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We are concerned with the existence and concentration behavior of ground state solutions
of the fractional Schrodinger—Poisson system with critical nonlinearity

€25 (=AY u+ V(z)u + ¢pu = ANu[P~2u+ |u|2:~2u  in R3,
e2(—=A)t ¢ = u? in R3,

where € > 0 is a small parameter, A > 0, 451? <p<2= 37%, (—=A)% denotes the

fractional Laplacian of order a« = s,¢t € (0,1) and satisfies 2¢t + 2s > 3. The potential
V' is continuous and positive, and has a local minimum. We obtain a positive ground
state solution for € > 0 small, and we show that these ground state solutions concentrate
around a local minimum of V as € — 0.

Keywords: Concentration; fractional Schrodinger—Poisson equation; critical point; criti-
cal exponent.

Mathematics Subject Classification 2010: 35Q40, 35J50, 58E05

1. Introduction and the Main Results

In this paper, we study the existence and concentration of ground state solutions
for the following fractional Schrodinger—Poisson system:

e25(=A)u+ V(z)u + du = A|u|P~2 272y in R3,

(1.1)

2 (—A)tgp = u? in R?,
where € > 0 is a small parameter, A > 0, 4S+2t <p<2f s,te(0,1)and 2s+2t > 3,
2% = 37% is the fractional critical exponent. For £ > 0 sufficiently small, these
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standing waves are referred to as semiclassical states. In what follows, we assume
that the potential function V satisfies the following conditions:

(V1) V € C(R3 R) and inf,cps V(x) > 0.
(V3) There is a bounded domain A such that

Vo = IIXf V(z) < min V(x).

Without loss of generality, we may assume that M = {z € A : V(z) = Vy} # 0 and
0eM.

Our motivation to study () mainly comes from the fact that solutions
(u(z), p(x)) of () corresponding to standing wave solutions (e~ #¢/ u(x), (z))
of the time-dependent system

in2Y R (=AU + V(2)U + pp¥ — f(z,|¥)¥ in R3 x R,
ot (1.2)
R (=A)'¢ = [? in R?,

where ¢ is the imaginary unit, A is the Planck constant, 17(96) = V(x) + E and

f(x, |u|)u = f(z,u).
The first equation in (C2Z) was introduced by Laskin [37], which is the so-
called fractional Schrodinger equation, describes quantum (nonrelativistic) particles
interacting with the electromagnetic field generated by the motion. An interesting
Schrodinger equation class is when the potential ¢(z) is determined by the charge of
wave function itself, that is, when the second equation in (I.2) (Poisson equation)
holds. For this reason, (I2)) is referred to as a fractional nonlinear Schrodinger—
Poisson system (also called fractional Schrodinger—-Maxwell system). When s = %
and t = 1, such a system becomes more interesting in Physics. It comes from the
semi-relativistic theory in the repulsive (plasma physics) Coulomb case (see e.g.
[1]). If one put the second equation into the first equation, such a system reduces to
the semi-relativistic Hartree equation which arise in the quantum theory of boson
stars [38].
When s =t =1, ([Idl) is the following classical Schrodinger—Poisson system:
{—52Au + V(2)u + pou = f(r,u) in R3,

—e?A¢p = u? in R3, (1:3)

which was proposed by Benci and Fortunato [9] in 1998 on a bounded domain, and
is related to the Hartree equation [39]. In the past several years, the existence and
multiplicity of solutions to the systems similar to (I3]) with e = 1 has been studied
extensively by means of variational tools, we refer the interested readers to see [3, [5
6l [16], 29, B3} [57] and the references therein. In particular, when f(z,u) = u?~(2 <
p <6),V=1and pu > 0 is a positive parameter, Ruiz [44] obtained some general
results about existence and nonexistence of positive solutions. In the case p < 4, the
problem (I3]) becomes more delicate since the corresponding energy function does
not possesses the mountain pass geometry in general. To overcome this difficulty,

1850027-2



Commun. Contemp. Math. Downloaded from www.worldscientific.com
by Mr. Zhipeng Y ang on 06/02/18. For personal use only

Concentration behavior of ground state solutions

Ruiz considered a new constrained minimization problem on a new manifold which
is obtained by combining the usual Nehari manifold and the Pohozaevs identity.
After that, Wang and Zhou [5I] proved that (I3]) has a positive solution for p
small and has no any nontrivial solution for p large when the nonlinearity f(x,s)
is asymptotically linear with respect to s at infinity. The existence of solutions
of ([[3) involving nonconstant positive potentials was considered independently
in [, 58]. Ambrosetti and Ruiz [4] constructed multiple solutions to (I3]) with a
potential vanishing at infinity. A system under the effect of a general nonlinear
term was considered in [5] [6]. The existence of sign-changing solutions for (L3]) was
established in [17] 28] 31, [35] (47, for different conditions on V(x) and f(z,u).
Recently, in [40], Liu, Wang and Zhang obtained the existence of infinitely many
sign-changing solutions to ([[L3) with a general nonlinearity f(u) ~ |u[P~™1u(3 <
p < b) and a coercive potential by using the method of invariant sets of descending
flow.

There are also some works concerning with the semiclassical state of (L3).
In [18], D’Aprile and Wei constructed a family of radially symmetric solutions
concentrating around a sphere. Ianni and Vaira [30] proved the existence of single-
bump solutions which concentrates around the critical points of V(x). When the
potential V satisfies the global condition

(V,‘_’,) 0< infze]RN V(SC) < lim 1nf|w|_,oo V(z) = Voo,

which was introduced by Rabinowitz [43], He [23] studied the multiplicity of posi-
tive solutions and proved that these positive solutions concentrate around the global
minimum of the potential V. Wang et al. [50] studied the existence and the concen-
tration behavior of ground state solutions for a subcritical problem with competing
potentials. The critical case was considered in [26], He and Zou proved that sys-
tem (LC3)) possesses a positive ground state solution which concentrates around the
global minimum of V. In [25], under the local condition (V2), the author studied
the existence and concentration of positive ground state solutions for the following
system involving critical exponent:
—e2Au+ V(2)u + du = Mu|P~%u + [ul*~2u  in R, L4
{—52Aq’> =2 in R3, (14)
with p € (3,4]. Using a version of quantitative deformation lemma due to
Figueiredo, Tkoma and Santos Junior [22], they construct a special bounded Palais—
Smale sequence and recover the compactness by using a penalization method which
was introduced in [14].

To the best of our knowledge, there are only few papers that considered the
existence and multiplicity of solutions to the fractional Schrodinger—Poisson sys-
tem (CTl). The system (L) is different with the local one (I4) since the frac-
tional Laplacian operator is a nonlocal one. Therefore, the standard techniques
that were developed for the local Laplacian do not work immediately. In [56],
the authors studied the existence of radial solutions by using the constrained
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minimization methods for system (Il with e = 1, V(z) = 0 and Berestycki-Lions-
type conditions [10]. In [49], Teng consider the fractional Schrodinger—Poisson
system (1)) with subcritical and critical nonlinearity, respectively. By the mono-
tone trick, concentration-compactness principle and a global compactness lemma
he establishes the existence of ground state solutions.

It seems that the only works concerning the concentration behavior of solu-
tions are due to Liu and Zhang [1], and Yu, Zhao and Zhao [54]. Assuming the
global condition (V3) and f(u) ~ |ulP72u(4 < p < 2%), the authors obtained the
multiplicity and concentration of positive solutions for the following system:

2:72y  in R3,

{e%—A)Su +V(@)u+¢u = f(u) + |u
(1.5)

2 (—A)tp = u? in R3,

via the standard Nehari manifold method. The concentration behavior of ground
state solutions for a subcritical case with two competing positive potentials was
obtained in .

Different to [41], 54], in this paper, we devote to establishing the existence and
concentration of positive ground state solutions for the fractional Schrédinger—
Poisson system ([LI) under the local condition (V3). The main motivations for
considering the critical problem comes from the famous paper [12] due to Brézis and
Nirenberg in 1983. Since the nonlinearity A|u[P~2u + |u|? ~2u with p € (4iﬁt72§)
does not satisfy Ambrosetti-Rabinowitz condition and the fact that the function
M is not increasing for u > 0, these prevent us from obtaining a
bounded Palais—Smale sequence and using the Nehari manifold in a standard way.
So the arguments in [41] cannot be applied in our case.

To overcome these difficulties, inspired by [13][22], 25], we use a version of quan-
titative deformation lemma to construct a special bounded and convergent Palais—
Smale sequence. And we need to use a penalization method introduced in [T4],
which helps us to overcome the obstacle caused by the non-compactness due to the
unboundedness of the domain and the lack of Ambrosetti-Rabinowitz condition.
Proceeding by the standard arguments, the existence of ground state solution wu.
follows. Finally, we use some estimate to verity that the critical point wu. is indeed
a solution of the original problem ().

Now we state our main results as follows.

s+t 7 3—2s
there exist €* > 0 and \* > 0 such that for each A € [\*,00) and € € (0,e*), the
system (ICI)) possesses a positive ground state solution (u., ) € H*(R3)xDH2(R3).
And if p € (%,2;), then there exists €* > 0 such that for any X\ > 0 and ¢ €
(0,e"), the system (LI possesses a positive ground state solution. Moreover, if

Theorem 1.1. Assume that V satisfies (V1) and (Va), if p € (228 451 then

e € A is a mazimum point of u., then

lir% V(ze) =W,

£—
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and there exists a constant C > 0 (independent of €) such that

O€3+25
53-{-25 + |(L’ _ x8|3+257

ue(x) < VzeR3.

This paper is organized as follows. In Sec. 2] besides describing the functional
setting to study problem (LI}, we prove some preliminary Lemmas which will be
used later. In Sec.[3] we study the limit problem associated with (II)) and we prove
the existence of positive ground state solutions. In Sec.[d], we study the existence and
concentration phenomenon of these ground state solutions for system (I.1]). Finally,
we give the decay estimate of solution, which is polynomial instead of exponential
form.

2. Variational Settings and Preliminary Results

Throughout this paper, we denote |||, the usual norm of the space LP(R3),1 < p <
00, By(x) denotes the open ball with center at « and radius r, C or C; (i = 1,2,...)
denote some positive constants may change from line to line. a,, — a and a,, — a
mean the weak and strong convergence, respectively, as n — oo.

2.1. The functional space setting

First, fractional Sobolev spaces are the convenient setting for our problem, so we will
give some sketches of the fractional Sobolev spaces and the complete introduction
can be found in [19]. We recall that, for any « € (0, 1), the fractional Sobolev space
H*(R3) = W*2(R3) is defined as follows:

o) = {ue @) [ (€PIFwP + 1P < oo,
whose norm is defined as
I 20 (4,12 w)|?)de,
llwll 7o rs) /RS(IEI | F(w)|” + [F(w)]*)dE

where F denotes the Fourier transform. We also define the homogeneous fractional
Sobolev space D*?(R3) as the completion of C§°(R?) with respect to the norm

1
—uy)” ’
[ullpeaes) = (//}R?xﬂ%‘* |z — y|3+2a T —mraa drdy | = [u]gees).

The embedding D*?(R?) < L2« (R?) is continuous and for any o € (0,1), there
exists a best constant S, > 0 such that

[[ul|e. 2(R3)

S =
ueDa?(RB) [|lul|?

25 (R3) .

The fractional Laplacian, (—A)®u of a smooth function u : R3 — R is defined
by

F((=A)"u)(©) = [P F(u)(), €€R,
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that is

N0 = g [ oot

for functions ¢ in the Schwartz class. Also (—A)“u can be equivalently represented

as (see [19])
(~8)"ula) = ~5C(e) | uw +y) +|;L|(i;* v =24 gy e R,

B -1
Cla) = (/RS %}%&)@) o §=(8,62,8).

Also, by the Plancherel formula in Fourier analysis, we have

2 a
[l e rs) = 12 2ulf3.

As a consequence, the norms on H(R3) defined above

2 [u(@) —u@)?, N}
UH<R3|U| z+//]R3><]R3 |z — y[3+2e y) 7

we ([ e + |f<u>|2>d§)% ;

wes ( [ s+ ||<—A>%u||§)
RS

are equivalent.
Making the change of variable x +— ex, we can rewrite the system ([LI) as the
following equivalent system:
(—=A)u+ V(ex)u + du = Nu|P~2 in R3,
(—A)p = u? in R3.
If u is a solution of the system (ZIJ), then w(x) := u(%) is a solution of the sys-

tem (). Thus, to study the system (ITJ), it suffices to study the system (ZIJ). In
view of the presence of potential V' (x), we introduce the subspace

(2.1)

H, = {u € H*(R?) : V(ex)uldr < —|—oo}7

R3
which is a Hilbert space equipped with the inner product

(u,v)g. = / (=A)2u(—A)2vdx +/ V(ex)uvde,
R3 R3
and the norm
ullF, = (u,w) :/ |(—A)%u|2dﬂc+/ V(ex)uidz.
R3 R3
We denote || - ||z, by || - || in the sequel for convenience.

1850027-6
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For the reader’s convenience, we review the main embedding result for this class
of fractional Sobolev spaces.

Lemma 2.1 ([19]). Let 0 < a < 1, then there exists a constant C' = C(a) > 0,
such that

ol 25 sy < Clile oy

for every u € H(R3), where 2}, = %2& is the fractional critical exponent.
Moreover, the embedding H®(R3) — L"(R3) is continuous for any r € [2,2%] and
is locally compact whenever r € [2,27).

Lemma 2.2 ([49]). If {u,} is bounded in H*(R3) and for some R > 0 we have

lim sup/ |t |2 d2 = 0,
n—oo yER3 Br(y)

then u, — 0 in L"(R3) for any 2 <r < 2%.

2.2. The reduction method

It is clear that the system (2.I)) is the Euler-Lagrange equations of the functional
J: H. x D2(R3) — R defined by

J(u, )——HW——/I Ve + /¢ﬁm
-3 /R fulPdz — o /R u|? da. (2.2)

Evidently, the action functional J € C*(H. x D%?(R?),R) and its critical points
are the solutions of (Z1]). It is easy to know that J exhibits a strong indefiniteness,
namely it is unbounded both from below and from above on infinitely dimensional
subspaces. This indefiniteness can be removed using the reduction method described
in [9]. First of all, for a fixed u € H,, there exists a unique ¢!, € D"2?(R?) which is
the solution of

(=A)fp =u* inR3.

We can write an integral expression for ¢! in the form

U2 Yy
¢Z(‘T> = Ct /]RS ﬁd% Vx e Rga

which is called ¢-Riesz potential (see [36]), where
1 (3 —2t)
3 22T(s)
Then the system (21]) can be reduced to the first equation with ¢ represented
by the solution of the fractional Poisson equation. This is the basic strategy of

solving ([ZT)). To be more precise about the solution ¢ of the fractional Poisson
equation, we have the following lemma.

C =

1850027-7



Commun. Contemp. Math. Downloaded from www.worldscientific.com

by Mr. Zhipeng Y ang on 06/02/18. For persona use only.

Z. Yang, Y. Yu & F. Zhao

Lemma 2.3 ([49]). For any u € H*(R?) and 4s + 2t > 3, we have:

(i) ¢y = 0;
(ii) ¢f : H*(R3) — DY2(R3) is continuous and maps bounded sets into bounded
sets;
(iii) Jgo Guude < SF|lullls < Cllul;
(iv) If up = u in H*(R?), then ¢!, — ¢t in D"?(R?);
(V) If up — w in H*(R®), then ¢!, — ¢, in D"*(R?) and [4, ¢ uldx —
Jgs O uPda.

Define N : H*(R3) — R by
N(u) = ¢t u?der,
R3

it is clear that N(u(- +y)) = N(u) for any y € R3, u € H*(R?) and N is weakly
lower semi-continuous in H*(R3). Moreover, similarly to the well-known Brezis-Lieb
lemma [I1], we have the next lemma.

Lemma 2.4 ([49]). Let u,, — u in H*(R?) and u,, — u a.e.in R with 2s+2t > 3.
Then:

(i) N(un —u) = N(up) = N(u) +o(1);
(i) N'(un —u) = N'(up) — N'(u) + o(1), in (H*(R?))~".

Putting ¢ = ¢!, into the first equation of (2:I]), we obtain a semilinear elliptic
equation

(=A)*u+ V(ex)u + ¢t u = MulP~2u + [u)*>2u  in R,

with a nonlocal term. The corresponding functional I : H. — R is defined by

1 s 1 1 A
I(u) = 2 /|, |(—A)2ul*dx + 3 s V(ex)u*dx + 1 /]R‘f ¢t uldr — » /11&3 |ulPdx
1 .
- — |u|?s da.
2 s

Note that if 45+ 2¢ > 3, there holds 2 < 2% < 27 and thus H*(R?) — L5 (R3),

then by the Holder inequality and the Sobolev inequality, we have

342t 1
t 2 _12 6 e 27
ppudr < |u| 3+2F da: |s, |t da:
R3 ]RS ]R3
342t

1 G
<t ([ i) T plon

< C”U”QH(bZHDt,? < 0.

1850027-8
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Therefore, the functional I is well-defined for every u € H?*(R3) and belongs to
C(H*(R?),R). Moreover, for any u,v € H*(R?), we have

(I'(w),v) = | (=A)2u(=A)2vdz+ [ V(ex)uvdz —l—/ ¢! uvdx
R3 R3 R3
- )\/ |ulP~2uvdx — / lu|% ~2uvdz.
R3 R3

It is standard to verify that a critical point u of the functional I corresponds to
a weak solution (u,®) of (1.1) with ¢ = ¢!. Hence in the following, we consider
critical points of I using variational method.

2.3. A local compactness result

The next lemma is a variant of [8, Lemma 2.7], for reader’s convenience, we give a
detailed proof.

Lemma 2.5. Let N > 2s and {u,} C H{ _(RY) be a bounded sequence of functions
such that u, — 0 in H*(RY). Suppose that there exist a bounded open set Q@ C RN
and a positive constant v > 0 such that

/ |(—A)*u, [Pde >~y > 0, / | % dz >~ > 0. (2.3)
Q Q
Moreover, suppose that
(=A)up — |un 2272“71 = Xn> (2.4)
where xn, € H=*(RY) and
|(Ons 0)| < enllellm=@ny, Vo € C5°(U), (2.5)

where U is an open neighborhood of Q and €, is a sequence of positive numbers
converging to 0. Then there exist a sequence of points {y,} C RY and a sequence
of positive numbers {op} such that

(N —2s)
Up i=0n 2 Un(0nT + Yn)

converges weakly in D52(RYN) to a nontrivial solution v of
(=A)*u = |u*"2u, ue D} RY). (2.6)
Moreover,
Yn — Y E€Q and o, — 0.

Because of the presence of nonlocal operator (—A)*, the proof is different from
the one in [8, 24]. Indeed, the definition of nonlocal operator causes some techniques
developed for local case cannot be adapted immediately to nonlocal case. To over-
come these difficulties, we will use an approach due to Caffarelli and Silvestre [I5],
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that is, we will apply the s-harmonic extension technique to transform a nonlocal
problem to a local one.

For this, we will denote Rf“ =R x (0, +0c0). Also, for a point A € Rf+17 we
will use the notation A = (z,y), with € R and y > 0. Moreover, for A € Rf“
and 7 > 0, we will denote by BN+1(A) the ball in RY** centered at A with
radius 7.

Definition 2.1. For any u € H*(RY), we define that w = F,(u) is its s-harmonic
extension to the upper half-space Rf +1if w is a solution of the problem

—div(y'"%*Vw) =0 in RY T,
w=u on RY x {y = 0}.

Moreover, we define the spaces X S(Rf 1) and H $(RY) as the completion of
Ce(RY ) and C5°(RY) under the norms

fuolfee = [ ma (T sy

»
]2, = / (—A)uld,
]RN

where kg > 0 is a normalization constant.
Now we may reformulate the nonlocal problem (Z4) in a local way, that is

—~div(y' > Vuw,) = 0 in RY,
- * (2.7)
_Hsa—u;(m, y) - |wn|2572wn + Xn On RY x {y = 0}’
where
ow ow 1
no_ n = ——(=A)°® n .
Ov yg{)lJr dy @) fis( V't (@)

If w,, is a solution of (Z7)), then the trace u,(x) = Tr(w,) = w,(x,0) is a solution
of ([Z4). The converse is also true. Therefore, both formulations are equivalent. In
the sequel, we will use them both whenever we may take some advantage.

In order to establish the local compactness results, we need an extension of a
concentration-compactness result by Lions, that was proved in [20]. For this, we
recall the following definition.

Definition 2.2. We say a sequence {w,} is tight in XS(RfH) if for every § > 0
there exists p > 0 such that

/ y' =% |Vw,|?drdy < for any n € N.
N+1\ p+
R\ B}

Lemma 2.6 ([20] Concentration-compactness Principle). Let {w,} be a
bounded tight sequence in X*(RY*'), such that {w,} converges weakly to w in

1850027-10
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XS(Rf‘H). Let p,v be two nonnegative measures on Rf“ and RN respectively
and such that

lim 4 2| Vw,|? = g, lim |w,|* = v,
n— 00 n—oo

in the sense of measures. Then there exist an at most countable set J and three
families {z;} C RN, {p;}, {vj}, pj,v; >0 such that

(i) v = |w(@,0)|* + e, vi0a,;

(11) ez y1_25|vwn|2 + ZjeJ :uj(s(zj,o);
2/2%
(iii) pj > Sor2/%,

for all j € J, where 0., is the Dirac mass at x; € RY,

Proof of Lemma It is easy to see that {w,} is bounded and tight in
X S(RJJ\:H), then by Lemma [0, we obtain an at most countable index set J,
sequences {z;} C RY and v; C (0,00) such that

2%
5= § l/j(swja

jeJ

|wn

then there is at least one jo € J such that z;, € @ with vj, > 0. Otherwise, w,, — 0
in L% (Q), which contradicts [Z3).
We define the concentration function

Gn(r) = sup/ [wp,
2 T(I)

zeQ J B

2 dx.

N _
Fixing a small 7 € (0,52 ) and choosing o, = 0,(7) > 0, y,, € Q such that

/ |wn [ da = G (o) =T (2.8)
Bo,, (yn)

N —2s
Denoting v, () = on 2 wp(0n + ypn), we see that

Gn(r) :== sup / |on |2 dx = sup/ \wn |2 da = Gy (onr), (2.9)
B, (x) 0 Bo,,r(x)

z€EQn zeQ
where Q,, := {z € RN : 0,2 + y, € Q}. Equations (Z3) and (Z3) imply that
Gn(1) = / v | da = / lwn | da = Gp(on) = T. (2.10)
B1(0) B, (yn)

N
Now, we prove that there is a small 7 € (0,52 ) such that o,,(7) — 0 as n — oo.
Otherwise, for any € > 0, there exists M. > 0 such that o, () > M, then

/ |wn|2:dz < sup/ |wn|2:dz = Gu(on(e)) =e.
BJVIE(IJ'(]) ZEGQ Bdn(f)(x)

In particular,

Ldr+o0(1) <e+o(1), Ve>0, (2.11)

Vjo < / |wn
BME (wjg)

1850027-11
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where o(1) — 0 as n — oo. Letting n — oo and e — 0 in (2.11)), we see that v;, <0
which contradicts to v, > 0.
Since [[vp| g @ry = ||(—A)§u||2 and {w,} is bounded in X*(RY "), up to a
subsequence, there exists a v € H*(R”Y) such that
v, = v in H3(RN). (2.12)

For any ¢ € C5°(RY), denote @, (z) := op 2 S‘P(%) Note that o, — 0 and
yn € Q imply that 4, (z) € C5°(U) for n large. Then, we get from (ZT) that

/ ylfQSanVgodxdy—/ [un|% 20, pda:
RﬁJrl RN

23

:/ (-A)%un(—A)%%dz—/ [t |2 2 Grd
RN RN

= o(1)||@nllms ). (2.13)

Letting n — oo in (ZI3), we see that v is a solution of (Z0l).
Next, we claim that up to a subsequence,

wy, — w in L% (By(0)). (2.14)

By Lemma [2:6] we obtain an at most countable index set .J, sequences {z;} C RY
and {u;},{r;} C (0,00) such that

* N —2s
>y T Vw, |2 + Zuja(%o), v=|w(z,0)* + Zyjézj and  Ssv; ¥
jeJ jeJ

< e

(2.15)

To prove (ZI4), it suffices to show that {z;} N B1(0) = (. Suppose, by con-
tradiction, that there is a z;, € B1(0) for some jo € J. Define for p > 0, the
function ¢, (z,y) = (p(%7 %), where ¢ € Cge(RYF1]0,1]) is such that ¢ = 1
on B H0), ¢ = 0 on RYTN\BYT(0) and |[Vy| < C. We suppose that p is
chosen in such way that the support of ¢,(z,0) is contained in Bj(0). Denote
Pon(T,y) = @p((552), ) by the facts that y, € Q, zj, € B1(0) and o, — 0 as

On

n — oo, we see that for n large, supp ¢p.n C Bag, p(Yn + onzjy) C U TH C RYT
then @, ,w, € X§(UYT). Direct computations show that {3, ,w,} is bounded
and the bound is independent of p. By (1) and the fact that C5°(U f *1) is dense
in X§(UN), we get

/ Y Vw0,V (0w dedy — / (2, 0) 2 2w pwnd
]RN+1 ]RN

:/ y1’25|an|2<ppdxdy+/ ylfQSanV(gap)wnda:dy
Rf+1 Rf+1

— / |wn (2, 0) |2: _angopwndx
RN
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— / y' 72| Vw, 2@, ndrdy + / Y 72V w, V(@ 0 )wndady
Rﬁ+1 Rf+1

- [ fwe0)

N /]RN+1 y172SanV(¢p,nwn)dzdy - / |wn($70)|2:72wn¢p,nwndx
+

2% -2 ~
* T WnPp nWrdT

RN
= o(1)[|@pnwnllxs = o(1). (2.16)
As p— 0,
lim sup / y' 2 (Vw, Vo, )w, drdy
n—oo ]RiJrl

N
N

</ y1_23|chp|2dexdy>
BY M ()

< lim sup / y' 7% | Vw, |?dzdy
n— 00 ]RiJrl

<c /
Bé\’p*l(

2

|V<pp|2w2dmdy>
)

Tjo

S
N

1
27
/ w2 dxdy
BN+1 (mjo )

N
Hence, we see from 2I6]) that 11, < v;,, then by I3 we get v;, > S&*. By ([210),
there holds
N .
S <y, < / |vp| % dx + o(1) = 7 + o(1), (2.17)
B1(0)

N
where o(1) — 0 as n — oo. Letting n — oo in (2I7), we see that S < 7,

which contradicts Sfﬂs > 7, hence {x;} N B1(0) = 0, (ZI4) holds. Equations ([2.10)
and (2.14)) imply that

/ |v|2:dx = lim |vn|2:dx =7>0,
B1(0)

n—0o0 /B (o)

which means that v is nontrivial. O

We collect some regularity results which are useful in our problem.
Lemma 2.7 ([20]). Let u € H*(RN) be a nonnegative solution to the problem
(=A)u = f(x,u) inRY,

1850027-13
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and assume that |f(z,t)| < C(1 + |t?), for some 1 <p < 2% —1 and C > 0. Then
u € L®(RY).

3. The Limiting Problem

In this section, we consider the existence of a ground state solution to the following

limiting problem, that is the constant potential case
(=A)*u+ au+ ¢hu = NulP~2u + [uf* ~2u, (3.1)
u>0, uc H*R?), '

where a > 0 and the norm on the H*(R?) is taken as

ol = [ -yt + anyee)

We define the energy functional for the limiting problem (BI) by

I,(u) = %/ (|[(=A)2ul? + au )dz—|—%/3 ¢ urdr — / |u|Pdx — —/ u|? dx

= llul + /qst wdi /

which is of C* class and whose derivative is given by

(I (u),v) = /]RS((—A)%U(—A)%’U + auv)dx + /RS ¢t uvdr — )\/RS |u|P~2uvdz

[V

- [ul% ~2uvdz,
R3

for all v € H*(R?). Hence the critical points of I, in H*(R?) are weak solutions of

problem (B.1).

In view of 8], if u € H*(R?) is a weak solution to problem (&), then we have
the following Pohozaev identity:

3—-2 s 3 2t +3
P,(u) = i / [(—A)2u|*dx + D e+ 22 i q’) u?dx
2 Jes 2 Jus 4

/ |u|pdsc——/ |u|?% da = 0.

Similarly in [#4], define G, : H*(R3) — R as
Ga(u) = (s + ) (L5 (w), u) — Pa(u)

4 2t -3 s 2 2t — 3
_astat—9 |(—A)§u|2dx+L/ aude
2 R3 2 R3

4 2t —3 t)—3
GAsH2=3 [ g, PEFD =8 / P
4 R3 P R3

(s+1)2: -3
2 -

2 da.
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Next we study the functional I, restricted on the manifold M, defined as
M, = {u € H*(R*\{0} : Go(u) = 0}.

Obviously, if u € H*(R3) is a nontrivial critical point of I,, then u € M,. Hence, if
(u, ) € H*(R?) x DH2(R3) is a solution of ([B.1), then u € M,.

Lemma 3.1. For any u € H*(R3)\{0}, there is a unique 6y > 0 such that ug, €
M,, where ug,(x) := 05 u(Box). Moreover,

1, = 1, .
(ug,) max (ug)

Proof. For any u € H*(R?)\{0} and 6 > 0, set ug(z) := 0°*u(fz). Consider the
function

94s+2t73 R f2s+2t=3
7(0) := I, (up) = — |(=A)2ul?dx + T/ au*dz
R3 R3
945+2t—3 9(s+t)p—3 9(5+t)2: -3 .
+— | Plutdr — —- )| |uPdx— || da.
4 v 2
R3 p R3 s R3

Clearly, by elementary computations, 7(6) is positive for small § and tends to —oo
as @ — 4o00. Moreover, 7(0) has a unique critical point 6y > 0 corresponding to its
maximum, that is

7(6p) = 15133(7'(9) and 7/(0) =0,

which means that ug, € M,. |

Lemma 3.2. I, possesses the mountain pass geometry, that is

(i) there exist o, p > 0 such that I,(u) > « for ||u|| = p;
(ii) there exists an e € H*(R3) satisfying |le]| > p such that I,(e) < 0.

Proof. (i) There exist «, p > 0 small and constants C7,Cy > 0 such that

1 s 1 A
I,(u) = —/ (|(—A)5u|2+au2)dm+—/ qqude——/ |ulPdx
2 R3 4 R3 P Jrs
1 *
- — |u|?: da
2 Jas

1 .
> Sllull® = CullullP = Colful* > a >0

for |Ju|| = p > 0.
(i) Fix u € H*(R*)\{0}, set ug(x) := 6°Ttu(fz), then we have

94s+2t73 R 925+2t73
Ia(’LLg) = 7/ |(—A)§u|2d:1; + 7/ au2dx
2 R3 2 R3
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945+2t—3 9(s+t)p—3
+——— [ dlutde - ———x [ Julda
R3 p R3
0(s+t)2: -3 .
- |u|? dx < 0,
2% R3

for 6 > 0 large, then there exists 6y > 0 such that e = ug, and I,(e) <0. O

Hence we can define the mountain pass level of I;:

Co := inf sup I(v(h)),
v€Ta hefo,1]

where the set of paths is defined as
Ly :={y € C([0,1], H*(R?)) : 7(0) = 0 and I,(7(1)) < O}.

Next, we will construct a Palais—Smale sequence {u,} for I, at the level ¢,
which satisfies G4 (u,) — 0 as n — oo.

Lemma 3.3. There exists a sequence {u,} C H*(R?) such that
I (un) — cay I (up) — 0, Galu,) —0 asn— oo. (3.2)
Proof. In order to construct a Pohozaev—Palais—Smale sequence, following Jean-
jean [32], for 0 € R, v € H*(R?) and = € R? we define the map ® : R x H*(R3) by
®(0,v) := ety ().

Then the functional I, o ® is computed as
e(4s+2t—3)0

. o(254+2t-3)0
I,(®(0,v)) = |(—A)2v|?dx + 7/ av?dx
2 R3 2 R3
(4s+2t—3)8 ((s+t)p—3)0
T ¢t vida — . [v|Pdx
4 R3 p R3
((s+1)27—3)8 )
- 67* |v|% d.
2% R3

In view of Lemma B2, we can easily check that [,(®(0,v)) > 0 for all (,v) with
0], ||v]| small and I,(®(0,e)) < 0. That is I, o ® possesses the mountain pass
geometry in R x H*(R3). Hence we can define the mountain pass level of I, o ®:

¢q := inf sup I,(3(h)),
§€Fa hefo,1]

where the set of paths is defined as
L, := {5 € C([0,1], H*(R®)) : 5(0) = 0 and I,(5(1)) < 0}.
Note that Iy = {® 04 : 4 € I',}, we see that mountain pass levels of I, and

I, o ® coincide, i.e. ¢, = ¢,. By the General Minimax Principle [53, Theorem 2.8],
there exists a sequence {(0,,,v,)} C R x H*(R3) such that as n — oo,

(Io 0 ®) (0, v0) — cay, (1o 0®) (On,v,) — 0 in (Rx HSR*)™, 6, —0.
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Because for every (h,w) € R x H*(R3),
(L 0 ®) (B, 00, (hy0)) = (T(D(0n, 10)), B0, w)) + Ga(® (6, ).
We take h = 1,w = 0, then as n — oo, we get
Go(P(0r,v,)) — 0. (3.3)
For any v € H*(R?), set w(z) = e~ T0ny(e=0x), h = 0 in B3), we get
(1a(®(6n, vn)), @(0n, w)) = (I, (B(6n, vn)),v) = o(1)][]].
Denote u,, := ®(0,,v,), then we get a bounded sequence {u,} C H?*(R3) that

satisfies (B2)). |
Set

= inf max I, (ug), ci* = inf I,(u).
uweHs(R3)\{0} 6>0 u€M,

Similarly to the proof of [48, Lemma 3.4], we can obtain the following lemma.

Lemma 3.4. The following equalities hold:

Co=ch=cr

For the mountain pass level ¢, for I,, we have the following estimate of upper
boundedness.

Lemma 3.5 ([49]). The following inequality holds:
s 3
0<eq <5852,
< Cu < 3

if one of the following conditions is satisfied

(i) s>2:pe (52,25 and any A > 0;

3—2s57 s
(i) s>3:pe (421?7 -] and any A > 0 large enough;
(iii) 3 <s<3:pe (4215’572:) and any A > 0.

Proof. The strategy is coming from [12]. For the sake of completeness, we give the
details here.
We define

Us(z) = ¢(I)U€(z)v T e Rgv

1
where Ua(x) =~ 2 u*(%)’ u*(‘r) = %‘i{s), ’EL(.T) = I{(Mg + |.T — (E0|2)_¥ (see
[46], Sec. 4]), k € R\{0}, uo > 0 and = € R3 are fixed constants, and 1 € C§°(R?)
such that 0 < ¢ < 1in R3 ¢ = 1 in B, and ¢ = 0 in R?\By,. From [46,

Propositions 21 and 22], we know that

(—A)Sue(2)2dz < 8 + O(32), (3.4)
R3

/ (@) 2 de = SF + O(H), (3.5)
R3
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and
3(2—7)+2sr 3
O(e™ 53—~ 2
(e 2 ), r> a0
3(2—r)f2sr 3
/ [ue(@)["dz = { O™ 27 |loge|), 7= , (3.6)
R3 3 — 25
—2s 3
O 3—2 r )
(= 7), r< 3%
Define

2 dx  for 6 > 0.

pAs+2t—3 . ) gls+t)2; -3
g(0) = — / [(—A)2u | *dx — — / |ue
R3 R3

S

By a direct calculation, we have that g(f) attains its maximum at

1
|(_A)%UE|2dx (s+1)27 —4s—2t
2% (4s + 2t — 3) s

By =
2((s +1)2: = 3) / e |2 d
R3

1
(s+t)2F —4s—2t

/ |(—A)%us|2dcc
R3

[
]RS

Moreover, by (£4) and (1), using the elementary inequality (a+3)? < a?+q(a+
)7~13 which holds for ¢ > 1 and @, 3 > 0, and 2+@st2=3) | ds20-3 _

2((s+t)25—3) (s+t)2r —4s—2t
3535, we deduce that

.
2 dx

4s42t—3
(s+6)2F —4s—2¢

(=) FucPda
tmax g(6) = g(00) = 5 J. JRGISEERE

60 2 / e 2 da
]Rfi

(s+t)2% -3
(s+t)2% —4s—2t

1 .
> R c/ ue|?s da
) / |u6|2 dx R

R3

(s+t)2% -3
s (sFt)2F —4s—2¢
_ s (=A)Tuly
- § 2% (454 2t—3)
G+o)2r —ds—2¢
e[| o=
s

(5 + 02 T
S S?S + O e°~ s (s+t)2% —4s—2t
<3z - 4s12t—3

-3 o 3Y)) (sF 0027 —4s -3t
(S +0(e3)) :
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3 (s+t)2% -3

8 (SF) TR 4 0@
= 3 4s+2t—3
3 (Sszs + 0(53)) (s+t)2F —4s—2¢
s % 3—2s
< S5F +O0(ET). (3.7)

Since I, ((ue)g) — —o0 as § — +oo, by a standard argument, there exists 6. > 0
such that

0<ce < glggfa((us)e) = Ia((uc)s.), (3.8)

which implies that . > 6; > 0 for some constant 6;. On the other hand, from (B4)—
3:6), for any € > 0, we have that

0< ca < I((ue)s,) < CLOMTRTS L 0yp2s 4208 _ gt =3

which implies that there exists 3 > 0 such that 6. < 65 and thus 0 < 07 < 0. < 6,
for any € > 0.
Now, by B4)-(33), we deduce that

s 3 025+2t73a 94s+2t73
To((ue)o.) < gSszs +0(e%7) + ET /3 uZdz + ET /3 ¢y, uZdz
R R
9(s+t)17—3 s+t)2 -3
—)\87/ |u8|pdx— / ug|? da
p R3
N g, 2s+2t—3 fy s +2t=3
< gsszi +O(6372S)+ Qfa/ 2dgc+ / gbus ?d:c
g, (s+tp=3
_)\17/ |ue[Pda
p R3

3 9 25+2t—3
< Zgz 4 o) + 27(1/ uldx
3 2 R3

3+2t

1o 3 91 (s+t)p—3
+ 0924s+2t73 (/ |Ue| 3+2¢ dx) [ N / |U8|pdl’.
R3 p R3

Next, we separate three cases:

Case 1. s > = <:> S > 2. In this case, we have

/ uidr = O(e37%).
R3

Therefore,

3+2t

I((ue)e,) < gs_ +0(E*)+C </ w%m) - c/ ue|Pde.
R3 R3
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Moreover, we deduce that

342t
3
([ hetostias)
. R3
lim -3—2s
fim 2ETT) 12 3
e—0  gi—2s ’ 3+2t° 3-2s5
3+2f
<{im O(e*+2t=3loge| ™5 ) 0 12 3
e—0 g3—2s 342t 3-—2s’
O(5—1%) 12 3
lim —————~ =10 2
e0 g2 ’ 3421 32
and we also have 2s — 3= 2Sp < 0if 5=5; < p < 2}, then we deduce that
(250 _ 4 :
;%AT_+OO7 m<p<237
3 372317
e (2)|Pde | lim AM, S pe B
i 2 JE € e—0 g3—2s 3—2s —3-2s
11 =
-0 53—25
) lim )\O( ) p= 5
£—0 53 2s ’ 3—2s’
O(e*2"p) As+ 2t 3
lim A———-—, <p<—,
oy g3—2s s+t p 3—2s

where we can choosing A large enough such that the above three limits equal to +o00.

3 _3

555 = 2. In this case, we have

/ udr = O(e**[logel).
R3

Case 2. s=°> &

Therefore,

3+2t

I((us)s,) < %szw()( 25|log€|)+C’</RS |u€|s%dz> " _C/Rs ue|Pda.

Moreover, since % > then we have

3=2s 257
342t
12 3
; . |ue ()| 32 do y O(ets+2t-3) 0
im im ——— =
e—0 e2s|logg| ~e~0 e2|loge| ’

and also

/|u8(cc)|pdz 52
im AR < i 296 )

e—0 es|loge| 20 e2s|loge| =T

in view of 4S+2t < p < 2% and for any A > 0.
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Case 3. s < % & 37% < 2. In this case, we have

/ ulde = O(e*).
R3

Therefore,
3+2t

I((us)g.) < %sf +0(*)+C </ |u8|3%dz> ‘ _c/ ue|Pda.
R3 R3

: 12 3 ds+2t
Since 375; > 37555 and =5

( [ty dx)
R3
e2s

< p < 2%, we have

342t

0(64s+2t73)

lim = lim =0
e—0 e—0 e2s
and for any A > 0
/ |ue(x)|Pde 3_3-2s
19) p
[P - )\M = +4o00.
£—0 525 £—0 525
Therefore, Cases 1-3 imply that
3
0< o < Lu((uo.) < 55%.
Thus we complete the proof. O

Lemma 3.6. There is a sequence {x,} C R® and R > 0,3 > 0 such that

/ U =,
BR(fEn)

where {u,} is the sequence given in (B2).

Proof. It is easy to see from Lemma 35 that {u,} in (32) is bounded in H*(R?).
Suppose by contradiction that the lemma does not hold. Then by the Vanishing
Theorem [45] it follows that as n — oo,

/ |un|"dz — 0 for all 2 <r < 2%,
R3
and then

/ ¢ |un|?dx — 0.

R3S
Using (I’ (un), un)) = o(1), we get

[R50+ wa)ie [ jual?de = o)
R3 R3

By I,(uy) — ¢4, we have

1, ., 1
ol = 5 [ 1o

Let ¢ > 0 be such that

2dr = cq + o(1).

[un]l* = ¢,
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and

/ | dx — ¢.
R3

It is easy to check that ¢ > 0, otherwise ||u,| — 0 as n — oo which contradicts
cq > 0.
By the definition of S, we have that

Se |t

%; S ||Un||2,
3
which implies that ¢ > Sg*. Therefore, we get
s S 2
Ca = gé > gss%a
which contradicts to Lemma [3.5] O
Lemma 3.7 ([49]). Let {u,} C M, be a minimizing sequence for c, which is given

by Lemma B4l Then there exists {y,} C R3 such that for any ¢ > 0, there ewists
an R > 0 satisfying

B 2
/ / [un(@) —unl)P | 2} de <.
B9\ Br(yn) \JRS |z — y|3+2s

We have the following theorem.

Theorem 3.1. Problem () has a positive ground state solution u € H*(R?).

Proof. By Lemma we see that the functional I, possesses the mountain pass
structure. Let {u,} be a sequence given in (B:2) and ¢, be the mountain pass value
for I,, respectively. By Lemma B.7 there exists {y,} C R? such that for any ¢ > 0,
there exists an R > 0 satisfying

_ 2
/ / [unt@) = @) Q1 G2 < e (3.9)
R\Br(y) \JRS T —yPPT*

Define u,(z) = un(z — yn) € H*(R?), then ¢%- = ¢!, (- —yn) and thus w, € M,.
This means that w,, is also a minimizing sequence for ¢,. Hence, by (3:9), we have
for any € > 0, there exists an R > 0 such that

— N N2
[ ([ Eml ) ase (310)
B\Br(0) \JEs |7 =]

Since w,, is bounded in H*(R?), up to a subsequence, we may assume that there is
au € H*(R?) such that as n — oo,

w, —u in H*(R?),
U, —u in L] (R, 2<r<?2i, (3.11)
Un(z) — u(x) a.e. in R3,
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By Fatou’s Lemma and (B10), we get

~ N N2
/ (/ %dy + aa2> dz < e. (3.12)
R3\Br(0) \JR3 -

By (I0)-BI2), and Sobolev’s Imbedding Theorem, we have that for any r €
[2,2%) and any € > 0, there exists a C' > 0 such that

/ @ — i de = / i — i da + / (i — " da
R3 Br(0) R3\BR(O)

< e+ C(l|unll s @3\ Br(0)) + 10l &:r3\ BR(0))) < Ce.
Hence we have proved that
U, —u in L"(R%), 2<r <2 (3.13)

Since u,, € M,, by Lemma [B.6] @ is nontrivial.
Finally, we show that w,, — u in H*(R3). By Lemma 2.3 and (313, we deduce
that

¢ — @5 in DH2(R?),

and thus
/ oL, dx — / PLuldz. (3.14)
RS RS
Set v, = up, — w, by (BII), we have that
[anll® = l12)* = [[oa]1* + 0a(1),

which implies that
I(=2)2w 13— [(=2)2all3 = [(=2)2 0]l + on(1). (3.15)
By Lemma E4land ([BII) we have that

[

3 +0n(1). (3.16)
Hence, from GII), BI4)-@EI4), it follows that
ca — Lo () = La(un) — La(t) + 0n(1)

20 2 —
ot — llully: = [lon

= 38T = ZITIE +ou(0). (3.17)
Note that I,(u) > 0, hence, by Lemma [3:5land (B:17) we have that
SICAETIE = ST +ou() e~ L@ < 355 (319)
On the other hand, it follows from (B11) that
(=) 25,113 — [[532 = 0a (D).
We may assume that
T [[(=A)35, 3 = Tim [[5]l5: = £ > 0. (3.19)
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If £ > 0, from the definition of S5, we have that

5 < LA

[on 13-

which implies that ¢ > S$Z°. Therefore, we get
o~ T, — 2 S S o2
s LI ayimIE - mi ) = e 2s

which contradicts ([3.18). Hence, ¢ = 0, that is u,, — u in H*(R?) and so we con-
clude that © € M, and I,(%) = c,.

Next we prove that the solution v is positive. Put u* = max{4u, 0} the positive
(negative) part of u. We note that we get a ground state solution u of the equation

(A u+au+ ¢t u=ANut)P™t + ()% in RS (3.20)

Using v~ as a test function in (3:20) we obtain

_A)%u.(_A)%u—dx+/ a|U_|2d-T+/ ¢ (u”)?dr =0.  (3.21)
R3 R3

R3

On the other hand,
A)zu-(—=A)2ud

AV —u)w (@) —u"(y) .
]R3( ) //]R"XJR" |z — y|3+2s ey

/ (1) —ul) (ww)
{u>0}x{u<0}

|z — y[3+2s

> =C(s)

N =

- R 2
/ u” () 1;+ 2(1/)) dzdy
{u<0}x{u<0} |.%' - y| s

/ (ufe) —ulu (&)
{u<0} x{u>0} |z -y

Thus, it follows from (m and Lemma[2.3[i), we have u~ = 0 and u > 0. Moreover,
if u(zo) = 0 for some zg € R3, then (—A)*u(z¢) = 0 and by [19, Lemma 3.2], we
have

(=A)*u(w) = == /]RS u(zo +y) + T;Tg?rz: y) — 2u(wo) .

therefore,

JRECESESTCE P
R3 |y|3+2s

yielding u = 0, a contradiction. Therefore, u is a positive solution of the system (B
and the proof is completed. O
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Let Q, be the set of ground state solutions U of satisfying U(0) =
max,crs U(z). Then, we obtain the following compactness of €.

Lemma 3.8. For each a > 0, Q, is compact in H*(R3?).

Proof. It is easy to see that €, is bounded in H*(R3). Then for any sequence
{U} C Qq, up to a subsequence, we assume that there is a Uy € H*(R?) such that

U — Uy in H*(R?),

and Uy satisfies

1

(=A)Up + aly + ¢y, Up = AUE ™ +Ug" ™" in R®, Up > 0.

Next, we will show that Uj is nontrivial. Indeed, similar to the proof in Lemma 223,
we can claim that, up to a subsequence,

U, — Uy in L>

loc

(R?).
By Lemma 7] we check that
1UkllLse re) < C.

In view of [34] and Schauder’s estimate, we see that there exists o € (0,1) such
that || U] c2ome) < C and the Arzela-Ascoli’s Theorem show that

Ur(0) — Up(0) as k — oo.

Since (—A)*Ux(0) > 0, from (BI)), we can check that there exists Cp > 0 such that
U(0) > Cp > 0, hence Up(0) > Cy > 0, which means that Uy is nontrivial. Similar
to Theorem B.I] we get I,(Up) = ¢, and Uy, — Up in H*(R?), which completes the
proof that 2, is compact in H*(R?). O

4. Proof of Theorem [Tl
Observe that () can be rewritten as

(=A)*u+ V(ex)u + pu = Nu[P~2u + |[u|?*2u  in R,
(-ayo =1 in 79,

and the corresponding energy functional for (1) is

1 s 1 A
I-(u) 5 /RB(|(—A)§u|2 + V(ex)u?)dx + 1) ¢t udr — » /11&3 [u|Pdx

1
_ u
2% Jgs

1 1 1
= D4t / oL utdz — / ufPde — = / u
2 4 R3 P Jrs 2: R3
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for u € H., where H. := {u € H*(R3) : [, V(ex)u?dz < oo} endowed with the

norm
3
full = ([ Q=252 4 Veanae)
]RS
Now, for each € > 0, we define

0 ifxeé,
€
Xe(T) =

A
_1 .f -
€ 1gc§éZ€7

2
/ Yeu? — 1) .
R3 +

Note that this type of penalization was first introduced in [14] which will act as a
penalization to force the concentration phenomena to occur inside A. Finally, set
J: : H. — R be given by

and

Q0= (

Je(u) = Ie(u) + Q< (u).
It is standard to show that J. € C*(H.,R). To find solutions of (@I} which con-
centrate around the local minimum of V' in A as ¢ — 0, we shall search critical
points of J. for which Q. is zero.

Let cy, = Iy, (U) for U € Qy, and § := {5dist{ M, R*\A}, we fix 8 € (0,0) and

a cut-off function ¢ € C§°(R3) such that 0 < ¢(x) <1 and

plr)y=1  for |z| < g3,

o) =0  for |z| > 20,

C

V| < —.
Vel < 5
We will find a solution of (fI) near the set
/ !/
X, = {w(z—%)U(z—%) :m’EM’G,UEQVO}
for sufficiently small € > 0, where
A= R?: inf |y —z| < B p.
M {ye Inf ly Zl_ﬂ}
Similarly, for A C H., we use the notation
A% = {u € H: inf |lu—v| < a}.
vEA

For U* € Qy, arbitrary but fixed, we define W, g := 6*Ttp(cx)U*(0z), we will show
that J. possesses the mountain pass geometry.
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Denote Uy := §*T'U*(0z), we have as § — oo

gis+2t—3 . 2s+2t—3
Iy, (Ug) = (=AU Pde + —— | Vo(U")*dz
2 R3 2 R3
945+2t—3 9(s+t)p—3
| . (U*)2dr — ———\ | |U*Pdx
4 R3 p R3
gls+t)2:-3 .
—7/ |U* | dx — —o0,
2% R3
then there exists a 6y > 0 such that Iy, (U, ) < —3.
We can easily check that Q.(W: g,) = 0, then
1 2 1 t 2 A P
Ja(Waﬁo) =1.(Wep,) = _||W5790|| + - ¢WE 0 WE)Gde - |W5)90| dx
2 4 R3 70 P JRrs3

% da

1
- — W,
% /Rs' o
e 935-{-21&—3/ (
2 ]Rfi
9(2)s+2t73 e )
4+ — Vol —
2 /Rs \o, ) ¥

O 2 t 2 (€T ~\\2 7
—_— _ — | (U* d
+ 1 /]R3 d)tp(g—’”)U*(:i)(p (90> (U*(x))"dz

p 0
pls+D2: =3 n )
_027/ o (5_5”) U (#)|% di
s R3 0

= Iy (Ug,)+o(l) < -2

for € > 0 small. Using Sobolev’s Imbedding Theorem, we have
1 A 1 .
Tow) = L) = gl =2 [ jupdo - oo [ e
P Jrs 25 Jre

23

1
> S llull® = Cu[[ull” = Colfu

>0

for |lul| small since p > 2.
Hence, we can define the mountain pass value of J. as

ce:= inf sup J.(y(h)),
7€l helo,1)
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where the set of paths is defined as
I = {7 € C([0,1], H.) : 7(0) = 0 and 7(1) = We.g, }.
We start with the following lemma.
Lemma 4.1.

lim c. = cy,.

e—0
Proof. We split the proof into two steps.
Step 1.

limsupec: < cy,.
e—0

Denote W, o = limg_o Wep in H. sense, then W, = 0. Thus, setting v(h) :=
We no, (0 < h < 1), we have v(h) € I';, then

< J.(v(h)) = J. (W,
ce < max =(y(h)) jmax c(Wep),

,00]

and we just need to verify that

lim sup max J.(W, <cy,.
E—>0p96[0‘)9(0] ( 6)0)_ Vo

Indeed, similar to the argument above we have that

J.(Weg) = Iy (U 1) < Iy (U 1
pax - (Wep) pnax vo (Ug) + of )—eé?é’fé) vo (Ug) + o(1)

= Iy, (U") +o(1) = cy, + o(1).
Step 2.
liminfc. > cy,.
e—0

Assuming to the contrary that liminf. .o c. < ¢y, then, there exist §p > 0, &, — 0
and v, € I'; satisfying

Je, (n(h)) < ey, = do
for h € [0, 1]. We can fix an €, such that

—Voen(1+(1+cvo)%) < min{do, 1}. (4.2)
Since I, (7,(0)) = 0 and I., (v, (1)) < J., (7u (1)) = J, (W2, 0,) < —2, we can find
an hy, € (0,1) such that I, (v,(h)) > —1 for h € [0,h,] and I. (vn(hy)) = —1.
Then, for any h € [0, h,],
Qe (v (h)) = Je, (n(h)) — Lz, (v (h)) < ey — 0o + 1,

which implies that

/ V(h)dz < en(1+ (1+cy,)?) for h € [0, hy).
R2\(A/en)
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Then, for h € [0, h,],

e (1) = T (1) + 5 [ (V(n) = Voo ()

2 a4 [ (Vi) = Vo

1 1
> Iy (1) = 5Voen(1+ (1+ evg) ),
then

Iy (1)) < o (ra(h)) + Voen(1 4 (1 + ) )

1
= 1+ 5Voen(1+ (1 +ey)2) <0
and we have

I n(h)) > .
hén[oa;l);] V0(7 ( )) Z

Hence, we deduce that

5y > T (vm(h)) > L (va(h)) > I. (yn(h
ovp — 00 2 max Je, (Yn(h)) > e, en (Yn(h)) W en (Yn(R))

1 1
> = SVoen(1+ (1 4 evy)?
hg[l‘f‘f)fn] Iy, (yn () 2 0en(L+ (14 cy,)?),

that is

[N

1
0< 50 < 5‘/06”(1 + (1 +CV0) ),

which contradicts (£2]). |

Lemma LT implies that

lim ( max Je (7= (h)) — Ce> =0,

e—0 \ he[0,1]
where
’ys(h) = W51h90 for h € [0, 1].
Denote
Ce = hrél[%ﬁ] Je(7e(h)).
We see that

ce < ¢ and limc. = lim é. = ¢y
e—0 e—0

In order to state the next lemma, we need some notations. For each R > 0, we
regard Hi(Bgr(0)) as a subspace of H.. Namely, for any v € H5(Bgr(0)), we extend
u by defining u(x) = 0 for |z| > R, then || || is equivalent to the standard norm of
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H(BRr(0)) for each R > 0,e > 0. Using || - || ., for each T € (H5(Bgr(0)))™!, we
define
1Tl := sup{Tu : u € H5(Br(0)), [[u]a. <1}

Note also that || - ||« g is equivalent to the standard norm of (H§(Bg(0)))* .
We use the notation

J¢={ueE:J. <a}

and fix a Ry > 0 such that A C Bg,(0).
Inspired by [55], we have the following lemma and this lemma is a key for
the proof of Theorem [T1].

Lemma 4.2. There exists a dy > 0 such that for any {&;}, {Re, }, {ue, } with

R
lim e; =0, Re, > =, u., € X% 0 H(Bg. (0)),

e &i (4.3)
lim J., (ue;) <cy, and lim ||Jéi (ue,) e ke, =0,

then there exist, up to a subsequence, {y;} C R3 xg € M,U € Qy, such that
lim [e;y; — 20| =0 and lim [lue, — @(e;x — gy:)U(x — vi)||m., = 0.
11— 00 11— 00
If we drop R, and replace [@3)) by
lime; =0, wu, € Xi_", lim J., (ue,) < ey, and  lim ||J. (ue,)||se,,r., =0,
71— 00 71— 00 1— 00 °

then the same conclusion still holds.

Proof. Since the second assertion can be prove in the same way to the first one,
we only treat the first case. For notational simplicity, we write € for e; and still use
¢ after taking a subsequence. By the definition of X and the compactness of Qy;
and M”, we see that there exist Uy € Qy,, {z.} C MP” such that for ¢ > 0 small,

‘ ue — plex — . )Ug (z - 1:_;) ’

We divide the proof into several steps.

<2dy and z.— x9 € MP(e —0). (4.4)

€

Step 1. We claim that

lim sup / uc|? dz = 0, (4.5)
s0yed. JBi(y)

where A, = Bﬁ(%)\Brzﬂ(m—;).
If the claim is true, by Lemma 222, we see that

lim [ |uc|*dz =0, (4.6)
Bs

e—0
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where B, = B2

i<}

(Z2)\Bs(%=). Indeed, since

sup / lug|? dz > sup / e - X a1
yE€Ae J By (y) y€ER3 J By (y)

where Al = B¥_1(%)\B%+l(%), then

lim sup / e - X a1
e=0yers JB (y)

By Lemma 221 we have

of

% de,

2 dx = 0.

/ |uE~XA;|2:dx—>O as e — 0.
R3

Since B. C Al for € > 0 small, (@8] holds.
Next, we will prove ([H). Assume by contradiction that there is a r > 0 such
that

2idr = 2r > 0,

lim sup / e
70yed. JBi(y)
then there exists y. € A, such that for ¢ > 0 small, fBl(y ) |u8|2: dx > r > 0. Note

that y. € A. and there exists 2* € M* C A such that ey. — z* as ¢ — 0. Let
Ve (z) = ue(z + ye), then, for £ > 0 small,

/ lve|?dx > 7 > 0, (4.7)
B1(0)

and up to a subsequence, v. — v in H*(R3) and v satisfies

(AP v+ V(w4 ¢bvo= P +0%"1 inR3v>0.
Case 1. If v # 0, then

1
cy(z+) < Ty (z+)(v) 3GV(w*)(v)

C As+2t—

t) —4s —2t
= évw*)/ v2dsc—|—p(s+ ) —4s é/ vPdx
4542t -3 R3 4s4+2t -3  p Jgs

25(s+1t) —4s—2t .
S Sd
T st 2302 /W v

S

and hence we have

||V||Loo(]\)/ UQdJC+
R3

t) —4s — 2t
EV(z*)/ dez+p(S+ ) —4s )\/ vPdx
R3 R3

t) —4s — 2t 2% t) —4s — 2t «
p(s +1) 5 A vPdr + sls 1) 5 / v dx
sp R3 52% R3

sp
2% t) —4s — 2t .
+ S5t t) —ds / v dx
82: R3
4s + 2t — 3 4s+ 2t — 3
2T e 2 T
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Therefore, for sufficiently large R,

t) —4s — 2t
liminf ¢ [V{| Lo a) / udr + pls+1)—4s /\/ uldx
=0 Br(ye) P Br(ye)

€

2% t) —4s — 2t *
+ HChad ” i / uzs da
525 BR(.UE)

t) —4s —2t
= liminf { ||V oo (a) / v2dr + pls+)—ds )\/ vldx
€0 Br(0) sp Br(0)

2% t) —4s — 2t *
+ 541 " 5 / v.?sdcc
527 Br(0)

t) —4s — 2t
> IIVIILw@/ o2y + PETD — 4 A/ WP da
Br(0) sp Br(0)

2% t) —4s — 2t .
+ HCRA) ” i / v dx
82} Br(0)

1 t) —4s — 2t
> _{||V||Loo(/\)/ o2y + PEFD — 48 /\/ vPda
2 R3 R3

sp
2% t) —4s — 2t x
+ HCha) 5 / deJC}
82: R3
4s 42t — 3
Z TCVU >0

On the other hand, by Sobolev’s Imbedding Theorem and (E.4),

t) —4s — 2t
||V||Loo(m/ wldy 4+ PETD — 48 A/ wPda
Br(ye) Sp Br(ye)
2% t) —4s — 2t *
+ HCR) " i / u?sdz
523 Br(y.)
T\ |2
< Cld0+02/ ’(p(sz—xs)Uo (m— —)’ dx
Br(ye) €

+Cg)\/ ’(p(sm—xa)Uo (w— E)’pdaﬁ
BR(?JE) €
2;
—|—C4/ ‘(p(sx —z:)Up (x — E)‘ Cdx
BR(?JE) €

< Cld0+c2/

|U0(:c)|2dm+03)\/ |Uo(z)|Pdx
BR(ysfm?E)

BR(ysfm?E)
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+c4/ |Uo ()% da:
BR(ysfm?E)

= Cdy + o(1), (4.8)

where o(1) — 0 as € — 0, and we have used the fact that |y. — ==| > % This leads
to a contradiction if dy is small enough.

Case 2. If v = 0, that is, v. — 0 in H*(R3), then v, — 0 in L] (R?) for r € [2,2).
Thus, by (1) and Sobolev’s Imbedding Theorem, there exists C' > 0 (independent

of €) such that for € > 0 small,

/| PR

Jim sup [{p=, )| = 0, (4.10)
£=0 LeCse (B2(0)),|l¢ll=1

ve|? > or¥ > 0. (4.9)

ol

Now, we claim that

where p. = (—A)*v. —v2 ' € (H*(R3))~L. For £ > 0 small enough, it is easy to

check
/ Xe (2)ue () p(z — ye)dz =0
]RS

uniformly for any ¢ € C§°(B2(0)). Thus for any ¢ € C§°(B2(0)) with |¢|| = 1,

(pese) = (T, a =) = | Vieau-(whpla =)o
| B ue@)ole — )z + A / (e (@) ol — g )d
R3 R3

=i+ Jo+ I3+ Js

In view of the fact that || JZ(uc)l«e,r. — 0, suppy C Ba2(0), sup,ep, o) V(ex +
ey.) < C uniformly for all &€ > 0 small, v. — 0 in LI (R?) for r € [2,2%) and
Lemma 23] we have

[Tl < [ (ue) |+ e, mellp (2 = ge) | — 0,

|Jo| < sup Vi(ew +ey:) / |ve|*da / lp|?dz | — 0,
IEBQ(O) BQ(O) BQ(O)
2%
|J3|§(/ |<f>f;52:d96>t / 0| ? dz / lp|?dz | —0
R3 B2 (0) B2(0)
p—1 1
P P
<A ([ pepds) ([ jelras) o
B>(0) B>(0)

p—1
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as e — 0 uniformly for all p € C5°(B2(0)) with |¢|| = 1, we see that the claim ({I10)
is true.

In view of Lemmal[Z.5], we see from (1), (£3J) and (E10) that there exist §. € R3
and o, > 0 with . — g € B1(0), 0. — 0 as € — 0 such that

3—2s
we () :=0c 2 ve(0ex +§) = w in DV (R?)

and w > 0 is a nontrivial solution of

(=A)u=u®"1, e DVRY). (4.11)

It is well known that

3—2s
wie) = —2 7 (4.12)
(62 +|z2) ="
for some 6 > 0 and
[(=A)Sw|?de = / w¥de = S, (4.13)
R3 R3

then there exists a R > 0 such that

X 1 “ 1 -
/ w28dx2—/ wdy = =83 > 0.
Br(0) 2 Jps 2

On the other hand,

/ w dx < liminf w?z dz = lim inf v?z dz
Br(0) =0 JBRr(0) =0 JB,_r(d.)
= liminf v?z dr < liminf ugz dx, (4.14)
£—0 BUER(gE+y5) e—0 BZ(ys)

where we have used the facts that . — 0 and . — ¢ € B1(0) as ¢ — 0.

Similar to ({8) we can check that (£I4) leads to a contradiction for dy > 0
small. Hence (£3)) holds.

It follows from (@) and the interpolation inequality that

lim lue|*dz =0 for all s € (2,2}]. (4.15)
e—0 B.

Step 2. Let ue1 = p(ex — 22 )us(z), ueo = (1 — p(ex — z.))u-(x). Direct compu-
tations show that

|(—A)S/2u€|2dz2/ |(—A)S/2u871|2d:c+/ [(=A)*?u, 5 2dx + o(1),
R3 R3 R3

V(sz)|u5|2dz2/ V(sz)|u871|2dz+/ V(<€Jc)|u€12|2do:7
3 R3

R R3
[ dtufde= [ 6 sl [ 6 juoPd
R* R R
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/ |u8|sdz2/ |u871|5dx+/ luco|’dx  for all s € (2,27],
RS RS RS

Qe(ua,l) =0, Qa(ue,2) = Qa(ue) > 0.
Hence we get
Je(ue) > I(ue 1) + I (ue2) + o1). (4.16)

Next, we claim that ||uc 2| — 0 as ¢ — 0. By ({4)), we have

X
ue2llm. < ‘ ue1 — p(ex — z)Uo (90 - f)‘ + 2do
Le
= ‘ Ue,1 — @ex — x)Uo (:c - ?)‘ + 2dy

HE(B¥(ITE))

< ezl b (B4 (22)) +4do

<Clvo(=-2)]

H#(Bap (%£)\Bp (%))
< C|\Uol (84 (22 )\ (22) + Cdo
= Odo + 0(1)3

where o(1) — 0 as € — 0. Hence we have limsup,_, ||ue 2|/ m. < cdp.
Since (J.(ue),ue2) — 0 as e — 0 and (QL(uz), ue2) = (QL(uec2),uc2) > 0, we
get

/ (—A)S/2u5(—A)S/2u5)2dm +/ V(ex)ucue odx +/ ¢25u8u5,2dx
R3 R3 R3
+ <ng(us,2)a us,2>
— )\/ ugflué-,gdm +/ U?:71U872d$+0(1)7
R3 RS
then we deduce from (£15]) and Sobolev’s Imbedding Theorem that
luealfr, < Clluealii, +o(1).
Taking do > 0 small, we have ||u. 2||g. = o(1). From (F.I4]), it holds that
Je(ue) > I (uz1) + o(1). (4.17)

1850027-35



Commun. Contemp. Math. Downloaded from www.worldscientific.com
by Mr. Zhipeng Y ang on 06/02/18. For personal use only

Z. Yang, Y. Yu & F. Zhao
Step 3. Let w.(x) = uc1(z + %) = p(ex)uc(z + ==), up to a subsequence, there
exists a w € H*(R?) such that
W —w in H¥(R*) and 1.(x) — @(x) a.e. in R®. (4.18)
We claim that
W, — w in L% (R®). (4.19)
In view of Lemma [2Z2Z] assuming to the contrary that there exists a > 0 such that

2ide = 2r > 0.

lim inf sup / [, —w
Bl(z)

=0 Leps

Then, for ¢ > 0 small, there exists z. € R? such that

/ e — w|*dx > 7> 0. (4.20)
Bl(zs)

Case 1. {z.} is bounded, that is, |z.| < « for o > 0. Then, for € > 0 small,

[
Bl(zi)

where 9. = 1. — @ and 9. — 0 in H*(R?). As the similar argument in Step 1, we
can get that there exists C' > 0 (independent of €) such that for € > 0 small,

Lde >r >0, (4.21)

/ (A0, 2dz > Cr?t > 0, (4.22)
Ba+1(0)

and
lim sup |{p<, P)| = 0, (4.23)
€20 3eC8° (Bay2(0)),]|3]l=1

where p. = (—A)°0, — 52t e (H*(R?))~! and we have used the Brezis-Lieb

splitting properties (Lemma [24)).
In view of Lemma 28, we see from @21)-E23) that there exist z. € R? and
0 > 0 with 2. — Z € By41(0), dc — 0 as € — 0 such that

3—2

We(x) = 6. Bo(0ew+2) =1 in DV2(R?)

and @ > 0 is a nontrivial solution of ([ ITl) which satisfies [ I12).
Since

2 dg

%odr < liminf [ [.|* dz = liminf |0
e—0 R3 e—0 R3

= lim inf |u~18|2:dx—/ @) da
R3 R3

[
R3

e—0

% da, (4.24)

<liminf | |ue
e—0 R3
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then by (@4) and Sobolev’s Imbedding Theorem, we get

/ luc|> < Cdy —|—/ ’(p(ez —xz)U (1: - ﬁ)
R3 R3 S
and combining with ([€24), it holds that

2 .
§0d0+/ Uy~
R3

] % ngo+/ Uz, (4.25)
RS RS
Thus
1
= Iy, (Up) — ——=Gy, (U,
Vo Vo( 0) ds+2t—3 Vo( 0)
s p(s+t)—4s—2t)\/
= ——W 2d - Pd
is +2t 3 0/Rs“ Tt =3 p et

2§(S—|—t)—4s—2t/ .
+ v dr,
(48 + 2t — 3)2* R3

2%(s+t) —4s — 2t
(4s + 2t — 3)2¢

where we have used ([I3) and [@24). Since % = 1, letting dy — 0, we

S — COdy,

have

5 .3
cvy = gS 2s,
which contradicts Lemma

Case 2. {z.} is unbounded. Without loss of generality, we may assume that

lim. g |2:] = co. Then, by (E20)

lim inf/ e |% dx > 7 > 0, (4.26)
Bl(zs)

e—0

that is

e—0

23
liminf/ ’(p(&x)us (z + &)’ dx >r > 0.
Bi(z:) =

Since p(z) = 0 for |z| > 26, we see that |z.| < 35/e for £ > 0 small. If |z.| > §/2¢,
then z. € Bas (O)\Bzﬂ (0) and by Step 1, we get

lim inf/ | e 2 dz < liminf sup / Ue (JC + E) dx
=20 JBi(z2) S0 2€B3g (O\B g (0)/Bi(2) €

2,

= lim sup / [ue
=024, /B (2)

which contradicts (E26). Thus |z.| < 2% for € > 0 small. Assume that ez, — zp €

B (0) and w.(x) = we(v+2.) — w(z) in H¥(R?). If w # 0, then we can see that w
2
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satisfies
(=A)*w 4 V(o + z0)0 + ¢, = AP~ + w% 1 in H*R?), @ > 0.

Similarly as in Step 1, we get a contradiction if dg > 0 is small enough. Thus w = 0,
that is, w. — 0 in H*(R?). By (BZH), we have
lim inf lwe|?dz > r >0, (4.27)
e—0 Bl (0)

and similarly as in Step 1, we can check that there exists C' > 0 (independent of ¢)
such that for € > 0 small,

/ (=A)ew P > CrF >0, (4.28)
B1(0)

and

lim sup |(p=, @) =0, (4.29)
£=05ecse (B2(0)),16)=1

where p. = (—A)w. — w2 ' € (H*(R3))~!. By Lemma again, we see

from (@27)-E29) that there exist 7. € R and & > 0 with 2. — & € B;(0),
¢ — 0 as € — 0 such that

3—2s

wi(z) =& 2 we(éew +F) = w* in DV (R?)
and w* > 0 is a nontrivial solution of (@Il which satisfies (£12). Therefore,

lim sup / |we — w
€0 zcps By (z)
By Lemma 22 ([I9) holds. Similar to (EI5), using the interpolation inequality
for L? norms, we have

2 dx = 0.

w. —w in L"(R®), € (2,27]. (4.30)
In view of (@IT) and recall that w.(z) = uc1(z + Z=), we have

1 s 1 1 A
3 |(—A) 20, 2 de + 3 V(ex + x)widr + Z/ (bf;,gd}?dw — —/ |, P da
R3 R3 R3 P Jrs

1/ i@
- = w
2% Jrs '

< cy, + o(1).
By Lemma 23] #I8) and H30), we get

2 dg

1 . 1 1 A
— [ [(=A)29)%de + = [ V(zo)d?dz + —/ v dr — —/ |w|Pdx
2 R3 2 R3 4 R3 p R3

1/ i
- = w
2% Jgs

< ¢y, +o(1).

% da
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Then we get that
IV(:DU)('LD) S Cvy - (431)

Since (J.(ue),uen) — 0, |Jue 2|/, — 0ase — 0 and (QL(ue), us1) = 0 and together
with the fact that @.(z) = uc1(z + 2=), we get

/ (|(—A)§w5|2dx+/ V(sx—&—xa)wf)dx—k/ oL w?dx
R3 R3 R3

:/\/ |1D€|pdz+/ |-

R3 R3

Thus
/ |(—A)%w|2dz+/ V(zo)zb2d:c+/ oL dx
R3 R3 R3

<1l {/ (|(—A)§w5|2dm+/ V(E:L‘—&-xg)zb?)dx—k/ oL wgdx}
e—0 R3 R3 R3 °

%dz 4 o(1).

hence, as € — 0,

(—A) 2w 2de + | V(ex + zo)w?dr — (=A)2w|)%de + | V(zo)d?de.
R3 R3 R3 R3
(4.32)

In view of (@4), @30) and the fact that||uc2||m. — 0 as e — 0, taking dyp > 0
small, we can check that w # 0. Thus, we have

IV(aco)(d}) >y, (4.33)

Since g € MP C A, @31) and [@33)) imply that V(x¢) = Vo and 29 € M. At this
point, it is clear that there exists a U € Qy, and zy € R3 such that @ = U(x — 2p).
Since

/ V (z0)widz §/ V(ex + x.)wide,
R3 R3
by ([@32), we have

We — W in H*(R?),
which implies that
‘ ue — plex — (e +£20))U (z - (% + zo))‘

And we recall that . — z¢o € M as € — 0, this completes the proof. O

—0 ase—0.
Hs
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Lemma 4.3. Let dy be the number given in Lemma 2, then for any d € (0, dy),
there exist €4 > 0, pq > 0 and wg > 0 such that

||Jé(u)||*,€,R > wq >0

for all uw € JEO TP A (X 4o\ X4) N HE(Br(0)) with e € (0,e4) and R > Ry/c.

Proof. If the conclusion does not hold, there exist d € (0,dy),{e:},{p:} with
gi,pi — 0, R, > Ro/e; and u; € JEO 77 0 (XdN\X2) N H§(Bg.,(0)) such that
12, (ui)lls e, R., — 0 as i — oo
By Lemma E2(i), we can find {y;} C R3, 29 € M,U € Qy, such that
lui = pleir — eiy)U(x —yi)|m., =0 and  lim [e;y; — 20| = 0,

which implies that u; € Xgi for sufficiently large . This contradicts u; ¢ X gi . O

Lemma 4.4 ([22]). There exists Ty > 0 with the following property: for any § > 0
small, there exist as > 0 and e5 > 0 such that if J-(7y=(h)) > cv, —as and e € (0,¢5),
then v. € XT0° where v (h) := W pg,,h € [0,1].

For each R > Ry /e, we see that y.(h) := We pe, € H§(Br(0)) for each h € [0, 1],
X. C Hg(Bg(0)). Define

Cep = Inf max Je(v(h)),

where

Ier:={y € C(0,1], H3(Br(0))) : 7(0) = 0,7(1) = 7=(1) = We,, }.

Remark that v-(h) := W g, € Te g, ¢e < cer < & and J= N X NHS(Br(0)) # 0.
Choosing 91 > 0 such that Tpd1 < dp/4 in LemmaA3land fixing d = dy/4 := d4
in Lemma [IZ] The next lemma comes from [22] and details are omitted here.

Lemma 4.5. There exists € > 0 such that for each € € (0,&] and R > Ry/e, there
exists a sequence {vll_} C J&TE N X N HE(Br(0)) such that J.(vE.) — 0 in
(H§(Br(0)))"! as n — oc.

Proof of Theorem [Tl Step 1. By LemmalLH, there exists a € > 0 such that for
eache € (0,&] and R > o there exists a sequence {vf} .} C J&E=TeNX 2 NH(Br(0))
such that J/(vff.) — 0 in (H§(Bg(0)))"! as n — oco.

Since {v[_} is bounded in Hg(Br(0)), up to a subsequence, as n — oo, we have

Upe = vl in H3(BR(0)),
Ro— ol in L7(Bg(0), 2<r<2i
vf)a(:c) — v®(x) a.e.in Bgr(0).
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By similar arguments in the proof of Lemma 25 we can obtain that

vﬁs —of in L% (Bg(0)) asn — .

Then using the standard arguments, we can check that

ol —>vfz in H5(Br(0)),

n,e

then v® > 0 and satisfies

(—A)vE + V(ex)vE + q/)f)va +4 (/ Xa(vf)de — 1) PR
£ RS +

= AWE)P~ 4+ (vB)%-1 in Bg(0), (4.34)

vE =0 on R3\Bg(0)
and we can easily check that v® € J%=+ N X for dy > 0 small.
Step 2. We claim that there exists a £ > 0 such that for each ¢ € (0,&] and R > %,
[0F]| Lo msy < C. (4.35)
Ro

Otherwise, there exist €; — 0, R; > = such that ||U§§j||Loo(]R3) — 00 as j — 00.

By Lemma (i), there exist, up to a subsequence, {y;} C R3, 2o € M, U € Qy,
such that

lim |ejy; — @0l =0 and  lim [[vff () — p(gjz — ey;)U(x — y;)|| ., =0,

j—o0 j—o0
then by Sobolev’s inequality,

. R
Tim oY (2 4 7) = 52U )] 2 gy = O
which implies that as j — oo,
vgj (x+y;) — Ulz) in L% (R?).
Using Moser’s iteration method [42] (see also [27] Lemma 4.1; 20/ Proposition 5.1.1]),
we have
||Ufjj (@ +yj)llpemsy < C,

which leads to a contradiction.
Step 3. Next, we claim that vf —v. € H. N Jfﬁs N Xgo as R — oo in H. sense
for ¢ > 0 small but fixed.

In fact, since {v*} is bounded in H., we can assume that as R — oo,

R .
v, — v in H,

o — v, in L (R3), 2<r<2%,

loc

vl(z) — v.(r) ae. in R
By Lemma B (@38) and Sobolev’s Imbedding Theorem, we get
v S, in L"(R?), 2<r<2' asR— oo

Now, using standard arguments, we can prove the claim.
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Hence, v € H. N J&+e N X4 is a nontrivial solution of

(=A)su+ V(ex)u + ¢lu+4 (/ Xeu?dr — 1) Xeu = APt H oy in RS,
R3 i

Since Qy;, is compact in H*(R?), it is easy to see that 0 ¢ X0 for dy > small. Thus
ve # 0.

Step 4. For any sequence {¢;} with ¢; — 0. By Lemma E2(ii), there exist, up to
a subsequence, {y;} C R3, zo € M, U € Qy, such that

Jin fejy; — ol =0 and - lim floe, (2) — p(ejz - 29;)U (@ — y;)lln., =0,
(4.36)
which implies that as 7 — oo,
we, (z) i=ve, (x +y;) — Ulx) in L% (R?).
Since we; satisfies the equation
(=A)we; +we; =Y., w€ R3,
where

Tsj (z) = We; () = V(en(z+ yn))wsj (z) — fugj We; (x)

+ Awe, [P+ we, |27, e R

Putting T (z) = w(z) — V(zo)w(z) — ¢, w(z) + Aw(@)[P~" + [w(z)
we see that

%1 by ([@39),

T., — Y inLYR?), Vg€ 2 +o0),
and there exists a C' > 0 such that
[T lloo < C.
From [21], we have that

we, (x) =G+ Yo, = / Gz —y)Te, (y)dy,
R3

where G is the Bessel Kernel

G(z)=F""! (ﬁ)

It is known from [21, Theorem 3.3] that G is positive, radially symmetric and smooth
in R3\{0}; there is C' > 0 such that G(2) < —&=, and G € LI(R3),Vq € [1, :2-).

= ‘1‘3
Now argue as in the proof of [2, Lemma 2.6], we conclude that
we,; (r) — 0 as |z| — oo, (4.37)
uniformly in ¢; € N.

Step 5. According to [27], we get

C

ve () S T
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5;1/ v? (z)dr = 5;1/ w? (z)dr < 5;1/ w? (z)dx — 0,
R\A ! R3\ —& ! R3\B 5 (0)

5V
J

that is @, (ve;) = 0 for €; small. Therefore, v., is a solution of HI). Set u.(x) =
ve(£), ue, is a solution of (LTI

Let P; be a maximum point of w,,, similar to the arguments in Theorem [B.1],
we can check that there is b > 0 such that w,(P;) > b, by @&37), {P;} must be
bounded.

Since ue;, = wej(sij —yj), v; = €;P; + €;y; is a maximum point of wu.,.
From (A30), z; — x9 € M as j — co. Since the sequence {¢;} is arbitrary, we have
obtained the existence and concentration results in Theorem [[LT] Moreover, we have

X
Ue ; ('T) = We; <g - yj)
C

IN

3+2s
1+

— Y
€j

3+2s
_ Ce;

I A

3+2s
= = c , VzeR®
€j+ s + |l‘ — ., |3+25
Thus, the proof of Theorem [[.1]is completed. O
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