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Abstract: In this paper, we are concerned with the following general nonlocal problem−LKu = λ1u + f (x, u) in Ω,

u = 0 in RN\Ω,

where λ1 denotes the first eigenvalue of the nonlocal integro-differential operator −LK , Ω ⊂ RN is
open, bounded domain with smooth boundary. Under several structural assumptions on f , we verify
that the problem possesses at least two non-trivial solutions and locate the region in different parts of
the Hilbert space by variational method. As a particular case, we derive an existence theorem for the
following equation driven by the fractional Laplacian(−∆)su = λ1u + f (x, u) in Ω,

u = 0 in RN\Ω.
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1. Introduction

In this paper, we study the following general nonlocal equation−LKu = λ1u + f (x, u) in Ω,

u = 0 in RN\Ω,
(1.1)
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where Ω ⊂ RN is open, bounded domain with smooth boundary, λ1 is the first eigenvalue of the
nonlocal integro-differential operator LK , which is defined by (see [1])

LKu(x) :=
∫
RN

[u(x + y) + u(x − y) − 2u(x)]K(y)dy, x ∈ RN , (1.2)

where K : RN\ {0} → (0,+∞) satisfies the following conditions:

(K1) γK ∈ L1(RN), where γ(x) = min{|x|2, 1}
(K2) there exists δ > 0 such that K(x) ≥ δ|x|−(N+2s), ∀x ∈ RN .

We remark that the Dirichlet datum is given in RN\Ω and not simply on ∂Ω, consistently with the
non-local character of the operator LK .

A typical example for the function K(x) is K(x) = |x|−(N+2s), then the operator LK reduce to the
so-called fractional Laplacian operator (−∆)s and (1.1) reduce to(−∆)su = λ1u + f (x, u) in Ω,

u = 0 in RN\Ω,
(1.3)

which plays an increasingly significant role in both pure mathematical research and concrete
applications, such as the thin obstacle problem [2, 3], minimal surfaces [4, 5], phase transitions [6],
anomalous diffusion [7–9] and mathematical finance [10]. See [11–15] and references therein for an
elementary introduction to the literature.

Different than the classical Laplacian operator −∆, the fractional Laplacian operator (−∆)s is known
to be nonlocal and this difference may cause some difficulties to implement by variational methods.
Over the past decades, problems similar to (1.1) have roused enough interest, many scholars have
shown their concern in elliptic equation for bounded domains and unbounded domains, see [16–22]
and the references therein.

On the other hand, there are few results concerned with the general nonlocal problem with the
operator LK . In [1, 23], the authors study problem (1.1) by both the mountain pass theorem and the
linking theorem. In [24], the authors obtained a Brezis-Nirenberg result for the operator LK . Infinitely
many positive solutions and sign-changing solutions have been studied in [25, 26]. For other results
about the operator LK we refer to [12, 27] and their references therein.

Problem (1.1) has a variational character and the natural space where finding weak solutions for it
is the functional space X, defined as follows (for more details we refer to [1] and [23], where this space
was introduced and some properties of this space were proved).

Let

X := {u : RN → R| u is Lebesgue measurable, u|Ω ∈ L2(Ω) and
∫

Q
(u(x) − u(y))2K(x − y)dxdy < ∞},

where Q = R2N\(CΩ × CΩ), CΩ := RN\Ω. The space X is endowed with the following norm

‖u‖X = |u|2 + [u]X,

and
[u]X = (

∫
Q
|u(x) − u(y)|2K(x − y)dxdy)

1
2 .
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We can easily check that ‖ · ‖X is a norm on X. Define

E := {u ∈ X : u = 0 a.e. in RN\Ω}.

From [1, 23], we have the following Poincaré type inequality: there exists a constant C > 0 such that
for all u ∈ E,

|u|2 ≤ C[u]X.

Moreover, the norm

‖u‖ := [u]X = (
∫

Q
|u(x) − u(y)|2K(x − y)dxdy)1/2 = (

∫
R2N
|u(x) − u(y)|2K(x − y)dxdy)1/2

is an equivalent norm on E and (E, ‖ · ‖) is a Hilbert space (see [1, Lemma 7]) with scalar product

(u, v) =

∫
R2N

[u(x) − u(y)][v(x) − v(y)]K(x − y)dxdy.

Note that C∞c (Ω) is dense in E and the norm ‖ · ‖ involves the interaction between Ω and RN \Ω.
The weak formulation of problem (1.1) and (1.3) is given by∫

R2N
[u(x) − u(y)][v(x) − v(y)]K(x − y)dxdy = λ1

∫
Ω

u(x)v(x)dx +

∫
Ω

f (x, u)vdx, ∀ v ∈ X,

and ∫
R2N

[u(x) − u(y)][v(x) − v(y)]
|x − y|N+2s dxdy = λ1

∫
Ω

u(x)v(x)dx +

∫
Ω

f (x, u)vdx, ∀ v ∈ X,

which represents the Euler-Lagrange equation of the functional I, I0 : X → R defined as

I(u) :=
1
2

∫
R2N
|u(x) − u(y)|2K(x − y)dxdy −

λ1

2

∫
Ω

|u(x)|2dx −
∫

Ω

F(x, u)dx,

and

I0(u) :=
1
2

∫
R2N

|u(x) − u(y)|2

|x − y|N+2s dxdy −
λ1

2

∫
Ω

|u(x)|2dx −
∫

Ω

F(x, u)dx.

To give our result, first we recall the eigenvalues of the following problem−LKu = λu in Ω,

u = 0 in RN\Ω.
(1.4)

Proposition 1.1. [12, 23] Let s ∈ (0, 1), N > 2s, Ω be an open, bounded subset of RN , and let
K : RN\{0} → (0,+∞) be a function satisfying assumptions (K1) and (K2). Then

(a) problem (1.4) admits a eigenvalue λ1 that is a positive and that can be characterized as follows:

λ1 = min
u∈E\{0}

∫
R2N |u(x) − u(y)|2K(x − y)dxdy∫

Ω
|u(x)|2dx

;
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(b) there exists a nonnegative function ϕ1 ∈ E that is an eigenfunction corresponding to λ1, that is,
|ϕ1|2 = 1 and

λ1 =

∫
R2N
|ϕ1(x) − ϕ1(y)|2K(x − y)dxdy;

(c) λ1 is simple, that is, if u ∈ E is a solution of (1.4) with λ = λ1, then u = ζϕ1 for ζ ∈ R;
(d) the set of the eigenvalues of problem (1.4) consists of a sequence {λk}k∈N with

0 < λ1 < λ2 < λ2 < · · · < λk < · · · → ∞.

Remark 1.1. [12] For the fractional Laplacian (−∆)s, the first eigenfunction ϕ1 is strictly positive in
Ω.

Motivated by the results mentioned above, the main aim of this paper is to establish the existence of
multiple non-trivial solutions for (1.1) and (1.3) . To the best of authors’ knowledge, the existence of
multiple solutions for the problem (1.1) and (1.3) has not been well studied. The proof of our results
borrow the ideas from [28] in which existence results of positive solutions are obtained for a class of
Dirichlet problem. We assume that f (x, t) is a Carathéodory function on Ω × R and satisfies

( f1) | f (x, t)| ≤ γ|t|, x ∈ Ω, t ∈ R, where γ < (λ
1
2
2 − λ

1
2
1 )λ

1
2
1 and λ1, λ2 are the first two eigenvalues of

problem (1.4).
( f2) τ±(x) := lim sup

t→±∞

2F(x,t)
t2 ≤ 0(. 0), x ∈ Ω, where F(x, u) =

∫ u

0
f (x, s)ds.

( f3) there are constants r1 > 0 and r2 < 0 such that
∫

Ω
F(x, r jϕ1)dx > 0 ( j = 1, 2), where ϕ1 is the

eigenfunction of problem (1.4) corresponding to λ1.

Our main result can be stated as follow.

Theorem 1.1. Let s ∈ (0, 1), N > 2s and Ω be an open bounded set of RN with Lipschitz boundary,
assume that K(x) satisfies (K1) − (K2) and the assumption ( f1)-( f3) hold with∫

Ω

(
τ+(x)(ϕ+

1 )2 + τ−(x)(ϕ−1 )2)dx ≤ 0, (1.5)

or ∫
Ω

(
τ+(x)(ϕ−1 )2 + τ−(x)(ϕ+

1 )2)dx ≤ 0, (1.6)

then the problem (1.1) possesses at least two non-trivial solution u1 and u2, one satisfying (u1, ϕ1) > 0
and the other satisfying (u2, ϕ1) < 0.

In the non-local framework, the simplest example we can deal with is given by the fractional
Laplacian (−∆)s, according to the following result:

Theorem 1.2. Let s ∈ (0, 1), N > 2s and Ω be an open bounded set of RN with Lipschitz boundary,
assume that the assumption ( f1)-( f3) hold, then the problem (1.5) possesses at least two non-trivial
solution u1 and u2, one satisfying (u1, ϕ1) > 0 and the other satisfying (u2, ϕ1) < 0.

The paper is organized as follows. In the forthcoming Section 2, we collect some necessary
preliminary observations and devote ourselves to the proof of Theorems. Final, we give some
conclusions in Section 3. Through the paper, we make use of following notations: C,C0,C1, · · · for
positive constants (possibly different from line to line).
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2. Preliminary results and Proof of Theorems

2.1. Preliminary results

Our results are based upon the following critical point theorems in Hilbert space.

Proposition 2.1. ( [28]) Let G ∈ C1(E) for some Hilbert space E and is bounded on bounded sets.
Assume that there exist constants θ < 1, d ∈ R, u0 ∈ E and a unit vector ϕ0 ∈ E such that

(u0, ϕ0) ≤ d (2.1)

and
(G′(u), ϕ0) ≤ θ‖G′(u)‖ where (u, ϕ0) = d and G(u) ≥ G(u0). (2.2)

Assume also that there is a β ≥ 1 satisfying

lim sup
R→∞

R−β sup{G(u) : ‖u‖ = R, (u, ϕ0) ≤ d} ≤ 0. (2.3)

Then there is a sequence {uk} ⊂ E such that

(uk, ϕ0) ≤ d, G(uk)→ c, G(u0) ≤ c ≤ ∞, ‖G′(uk)‖ = o(‖uk‖
β−1 + 1). (2.4)

In addition, if (2.1) − (2.3) are replaced by

(u0, ϕ0) ≥ d, (2.5)

(G′(u), ϕ0) + θ‖G′(u)‖ ≥ 0 where (u, ϕ0) = d and G(u) ≥ G(u0) (2.6)

and
lim sup

R→∞
R−β sup{G(u) : ‖u‖ = R, (u, ϕ0) ≥ d} ≤ 0, (2.7)

respectively. Then there is a sequence {uk} ⊂ E satisfying

(uk, ϕ0) ≥ d, G(uk)→ c, G(u0) ≤ c ≤ ∞, ‖G′(uk)‖ = o(‖uk‖
β−1 + 1). (2.8)

Remark 2.1. Note that the condition (2.2) allows us to restrict our attention to the region (u, ϕ1) ≤ d,
and (2.3) can help us dispense with the requirement that we find two subsets A, B of E such that A links
B and supA G ≤ infB G. Conditions (2.6) and (2.7) are similar. Moreover, this results can allow us to
consider problems in which the maximum principle and sub-super solutions do not apply.

Lemma 2.1. Suppose ( f1) and in addition that∫
Ω

(τ+(x)(u+)2 + τ−(x)(u−)2)dx ≤ 0, (u, ϕ1) ≥ 0 (2.9)

and ∫
Ω

(τ+(x)(ϕ+
1 )2 + τ−(x)(ϕ−1 )2)dx < 0, (2.10)
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where τ± is defined as ( f2). Assume also that∫
Ω

F(x, rϕ1)dx > 0 (2.11)

for some r > 0. Then there is at least one non-trivial solution of problem (1.1) satisfying (u, ϕ1) > 0.
In addition, if we replace (2.9), (2.10) and (2.11) by∫

Ω

(τ+(x)(u+)2 + τ−(x)(u−)2)dx ≤ 0, (u, ϕ1) ≤ 0, (2.12)∫
Ω

(τ+(x)(ϕ−1 )2 + τ−(x)(ϕ+
1 )2)dx < 0 (2.13)

and ∫
Ω

F(x,−rϕ1)dx > 0, (2.14)

then there is another solution satisfying (u, ϕ1) < 0.

Proof. We only prove the first conclusion, the other is similar. Let

J(u) = −‖u‖2 + λ1|u|22 + 2
∫

Ω

F(x, u)dx,

and take u0 = rϕ1, d = 0, β = 2 in Proposition 2.1. We first verify (2.7), suppose on the contrary that
there is a sequence {uk} ⊂ E such that (uk, ϕ1) ≥ 0, ρk = ‖uk‖ → ∞ and

J(uk)
ρ2

k

≥ c > 0, k = 1, 2, · · · . (2.15)

Let ũk = uk
ρk

. Then we have that (ũk, ϕ1) ≥ 0, ‖ũk‖ = 1, and there exists a subsequence such that ũk ⇀ ũ
in E and a.e. in Ω. Therefore

lim sup
k→∞

J(uk)
ρ2

k

≤ 2
∫

Ω

lim sup
k→∞

F(x, uk)
u2

k

ũ2
kdx ≤

∫
Ω

(τ+(ũ+)2 + τ−(ũ−)2)dx ≤ 0,

which is a contradiction with (2.15). Next we claim that (2.6) holds. Note that from ( f1), for any u ⊥ ϕ1

we have
|(J′(u)), ϕ1| = 2|( f (x, u), ϕ1)| ≤ 2| f (x, u)|2|ϕ1|2 ≤ 2γ

‖u‖

(λ1λ2)
1
2

,

where we take λ1|ϕ1|
2
2 = ‖ϕ1‖

2 = 1 and λ2|u|22 ≤ ‖u‖
2 for u ⊥ ϕ1. Therefore, for any u ⊥ ϕ1 we have

|(J′(u), ϕ1)| ≤ θ‖J′(u)‖,

where θ =
γ

(λ1λ2)
1
2

1
1− λ1+γ

λ2

< 1. So (2.6) holds and it follows from Proposition 2.1 that there exists a

sequence satisfying (2.8). Assume ρk = ‖uk‖ → ∞ and let ũk = uk
ρk

. Then we have a subsequence
converging weakly to a function ũ in E and a.e. in Ω. Since

J(uk)
ρ2

k

= 2
∫

Ω

F(x, uk)
ρ2

k

dx + λ1|ũk|
2
2 − 1,
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we can know that

0 ≤
∫

Ω

(τ+(ũ+)2 + τ−(ũ−)2)dx + λ1|ũ|22 − 1 ≤ λ1|ũ|22 − ‖u‖
2 ≤ 0.

Therefore, ∫
Ω

(τ+(ũ+)2 + τ−(ũ−)2)dx = 0 (2.16)

and
‖ũ‖2 = λ1|ũ|22 = 1. (2.17)

Because λ1 is a simple eigenvalue of −Lk and (ũ, ϕ1) ≥ 0, it follows from (2.17) that ũ = ϕ1. So (2.16)
reduces to ∫

Ω

(τ+(ϕ+
1 )2 + τ−(ϕ−1 )2)dx = 0,

which is a contradiction with (2.10). In consequence, ρk are bounded and standard methods show that
there is a subsequence of {uk} converging in E to a solution satisfying

(u, ϕ1) ≥ 0, J(u) = c, J(u0) ≤ c, J′(u) = 0.

Finally, we verify that (u, ϕ1) > 0. If (u, ϕ1) = 0, then

(λ2 − λ1)|u|22 ≤ ‖u‖
2 − λ1|u|22 = ( f (x, u), u) ≤ γ|u|22.

But γ < λ2 − λ1, which is a contradiction. We only replace ϕ1 by −ϕ1 in the above proof, the second
conclusion is proved. Therefore, the proof of Lemma 2.1 is complete. �

2.2. Proof of Theorem 1.1

It follows from ( f2) that
τ±(x) ≤ 0, x ∈ Ω,

then we have (2.9) and (2.12) hold. Therefore, the hypotheses of Lemma 2.1 are satisfied. Then,
it follows from Lemma 2.1 that problem (1.1) has at least two non-trivial solution, one satisfying
(u, ϕ1) > 0 and the other one satisfying (u, ϕ1) < 0. Therefore, the proof of Theorem 1.1 is complete.

2.3. Proof of Theorem 1.2

Note that ϕ1 > 0 a.e. in Ω, then we can replace (2.10) with

τ+(x) ≤ 0, τ+(x) . 0,

and (2.13) with
τ−(x) ≤ 0, τ−(x) . 0.

Then Theorem 1.2 follows from Theorem 1.1.
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3. Conclusion

In this paper, we generalize critical point theory to the nonlocal problem in which general methods
such as maximum principle and sub-super solutions can not be applied. We can distinguish between
different solutions via showing that they are located in different parts of the Hilbert space. Several
recent results of the literatures are extended and improved.
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