 small,∫

B1(0)

|(−∆)
s
2 vε|2 ≥ Cr

2
2∗s > 0. (4.9)

Now, we claim that

lim
ε→0

sup
ϕ∈C∞

0 (B2(0)),‖ϕ‖=1

|〈ρε, ϕ〉| = 0, (4.10)

where ρε = (−∆)svε − v
2∗

s−1
ε ∈ (Hs(R3))−1. For ε > 0 small enough, it is easy to

check ∫
R3
χε(x)uε(x)ϕ(x − yε)dx ≡ 0

uniformly for any ϕ ∈ C∞
0 (B2(0)). Thus for any ϕ ∈ C∞

0 (B2(0)) with ‖ϕ‖ = 1,

〈ρε, ϕ〉 = 〈I ′ε(uε), ϕ(x− yε)〉 −
∫

R3
V (εx)uε(x)ϕ(x − yε)dx

−
∫

R3
φt

uε
uε(x)ϕ(x − yε)dx+ λ

∫
R3

(uε(x))p−1ϕ(x− yε)dx

= J1 + J2 + J3 + J4.

In view of the fact that ‖J ′
ε(uε)‖∗,ε,Rε → 0, suppϕ ⊂ B2(0), supx∈B2(0) V (εx +

εyε) ≤ C uniformly for all ε > 0 small, vε → 0 in Lr
loc(R

3) for r ∈ [2, 2∗s) and
Lemma 2.3, we have

|J1| ≤ ‖I ′ε(uε)‖∗,ε,Rε‖ϕ(x− yε)‖ → 0,

|J2| ≤ sup
x∈B2(0)

V (εx+ εyε)

(∫
B2(0)

|vε|2dx
) 1

2
(∫

B2(0)

|ϕ|2dx
) 1

2

→ 0,

|J3| ≤
(∫

R3
|φt

vε
|2∗

t dx

) 1
2∗t
(∫

B2(0)

|vε| 3t dx
) t

3
(∫

B2(0)

|ϕ|2dx
) 1

2

→ 0

and

|J4| ≤ λ

(∫
B2(0)

|vε|pdx
) p−1

p
(∫

B2(0)

|ϕ|pdx
) 1

p

→ 0
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as ε→ 0 uniformly for all ϕ ∈ C∞
0 (B2(0)) with ‖ϕ‖ = 1, we see that the claim (4.10)

is true.
In view of Lemma 2.5, we see from (4.7), (4.9) and (4.10) that there exist ỹε ∈ R

3

and σε > 0 with ỹε → ỹ ∈ B1(0), σε → 0 as ε→ 0 such that

wε(x) := σ
3−2s

2
ε vε(σεx+ ỹε) ⇀ w in Ds,2(R3)

and w ≥ 0 is a nontrivial solution of

(−∆)su = u2∗
s−1, u ∈ Ds,2(R3). (4.11)

It is well known that

w(x) =
Cδ

3−2s
2

(δ2 + |x|2) 3−2s
2

(4.12)

for some δ > 0 and ∫
R3

|(−∆)
s
2w|2dx =

∫
R3
w2∗

sdx = S
3
2s , (4.13)

then there exists a R > 0 such that∫
BR(0)

w2∗
sdx ≥ 1

2

∫
R3
w2∗

sdx =
1
2
S

3
2s > 0.

On the other hand,∫
BR(0)

w2∗
sdx ≤ lim inf

ε→0

∫
BR(0)

w
2∗

s
ε dx = lim inf

ε→0

∫
BσεR(ỹε)

v
2∗

s
ε dx

= lim inf
ε→0

∫
BσεR(ỹε+yε)

v
2∗

s
ε dx ≤ lim inf

ε→0

∫
B2(yε)

u
2∗

s
ε dx, (4.14)

where we have used the facts that σε → 0 and ỹε → ỹ ∈ B1(0) as ε→ 0.
Similar to (4.8) we can check that (4.14) leads to a contradiction for d0 > 0

small. Hence (4.5) holds.
It follows from (4.6) and the interpolation inequality that

lim
ε→0

∫
Bε

|uε|sdx = 0 for all s ∈ (2, 2∗s]. (4.15)

Step 2. Let uε,1 = ϕ(εx − xε)uε(x), uε,2 = (1 − ϕ(εx − xε))uε(x). Direct compu-
tations show that∫

R3
|(−∆)s/2uε|2dx ≥

∫
R3

|(−∆)s/2uε,1|2dx+
∫

R3
|(−∆)s/2uε,2|2dx+ o(1),

∫
R3
V (εx)|uε|2dx ≥

∫
R3
V (εx)|uε,1|2dx+

∫
R3
V (εx)|uε,2|2dx,∫

R3
φt

uε
|uε|2dx ≥

∫
R3
φt

uε,1
|uε,1|2dx+

∫
R3
φt

uε,2
|uε,2|2dx,
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Concentration behavior of ground state solutions∫
R3

|uε|sdx ≥
∫

R3
|uε,1|sdx +

∫
R3

|uε,2|sdx for all s ∈ (2, 2∗s],

Qε(uε,1) = 0, Qε(uε,2) = Qε(uε) ≥ 0.

Hence we get

Jε(uε) ≥ Iε(uε,1) + Iε(uε,2) + o(1). (4.16)

Next, we claim that ‖uε,2‖ → 0 as ε→ 0. By (4.4), we have

‖uε,2‖Hε ≤
∥∥∥uε,1 − ϕ(εx− xε)U0

(
x− xε

ε

)∥∥∥
Hε

+ 2d0

=
∥∥∥uε,1 − ϕ(εx− xε)U0

(
x− xε

ε

)∥∥∥
Hε(B 2β

ε

( xε
ε ))

+ 2d0

≤ ‖uε,2‖Hε(B 2β
ε

( xε
ε )) + 4d0

= ‖uε,2‖Hε(B 2β
ε

( xε
ε )\B β

ε

( xε
ε )) + 4d0

≤ C‖uε‖Hε(B 2β
ε

( xε
ε )\B β

ε

( xε
ε )) + 4d0

≤ C
∥∥∥ϕ(εx − xε)U0

(
x− xε

ε

)∥∥∥
Hε(B 2β

ε

( xε
ε )\B β

ε

( xε
ε ))

+ cd0

≤ C
∥∥∥U0

(
x− xε

ε

)∥∥∥
Hs(B 2β

ε

( xε
ε )\B β

ε

( xε
ε ))

+ cd0

≤ C‖U0‖Hs(B 2β
ε

( xε
ε )\B β

ε

( xε
ε )) + Cd0

= Cd0 + o(1),

where o(1) → 0 as ε→ 0. Hence we have lim supε→0 ‖uε,2‖Hε ≤ cd0.
Since 〈J ′

ε(uε), uε,2〉 → 0 as ε → 0 and 〈Q′
ε(uε), uε,2〉 = 〈Q′

ε(uε,2), uε,2〉 ≥ 0, we
get ∫

R3
(−∆)s/2uε(−∆)s/2uε,2dx+

∫
R3
V (εx)uεuε,2dx+

∫
R3
φt

uε
uεuε,2dx

+ 〈Q′
ε(uε,2), uε,2〉

= λ

∫
R3
up−1

ε uε,2dx+
∫

R3
u

2∗
s−1

ε uε,2dx+ o(1),

then we deduce from (4.15) and Sobolev’s Imbedding Theorem that

‖uε,2‖2
Hε

≤ C‖uε,2‖2∗
s

Hε
+ o(1).

Taking d0 > 0 small, we have ‖uε,2‖Hε = o(1). From (4.16), it holds that

Jε(uε) ≥ Iε(uε,1) + o(1). (4.17)
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Step 3. Let w̃ε(x) = uε,1(x + xε

ε ) = ϕ(εx)uε(x + xε

ε ), up to a subsequence, there
exists a w̃ ∈ Hs(R3) such that

w̃ε ⇀ w̃ in Hs(R3) and w̃ε(x) → w̃(x) a.e. in R
3. (4.18)

We claim that

w̃ε → w̃ in L2∗
s (R3). (4.19)

In view of Lemma 2.2, assuming to the contrary that there exists a r > 0 such that

lim inf
ε→0

sup
z∈R3

∫
B1(z)

|w̃ε − w̃|2∗
sdx = 2r > 0.

Then, for ε > 0 small, there exists zε ∈ R
3 such that∫

B1(zε)

|w̃ε − w̃|2∗
sdx ≥ r > 0. (4.20)

Case 1. {zε} is bounded, that is, |zε| ≤ α for α > 0. Then, for ε > 0 small,∫
B1(zε)

|ṽε|2∗
sdx ≥ r > 0, (4.21)

where ṽε = w̃ε − w̃ and ṽε ⇀ 0 in Hs(R3). As the similar argument in Step 1, we
can get that there exists C > 0 (independent of ε) such that for ε > 0 small,∫

Bα+1(0)

|(−∆)
s
2 ṽε|2dx ≥ Cr

2
2∗s > 0, (4.22)

and

lim
ε→0

sup
ϕ̃∈C∞

0 (Bα+2(0)),‖ϕ̃‖=1

|〈ρ̃ε, ϕ̃〉| = 0, (4.23)

where ρ̃ε = (−∆)sṽε − ṽ
2∗

s−1
ε ∈ (Hs(R3))−1 and we have used the Brezis–Lieb

splitting properties (Lemma 2.4).
In view of Lemma 2.5, we see from (4.21)–(4.23) that there exist z̃ε ∈ R

3 and
δε > 0 with z̃ε → z̃ ∈ Bα+1(0), δε → 0 as ε→ 0 such that

ŵε(x) := δ
3−2s

2
ε ṽε(δεx+ z̃ε) ⇀ ŵ in Ds,2(R3)

and ŵ ≥ 0 is a nontrivial solution of (4.11) which satisfies (4.12).
Since ∫

R3
|ŵ|2∗

sdx ≤ lim inf
ε→0

∫
R3

|ŵε|2∗
sdx = lim inf

ε→0

∫
R3

|v̂ε|2∗
sdx

= lim inf
ε→0

∫
R3

|w̃ε|2∗
sdx−

∫
R3

|w̃|2∗
sdx

≤ lim inf
ε→0

∫
R3

|uε|2∗
sdx, (4.24)

1850027-36

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
r.

 Z
hi

pe
ng

 Y
an

g 
on

 0
6/

02
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



3rd Reading

May 30, 2018 18:44 WSPC/S0219-1997 152-CCM 1850027

Concentration behavior of ground state solutions

then by (4.4) and Sobolev’s Imbedding Theorem, we get∫
R3

|uε|2∗
s ≤ Cd0 +

∫
R3

∣∣∣ϕ(εx− xε)U0

(
x− xε

ε

)∣∣∣2∗
s ≤ Cd0 +

∫
R3
U

2∗
s

0 ,

and combining with (4.24), it holds that∫
R3

|ŵ|2∗
s ≤ Cd0 +

∫
R3
U

2∗
s

0 . (4.25)

Thus

cV0 = IV0(U0) − 1
4s+ 2t− 3

GV0(U0)

=
s

4s+ 2t− 3
V0

∫
R3
v2dx+

p(s+ t) − 4s− 2t
4s+ 2t− 3

λ

p

∫
R3
vpdx

+
2∗s(s+ t) − 4s− 2t

(4s+ 2t− 3)2∗s

∫
R3
v2∗

sdx,

≥ 2∗s(s+ t) − 4s− 2t
(4s+ 2t− 3)2∗s

S
3
2s − Cd0,

where we have used (4.13) and (4.25). Since 2∗
s(4s+2t−3)

2(2∗
s(s+t)−3) = 1, letting d0 → 0, we

have

cV0 ≥ s

3
S

3
2s ,

which contradicts Lemma 3.5.

Case 2. {zε} is unbounded. Without loss of generality, we may assume that
limε→0 |zε| = ∞. Then, by (4.20)

lim inf
ε→0

∫
B1(zε)

|w̃ε|2∗
sdx ≥ r > 0, (4.26)

that is

lim inf
ε→0

∫
B1(zε)

∣∣∣ϕ(εx)uε

(
x+

xε

ε

)∣∣∣2∗
s

dx ≥ r > 0.

Since ϕ(x) = 0 for |x| ≥ 2β, we see that |zε| ≤ 3β/ε for ε > 0 small. If |zε| ≥ β/2ε,
then zε ∈ B 3β

ε
(0)\B β

2ε
(0) and by Step 1, we get

lim inf
ε→0

∫
B1(zε)

|w̃ε|2∗
sdx ≤ lim inf

ε→0
sup

z∈B 3β
ε

(0)\B β
2ε

(0)

∫
B1(z)

∣∣∣uε

(
x+

xε

ε

)∣∣∣2∗
s

dx

= lim
ε→0

sup
z∈Aε

∫
B1(z)

|uε|2∗
s = 0,

which contradicts (4.26). Thus |zε| ≤ β
2ε for ε > 0 small. Assume that εzε → z0 ∈

B β
2
(0) and w̄ε(x) := w̃ε(x+zε) ⇀ w̄(x) in Hs(R3). If w̄ �= 0, then we can see that w̄
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satisfies

(−∆)sw̄ + V (x0 + z0)w̄ + φt
w̄ = λw̄p−1 + w̄2∗

s−1 in Hs(R3), w̄ ≥ 0.

Similarly as in Step 1, we get a contradiction if d0 > 0 is small enough. Thus w̄ ≡ 0,
that is, w̄ε ⇀ 0 in Hs(R3). By (4.26), we have

lim inf
ε→0

∫
B1(0)

|w̄ε|2∗
sdx ≥ r > 0, (4.27)

and similarly as in Step 1, we can check that there exists C > 0 (independent of ε)
such that for ε > 0 small,∫

B1(0)

|(−∆)
s
2 w̄ε|2 ≥ Cr

2
2∗s > 0, (4.28)

and

lim
ε→0

sup
ϕ̄∈C∞

0 (B2(0)),‖ϕ̄‖=1

|〈ρ̄ε, ϕ̄〉| = 0, (4.29)

where ρ̄ε = (−∆)sw̄ε − w̄
2∗

s−1
ε ∈ (Hs(R3))−1. By Lemma 2.5 again, we see

from (4.27)–(4.29) that there exist x̃ε ∈ R
3 and ξε > 0 with x̃ε → x̃ ∈ B1(0),

ξε → 0 as ε→ 0 such that

w∗
ε(x) := ξ

3−2s
2

ε w̄ε(ξεx+ x̃ε) ⇀ w∗ in Ds,2(R3)

and w∗ ≥ 0 is a nontrivial solution of (4.11) which satisfies (4.12). Therefore,

lim
ε→0

sup
z∈R3

∫
B1(z)

|w̃ε − w̃|2∗
sdx = 0.

By Lemma 2.2, (4.19) holds. Similar to (4.15), using the interpolation inequality
for Lp norms, we have

w̃ε → w̃ in Lr(R3), r ∈ (2, 2∗s]. (4.30)

In view of (4.17) and recall that w̃ε(x) = uε,1(x+ xε

ε ), we have

1
2

∫
R3

|(−∆)
s
2 w̃ε|2dx+

1
2

∫
R3
V (εx+ xε)w̃2

εdx +
1
4

∫
R3
φt

w̃ε
w̃2

εdx− λ

p

∫
R3

|w̃ε|pdx

− 1
2∗s

∫
R3

|w̃ε|2∗
sdx

≤ cV0 + o(1).

By Lemma 2.3, (4.18) and (4.30), we get

1
2

∫
R3

|(−∆)
s
2 w̃|2dx+

1
2

∫
R3
V (x0)w̃2dx+

1
4

∫
R3
φt

w̃w̃
2dx− λ

p

∫
R3

|w̃|pdx

− 1
2∗s

∫
R3

|w̃|2∗
sdx

≤ cV0 + o(1).
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Then we get that

IV (x0)(w̃) ≤ cV0 . (4.31)

Since 〈J ′
ε(uε), uε,1〉 → 0, ‖uε,2‖Hε → 0 as ε→ 0 and 〈Q′

ε(uε), uε,1〉 ≡ 0 and together
with the fact that w̃ε(x) = uε,1(x+ xε

ε ), we get∫
R3

(
|(−∆)

s
2 w̃ε|2dx+

∫
R3
V (εx+ xε)w̃2

ε

)
dx+

∫
R3
φt

w̃ε
w̃2dx

= λ

∫
R3

|w̃ε|pdx+
∫

R3
|w̃ε|2∗

sdx+ o(1).

Thus∫
R3

|(−∆)
s
2 w̃|2dx+

∫
R3
V (x0)w̃2dx+

∫
R3
φt

w̃w̃
2dx

≤ lim
ε→0

{∫
R3

(
|(−∆)

s
2 w̃ε|2dx +

∫
R3
V (εx+ xε)w̃2

ε

)
dx+

∫
R3
φt

w̃ε
w̃2

εdx

}
= lim

ε→0

{
λ

∫
R3

|w̃ε|pdx+
∫

R3
|w̃ε|2∗

sdx

}
= λ

∫
R3

|w̃|pdx−
∫

R3
|w̃|2∗

sdx

=
∫

R3
|(−∆)

s
2 w̃|2dx+

∫
R3
V (x0)w̃2dx+

∫
R3
φt

w̃w̃
2dx,

hence, as ε→ 0,∫
R3

|(−∆)
s
2 w̃ε|2dx+

∫
R3
V (εx+ xε)w̃2

εdx→
∫

R3
|(−∆)

s
2 w̃|2dx+

∫
R3
V (x0)w̃2dx.

(4.32)

In view of (4.4), (4.30) and the fact that‖uε,2‖Hε → 0 as ε → 0, taking d0 > 0
small, we can check that w̃ �= 0. Thus, we have

IV (x0)(w̃) ≥ cV0 . (4.33)

Since x0 ∈ Mβ ⊂ Λ, (4.31) and (4.33) imply that V (x0) = V0 and x0 ∈ M. At this
point, it is clear that there exists a U ∈ ΩV0 and z0 ∈ R

3 such that w̃ = U(x− z0).
Since ∫

R3
V (x0)w̃2

εdx ≤
∫

R3
V (εx+ xε)w̃2

εdx,

by (4.32), we have

w̃ε → w̃ in Hs(R3),

which implies that∥∥∥uε − ϕ(εx− (xε + εz0))U
(
x−

(xε

ε
+ z0

))∥∥∥
Hε

→ 0 as ε→ 0.

And we recall that xε → x0 ∈ M as ε→ 0, this completes the proof.
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Lemma 4.3. Let d0 be the number given in Lemma 4.2, then for any d ∈ (0, d0),
there exist εd > 0, ρd > 0 and ωd > 0 such that

‖J ′
ε(u)‖∗,ε,R ≥ ωd > 0

for all u ∈ J
cV0+ρd
ε ∩ (Xd0

ε \Xd
ε ) ∩Hs

0(BR(0)) with ε ∈ (0, εd) and R ≥ R0/ε.

Proof. If the conclusion does not hold, there exist d ∈ (0, d0), {εi}, {ρi} with
εi, ρi → 0, Rεi ≥ R0/εi and ui ∈ J

cV0+ρi
εi ∩ (Xd0

εi
\Xd

εi
) ∩Hs

0(BRεi
(0)) such that

‖J ′
εi

(ui)‖∗,εi,Rεi
→ 0 as i→ ∞.

By Lemma 4.2(i), we can find {yi} ⊂ R
3, x0 ∈ M, U ∈ ΩV0 such that

‖ui − ϕ(εix− εiyi)U(x− yi)‖Hεi
= 0 and lim

i→∞
|εiyi − x0| = 0,

which implies that ui ∈ Xd
εi

for sufficiently large i. This contradicts ui /∈ Xd
εi

.

Lemma 4.4 ([22]). There exists T0 > 0 with the following property: for any δ > 0
small, there exist αδ > 0 and εδ > 0 such that if Jε(γε(h)) ≥ cV0−αδ and ε ∈ (0, εδ),
then γε ∈ XT0δ

ε , where γε(h) := Wε,hθ0 , h ∈ [0, 1].

For each R > R0/ε, we see that γε(h) := Wε,hθ0 ∈ Hs
0(BR(0)) for each h ∈ [0, 1],

Xε ⊂ Hs
0(BR(0)). Define

cε,R := inf
γ∈Γε,R

max
0≤h≤1

Jε(γ(h)),

where

Γε,R := {γ ∈ C([0, 1], Hs
0(BR(0))) : γ(0) = 0, γ(1) = γε(1) = Wε,θ0}.

Remark that γε(h) := Wε,hθ0 ∈ Γε,R, cε ≤ cε,R ≤ c̃ε and J c̃ε
ε ∩Xε ∩Hs

0 (BR(0)) �= ∅.
Choosing δ1 > 0 such that T0δ1 < d0/4 in Lemma 4.3 and fixing d = d0/4 := d1

in Lemma 4.2. The next lemma comes from [22] and details are omitted here.

Lemma 4.5. There exists ε̄ > 0 such that for each ε ∈ (0, ε̄] and R > R0/ε, there
exists a sequence {vR

n,ε} ⊂ J c̃ε+ε
ε ∩ Xd0

ε ∩ Hs
0 (BR(0)) such that J ′

ε(vR
n,ε) → 0 in

(Hs
0 (BR(0)))−1 as n→ ∞.

Proof of Theorem 1.1. Step 1. By Lemma 4.5, there exists a ε̄ > 0 such that for
each ε ∈ (0, ε̄] andR > R0

ε , there exists a sequence {vR
n,ε} ⊂ J c̃ε+ε

ε ∩Xd0
ε ∩Hs

0 (BR(0))
such that J ′

ε(v
R
n,ε) → 0 in (Hs

0 (BR(0)))−1 as n→ ∞.
Since {vR

n,ε} is bounded in Hs
0(BR(0)), up to a subsequence, as n→ ∞, we have

vR
n,ε ⇀ vR

ε in Hs
0(BR(0)),

vR
n,ε → vR

ε in Lr(BR(0)), 2 ≤ r < 2∗s,

vR
n,ε(x) → vR

ε (x) a.e. in BR(0).
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By similar arguments in the proof of Lemma 2.5, we can obtain that

vR
n,ε → vR

ε in L2∗
s (BR(0)) as n→ ∞.

Then using the standard arguments, we can check that

vR
n,ε → vR

ε in Hs
0(BR(0)),

then vR
ε ≥ 0 and satisfies

(−∆)svR
ε + V (εx)vR

ε + φt
vR

ε
vR

ε + 4
(∫

R3
χε(vR

ε )2dx− 1
)

+

χεv
R
ε

= λ(vR
ε )p−1 + (vR

ε )2
∗
s−1 in BR(0),

vR
ε = 0 on R

3\BR(0)

(4.34)

and we can easily check that vR
ε ∈ J c̃ε+ε

ε ∩Xd0
ε for d0 > 0 small.

Step 2. We claim that there exists a ε̄ > 0 such that for each ε ∈ (0, ε̄] and R > R0
ε ,

‖vR
ε ‖L∞(R3) ≤ C. (4.35)

Otherwise, there exist εj → 0, Rj >
R0
εj

such that ‖vRj
εj ‖L∞(R3) → ∞ as j → ∞.

By Lemma 4.2(i), there exist, up to a subsequence, {yj} ⊂ R
3, x0 ∈ M, U ∈ ΩV0

such that

lim
j→∞

|εjyj − x0| = 0 and lim
j→∞

‖vRj
εj

(x) − ϕ(εjx− εjyj)U(x− yj)‖Hεj
= 0,

then by Sobolev’s inequality,

lim
j→∞

‖vRj
εj

(x+ yj) − ϕ(εjx)U(x)‖L2∗s (R3) = 0,

which implies that as j → ∞,

vRj
εj

(x+ yj) → U(x) in L2∗
s (R3).

Using Moser’s iteration method [42] (see also [27 Lemma 4.1; 20 Proposition 5.1.1]),
we have

‖vRj
εj

(x+ yj)‖L∞(R3) ≤ C,

which leads to a contradiction.

Step 3. Next, we claim that vR
ε → vε ∈ Hε ∩ J c̃ε+ε

ε ∩Xd0
ε as R → ∞ in Hε sense

for ε > 0 small but fixed.
In fact, since {vR

ε } is bounded in Hε, we can assume that as R→ ∞,

vR
ε ⇀ vε in Hε,

vR
ε → vε in Lr

loc(R
3), 2 ≤ r < 2∗s,

vR
ε (x) → vε(x) a.e. in R

3.

By Lemma 3.7, (4.35) and Sobolev’s Imbedding Theorem, we get

vR
ε → vε in Lr(R3), 2 ≤ r ≤ 2∗s as R → ∞.

Now, using standard arguments, we can prove the claim.
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Hence, vε ∈ Hε ∩ J c̃ε+ε
ε ∩Xd0

ε is a nontrivial solution of

(−∆)su+ V (εx)u+ φt
uu+ 4

(∫
R3
χεu

2dx − 1
)

+

χεu = λup−1 + u2∗
s−1 in R

3.

Since ΩV0 is compact in Hs(R3), it is easy to see that 0 /∈ Xd0
ε for d0 > small. Thus

vε �= 0.

Step 4. For any sequence {εj} with εj → 0. By Lemma 4.2(ii), there exist, up to
a subsequence, {yj} ⊂ R

3, x0 ∈ M, U ∈ ΩV0 such that

lim
j→∞

|εjyj − x0| = 0 and lim
j→∞

‖vεj (x) − ϕ(εjx− εjyj)U(x− yj)‖Hεj
= 0,

(4.36)

which implies that as j → ∞,

wεj (x) := vεj (x+ yj) → U(x) in L2∗
s (R3).

Since wεj satisfies the equation

(−∆)swεj + wεj = Υεj , x ∈ R
3,

where

Υεj (x) = wεj (x) − V (εn(x+ yn))wεj (x) − φt
wεj

wεj (x)

+λ|wεj |p−1 + |wεj |2
∗
s−1, x ∈ R

3.

Putting Υ(x) = w(x) − V (x0)w(x) − φt
ww(x) + λ|w(x)|p−1 + |w(x)|2∗

s−1, by (4.35),
we see that

Υεj → Υ in Lq(R3), ∀ q ∈ [2,+∞),

and there exists a C > 0 such that

‖Υεj‖∞ ≤ C.

From [21], we have that

wεj (x) = G ∗ Υεj =
∫

R3
G(x − y)Υεj (y)dy,

where G is the Bessel Kernel

G(x) = F−1

(
1

1 + |ξ|2s

)
.

It is known from [21, Theorem 3.3] that G is positive, radially symmetric and smooth
in R

3\{0}; there is C > 0 such that G(x) ≤ C
|x|3+2s , and G ∈ Lq(R3), ∀ q ∈ [1, 3

3−2s ).
Now argue as in the proof of [2, Lemma 2.6], we conclude that

wεj (x) → 0 as |x| → ∞, (4.37)

uniformly in εj ∈ N.

Step 5. According to [27], we get

wεj (x) ≤
C

1 + |x|3+2s
.
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Thus

ε−1
j

∫
R3\ Λ

εj

v2
εj

(x)dx = ε−1
j

∫
R3\ Λ

εj−yj

w2
εj

(x)dx ≤ ε−1
j

∫
R3\B β

εj

(0)

w2
εj

(x)dx→ 0,

that is Qεj (vεj ) = 0 for εj small. Therefore, vεj is a solution of (4.1). Set uε(x) =
vε(x

ε ), uεj is a solution of (1.1).
Let Pj be a maximum point of wεj , similar to the arguments in Theorem 3.1,

we can check that there is b > 0 such that wεj (Pj) > b, by (4.37), {Pj} must be
bounded.

Since uεj = wεj (
x
εj

− yj), xj := εjPj + εjyj is a maximum point of uεj .
From (4.36), xj → x0 ∈ M as j → ∞. Since the sequence {εj} is arbitrary, we have
obtained the existence and concentration results in Theorem 1.1. Moreover, we have

uεj (x) = wεj

(
x

εj
− yj

)

≤ C

1 +
∣∣∣∣ xεj

− yj

∣∣∣∣3+2s

=
Cε3+2s

j

ε3+2s
j + |x− εjyj |3+2s

=
Cε3+2s

j

ε3+2s
j + |x− xεj |3+2s

, ∀x ∈ R
3.

Thus, the proof of Theorem 1.1 is completed.
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[11] H. Brézis and E. Lieb, A relation between pointwise convergence of functions and
convergence of functionals, Proc. Amer. Math. Soc. 88 (1983) 486–490.
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