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Abstract
In present paper, we study the fractional Choquard equation

825(_A)5M + V) =e* N (ﬁ * F(u)) fu) + |u|2§‘—2u
X

where ¢ > 0 is a parameter, s € (0, 1), N > 2s, 2} = % and 0 < u < min{2s, N — 2s}.

Under suitable assumption on V and f, we prove this problem has a nontrivial nonnegative
ground state solution. Moreover, we relate the number of nontrivial nonnegative solutions
with the topology of the set where the potential attains its minimum values and their’s
concentration behavior.
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1 Introduction and the main results

In this paper, we are interested in the existence, multiplicity and concentration behavior of
the semi-classical solutions of the fractional Choquard equation

X (=A)Yu+ Vxu =N (ﬁ * F(u)) F) + ul>2u, xeRV (1.1)

where ¢ > 0 is a parameter, s € (0, 1), N > 2s, 2¥ = N%NZ;’ 0 < u < min{2s, N —2s} and

F(u) = fou f(z)drt. The fractional Laplacian (—A)* is defined by

Vx) — ¥y

md% ¥ e SRY),

(=AW (x) = CN,SP.V./
RN
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where P.V. stands for the Cauchy principal value, Cy s is a normalized constant, S(RV)
is the Schwartz space of rapidly decaying functions, s € (0, 1). As ¢ goes to zero in (1.1),
the existence and asymptotic behavior of the solutions of the singularly perturbed equation
(1.1) is known as the semi-classical problem. It was used to describe the transition between
of Quantum Mechanics and Classical Mechanics.

Our motivation to study (1.1) mainly comes from the fact that solutions u(x) of (1.1)
corresponding to standing wave solutions W(x, 1) = e *E!/2y(x) of the following time-
dependent fractional Schrédinger equation

ia% = X (AP U+ (V) +E) — (K@) *|GW@)g(W) (x,1) eRY xR (1.2)

where i is the imaginary unit, € is related to the Planck constant. Equations of the type
(1.2) was introduced by Laskin (see [22,23]) and come from an expansion of the Feynman
path integral from Brownian-like to Lévy-like quantum mechanical paths. With variational
methods, this kind equation has been studied widely, we refer to [11,17,45] and the references
therein.

When s = 1, the Eq. (1.1) turns out to be the Choquard equation

1 *

—?Au+ V(xu =N (W * F(u)) F@) + u)® u inRN. (1.3)
X

The existence, multiplicity and concentration of solutions for (1.3) has been widely investi-

gated. On one hand, some people have studied the classical problem, namely ¢ = 1 in (1.3).

When V =1 and F(u) = %, (1.3) covers in particular the Choquard—Pekar equation

—Au+u= (/ L * |u|qdy> lu]9%u inRN. (1.4)
RV |x|#

The case N = 3, g = 2 and ;© = 1 came from Pekar [36] in 1954 to describe the quantum
mechanics of a polaron at rest. In 1976 Choquard used (1.4) to describe an electron trapped
in its own hole, in a certain approximation to Hartree—Fock theory of one component plasma
[24]. In this context (1.4) is also known as the nonlinear Schrédinger-Newton equation.
By using critical point theory, Lions [26] obtained the existence of infinitely many radially
symmetric solutions in H L(RN) and Ackermann [1] prove the existence of infinitely many
geometrically distinct weak solutions for a general case. For the properties of the ground
state solutions, Ma and Zhao [27] proved that every positive solution is radially symmetric
and monotone decreasing about some point for the generalized Choquard equation (1.4) with
q > 2. Later, Moroz and Van Schaftingen [29,30] eliminated this restriction and showed
the regularity, positivity and radial symmetry of the ground states for the optimal range of
parameters, and also derived that these solutions decay asymptotically at infinity.

On the other hand, some people have focused on the semiclassical problem, namely,
& — 01in (1.3). The question of the existence of semiclassical solutions for the non-local
problem (1.3) has been posed in [6]. Note that if v is a solution of (1.3) for xg € RY, then
u = v(ex + xq) verifies

G
— Au+ V(ex + xo)u = (/ Mdy) gu) inRY, (1.5)
RN |x — y|#
which means some convergence of the family of solutions to a solution u¢ of the limit problem
G
— Au+ V(xo)u = </ Mdy) g(u) inRN. (1.6)
RV |x — y|#
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For this case when N = 3, = 1 and G(u) = |u|?, Wei and Winter [43] constructed
families of solutions by a Lyapunov—Schmidt-type reduction when inf V' > 0. This method
of construction depends on the existence, uniqueness and non-degeneracy up to translations
of the positive solution of the limiting equation (1.6), which is a difficult problem that has
only been fully solved in the case when N = 3, x = 1 and G(u) = |u|2. Moroz and
Van Schaftingen [31] used variational methods to develop a novel non-local penalization
technique to show that equation (1.3) with G (u) = |u|? has a family of solutions concentrated
at the local minimum of V, with V satisfying some additional assumptions at infinity. In
addition, Alves and Yang [5] investigated the multiplicity and concentration behaviour of
solutions for a quasi-linear Choquard equation via the penalization method. Very recently,
in an interesting paper, Alves et al. [3] study (1.4) with a critical growth, they consider the
critical problem with both linear potential and nonlinear potential, and showed the existence,
multiplicity and concentration behavior of solutions when the linear potential has a global
minimum or maximum.

On the contrary, the results about fractional Choquard equation (1.1) are relatively few.
Recently, d’ Avenia, Siciliano and Squassina [15] studied the existence, regularity and asymp-
totic of the solutions for the following fractional Choquard equation

q
(—=A)’u + ou = / 152L4y|m¢%4mRM (1.7
RN [x — y[*
where v > 0, ZNN_ B <q < ZNN:zg . Shen, Gao and Yang [39] obtained the existence of

ground states for (1.7) with general nonlinearities by using variational methods. Chen and
Liu [13] studied (1.7) with nonconstant linear potential and proved the existence of ground
states without any symmetry property. For critical problem, Wang and Xiang [41] obtain
the existence of infinitely many nontrivial solutions and the Brezis—Nirenberg type results
can be founded in [34]. For other existence results we refer to [8,9,19,20,28,42,48] and the
references therein.

For the concentration behavior of solutions, we note that the only works concerning the
concentration behavior of solutions come from [44,46]. Assuming the global condition on
Ve CRY, R):

Vo) 0 < Vo := inf V(x) < liminf V(x) := V5 < +00,
xeRN |x|—+o00

which is firstly introduced by Rabinowitz [37] in the study of the nonlinear Schrodinger
equations. By using the method of Nehari manifold developed by Szulkin and Weth [40],
Zhang, Wang and Zhang in [46] obtained the multiplicity and concentration of positive
solutions for the following fractional Choquard equation

2, .
825(_A)Su+v(x)u — 8[&73 </ |M()’)| + F(u()’))dy> <|M|2’4‘x_2u + 1 f(u)) inRS,
R v —yl* 2
(1.8)

S
where ¢ > 0,0 < u < 3, F is the primitive function of f. Different to the global condition
(Vo), Yang in [44] establish the existence and concentration of positive solutions for the
fractional Choquard equation (1.8) when the potential function V € C(R?, R) satisfies the
following local conditions [16]:

(V1) There is a constant Vo > O such that Vy = inf g3 V (x).
(V,) There is a bounded domain €2 such that

Vo <minV.
IR
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Note that in (1.8), the critical term is involved in the convolution-type nonlinearity, which
is totally different from our problem (1.1). It is natural to ask how about the concentration
behavior of solutions of (1.1) as & — 07?2 And how about the influence of the potential on
the multiplicity of solutions? However, to the best of our knowledge, it seems that these two
problems were not considered in literatures before. In this paper, we are concerned with the
multiplicity and concentration property of nontrivial nonnegative solutions to (1.1), and we
will give some answers to the above questions.

Concerning the continuous function f € C(R, R), we assume that f(t) = 0 fors < 0
and satisfies the following conditions:

(fi) limyo 22 = 0;

(f2) there exists ¢ € (2M, 24 such that lim, . o0 £} = 0

(f3) @ is increasing for every t > 0;

(f4) there exists o € (g, %V%z‘;), ¢ > Osuchthat f(r) > ¢t~ ! forall r € Rt, where

2N-—2s N+2s}
N—-2s > N=-2s1*

q, = max{
Then we state our main result as follows.

Theorem 1.1 Suppose (Vo) hold and f satisfies ( f1)—(fa). Then there exists an €* > 0 such
that for any ¢ € (0, €*), the problem (1.1) possesses a nontrivial nonnegative ground state
solution.

In order to describe the multiplicity, we first recall that, if ¥ is a closed subset of a
topological space X, the Ljusternik—Schnirelmann category catyY is the least number of
closed and contractible sets in X which cover Y. Then we have our second result as follows.

Theorem 1.2 Suppose (Vy) hold and f satisfies ( f1)—(fa). Then for any § > 0, there exists
g5 > 0 such that for any ¢ € (0, €5), the problem (1.1) has at least catp;(A\) nontrivial
nonnegative solutions. Moreover, if u. denotes one of these solutions and x, € RN is its
global maximum, then

lim V (x;) = V.
e—0

where A :={x e RN : V(x) = Vo} and As := {x e RN : d(x, A) < §}.

We shall use the method of Nehari manifold, concentration compactness principle and
category theory to prove the main results. There are some difficulties in proving our theo-
rems. The first difficulty is that the nonlinearity f is only continuous, we need to prove the
new Brezis—Lieb type Lemma for this kind of nonlinearity. The second one is the lack of
compactness of the embedding of H*® (RM) into the space L% (RN). We shall borrow the
idea in [3,12] to deal with the difficulties brought by the critical exponent. However, we
require some new estimates, which are complicated because of the appearance of fractional
Laplacian and the convolution-type nonlinearity.

This paper is organized as follows. In Sect. 2, besides describing the functional setting to
study problem (1.1), we give some preliminary Lemmas which will be used later. In Sect. 3,
we prove problem (1.1) has a ground state solution. Finally, we show the multiple of nontrivial
nonnegative solutions and investigate its concentration behavior, which completes the proof
Theorem 1.2.

Notation In this paper we make use of the following notations.

e Forany R > 0 and for any x € R", Br(x) denotes the ball of radius R centered at x.
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e LP(RN),1 < p < 400 denotes the Lebesgue space with the norm [|u||, = [lullL»gyy =

1
(Jpn lulPdx)7.
e The letters C, C; stand for positive constants (possibly different from line to line).
“— " for the strong convergence and “—” for the weak convergence.
o u™ = max{u, 0} and u~ = min{u, 0} denote the positive part and the negative part of a
function u, respectively.

2 Functional setting

Firstly, fractional Sobolev spaces are the convenient setting for our problem, so we will give
some sketches of the fractional order Sobolev spaces and the complete introduction can be
found in [17]. We recall that, for any s € (0, 1), the fractional Sobolev space H*(RY) =
W*2(RV) is defined as follows:

HY(RY) = [u e L*RV): fN (€12 1F @) + |Fw)*) d& < oo} :
R
whose norm is defined as
et 36 vy = /R EPIF@P +1F@)?) de,

where F denotes the Fourier transform. We also define the homogeneous fractional Sobolev
space D5 2(RN) as the completion of C§° (RN) with respect to the norm

1
lu(x) — u(y)|? 2
lullps2@ryy = <//]RN . mdﬁfdy = [ul s ww)-

The embedding DS2RY) L% (RN) is continuous and for any s € (0, 1), there exists
a best constant S; > 0 such that

2
”l/t ”st.Z(RN)

Sy 1= in 5
ueDS2(RN)\(0} [Jul B

2% RN)

According to [14], S; is attained by

N-2s
2

b
= —_— RY 2.1
up(x) C<b2+|x—a|2> , xeRY, 2.0

where C € R, b > 0 and a € RY are fixed parameters.
The fractional Laplacian, (—A)*u, of a smooth function u : RY — R, is defined by

F(=Au)®) = EF¥Fw) (), &RV
Also (—A)*u can be equivalently represented [17] as

; 1 +y)+ux—y —2
(_A)AM(X)Z_EC(N’S)/RN o |;l|(1ifc+2sy) M(X)dy’ Vx € RY

where

(1—cosg) , \ '
C(N7S):<‘/]‘§Nwd€> ) E:(Slvvgl\/)
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Also, by the Plancherel formula in Fourier analysis, we have

2 _ _ 302
[u]Hf(RN) - C(N,S) ”( A)ZMHLZ(RN)-

For convenience, we will omit the normalization constant in the following. As a consequence,
the norms on H*(RN) defined below

1

_ 2 2

u+—> / |u|2dx+// dedy ;
RV RN xRV |x — y|VF2

1
2
o ([ GePFr + 1Fwie)

2
2 52 .
w— (/RN uPdx + ||(—A)2u||L2(RN)) ,

are equivalent.
Making the change of variable x > ex, we can rewrite the equation (1.1) as the following
equivalent form

K L 252 : N
(—A) u—l—V(ax)u_<| |M>|<F(u)) fu)+ ul™""u inR™. 2.2)

If u is a solution of the equation (2.2), then v(x) := u(%) is a solution of the equation (1.1).
Thus, to study the equation (1.1), it suffices to study the equation (2.2). In view of the presence
of potential V (x), we introduce the subspace

H, = {u e H'RY): / V(ex)utdx < +oo},
RN
which is a Hilbert space equipped with the inner product
(u,v)p, :f (—A)%u(—A)%vder/ V(ex)uvdx,
RV RN
and the norm
luel1 7 :/ |(—A)2ul*dx +/ V(ex)u’dx.
© o Jry RN

We denote ||- || g, by |- || in the sequel for convenience. The energy functional corresponding
to equation (2.2) is

1 5 1 1 1 2
Eg(u):§||u||£—§ W*F(u) F(u)dx—z—* o |u|“sdx.
s

Since we are interested in the nontrivial nonnegative solutions, we consider the following
functional

1 1 1 1 *
Jow) = Sl - 5/ (W \ mm) P - o /RN W

Moreover, J, (1) € C'(H®, RN),

(JL (), ¢) ) =4O () ooNdxdy + |V (enupds
RN yINt

<RN |x —
1 *
—/ <—*F(u+)> f(uﬂ(pdx—/ |u+|2~“72u<pdx.
||+ RN
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We collect the following useful result.

Lemma2.1 [17] Let s € (0,1) and N > 2s. Then there exists a sharp constant C, =
C(N, s) > 0 such that for any u € H*(RV)

2 =< C*_l[u]ils(RN)'

It v,y <

Moreover H* (RVN) is continuously embedded in LY(RN) for any q € [2, 2¥1 and compactly
in LT (RN) forany q € [2,27).

loc

Corollary 2.1 The space Hy is continuously embedded into H* (RN). Therefore, H, is contin-
uously embedded into L™ (RN) for any r € [2,27] and compactly embedded into Ly, C(RN )
foranyr € [2,2%).

Lemma 2.2 [38] Let N > 2s, If {u,} is a bounded sequence in H* (RN) and if

lim sup/ Iunlzdxzo
BRr(y)

n—>00 | RN
where R > 0, then u, — 0in L’(RN)for allt € (2,2).

Lemma 2.3 [25]Lett,r > 1land0 < pu < Nsuchthat%—i—%—l—% =2 Letf € L"(RN)Y and

h € L'(RN). Then there exists a sharp constant C(r, N, u, t) > 0, independent of fand h,
such that

FORY)
/ 22 dxdy < C(ry Ny, DIl ey I e s -
RN JRV |x — y[#

Lemma 2.4 [35]Letu € D*2(RN), ¢ € C°(RN) and for eachr > 0, ¢, (x) = @(%). Then
ug, — 0in DV2RY) asr — 0.
If, in addition, ¢ = 1 in a neighbourhood of the origin, then

upr — u in DV2RY) as r — +oo.

3 Ground state solution

Lemma 3.1 J; has a mountain pass geometry, that is

(1) There exists o, p > 0 such that Jo(u) > o for any u € Hg which |ulls = p.
(i) There exists e € H with |le||s > p such that J.(e) < 0.

Proof In order to show this, we argue as in Lemma 2.2 in [7]. From (f;) and ( f>), it follows
that for any & > 0 there exists C¢ > 0 such that

f@) <&+ Celrl?™", F) < Elef + Celel?. @3.D

By (3.1) and Lemma 2.3, we get

1
/ (7 ¢ F(u+)) Fu)dx| < CI|F @)l @yl F @)l e @y
RN\ |x[#

2 (3.2)

<cC (/ (Jul* + |u|‘f>’dx>?
RN
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N QN—p 2N—p

where t = N Since ¢ € (=x"~, J¥=2,), We can see that tqg € (2,2]), and from
Corollary 2.1, we have
2 g\t ' 2 q\2
N(Iul +lul)'dx ) < C(lull; + lulld). (3.3)
R

Taking into account (3.2) and (3.3) we can deduce that

1 1 * 2%
/ —— % Fu™) | Fuhdx + —/ lut [P dx < Cllullf + 29 + Julls).
RV \ |x|H 2% JrN

34
As a consequence

1 0%
Je(w) 2 Sllull = COlullE + 2 + ulle).

We can see that (i) holds.
Fix a positive function ug € H; \ {0} and uy > 0, we set

1 1 t t
h(t):—/ (7*F< 1o ))F( 1o >dx for ¢ > 0.
2 Jrn A\ |x[# lluolle luolle

By (f3), we have

F —/1 —flf(’")z /1 =
(u) = ftuw)udt = —tu“dt < fitudt = - f(w)u for u > 0.
0 0o tu 0 2

1 t t
@) =/ (7 . F( uo )) f( up > wo o
RV \ |x[# lluolle luolle / lluolle
4 1 1 t 1 t t
tJry 2\ |x|# luolle /) 27 \Mtuolls / luolle

> 2
= ~h(@).

Hence,

Integrating (3.5) on [1, t||ug||c] with t > we find

1
lluolle
h(tlluolle) = h(1)(t[luoll)*

which gives

1 1 1 1 ug ug 4.4
— —— x F(tug) | F(tug)dx > — — % F F dx|luollst™.
2 Jry \ fx | 2 Jry \ |x|# lluolle lluolle

Therefore, we have

2 2%
sty = Sl =3 [ (< Fawo ) Fawas =5 [ o

< C1t2 = Cot*

fort > . Taking e = tuq with ¢ sufficiently large, we can see that (ii) holds. O

1
lluolle

Lemma3.2 Foreachu € X} :={u € Hy : u™(x) # 0} and t > 0, set hy, (1) := J.(tu).
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(1) Then there exists an unique t, > 0 such that h,(t,) = max;>o h,(t) = max;>o Je(tu),
h,(ty) = 0, h,(t) > 0in (0,1,), h,(t) < 0in (t,,+00) and tu € N; if and only if
t =t,, where Ny = {u € X : (J/(u), u) = 0}.

(ii) There is k > 0 independent on u, such that t, > « for all u € S;, where we denote by
S; the unitary sphere in Hy. Moreover, for any compact set E C S;, thereisa Cg > 0
such that t, < Cg forallu € E.

Proof (i) For every u € Xj from Lemma 3.1 we know that £,(0) = 0, h,(t) > O for

t > 0 small enough and lim,_, o /1, () = —o0. Hence, there exists a 7, > 0 such that
hy (t,) = max;>o hy (1) and k), (1) = 0. Notice that
1 F(tu™ * *
Rt =0 tueN, & [lul? =f 1 FeuD) feuTyutdx +z2s*2/ lut|* dx.
RV \ [X|* t RN

From (f3) we know t — f(¢) and ¢ — @

uniqueness of a such 7, and (7) is completed.
(ii) Letu € S;. By tyu € N, and (3.4) we have

1 5 *
2= /RN (— * F(tuu+)) F(taut)tautdx + /RN ot | dx < C (t;‘ 412 +z§f).

are increasing for all # > 0. Hence, we get the

||

So, there exists k > 0 independent of u, such that 1, > «. Let, « € (2,2}), @ < 4 then

% > % We can infer that

1 2
FO)<-fmr=<—f@®r, V=0
2 o
For any v € N, we have

1
Je() = Je(v) — —{

_(r_ty,e ! b + +
B (2 a)”””f 2/RN<|xw e )> (Fe™
—Ef(v+)v+> dx + <l — i) / lvT% dx

o a 2F) Jry

11 5
>(=-—— )
> (2 a)llvllg

If E C S, is a compact set and u, C E such that 7, — oo, up to a subsequence u,, — u in
H, and J,(ty,u,) — —oo. Taking v, = t,,u, € N, in (3.6), we can see that

1 1 Je (¢,
0<,_,SM50 as n — 0o,
2 « 12

Un

JL(v), v)

(3.6)

which gives a contradiction. O
Define the mappings 71, : H,\{0} = N, and n, := S, — N by set
ne() :=tyu and ng = ngls,.

We can apply [40, Proposition 8, Proposition 9 and Corollary 10 ] to deduce the following
Lemma.

Lemma 3.3 Suppose that (Vy) and (f1)—(fa), then
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(a) The mapping n. is continuous and ng is a homeomorphism between S, and N. Moreover,

nlw) = ﬁ
(b) Wedefine the maps s = H\{0} = Rby Ve (u) := Jo (A (u)). Thenyr, € C1(H:\{0}, R)
and
- A lle .,
(o), v) = W(jg(na(u), v))

foreveryu € H,\{0} and v € H;.

(c) Wedefine the mapsr : S¢ — Rby e := ¢|S€o Then vy, € C'(Ss, R) and (Yl(u), v) =
e @) lle (J;(ne (), v) for any v € T, Se.

(d) If{un}isa (PS)q sequence for Ve, then {ng(un)}is a (PS)q sequence for J.. Moreover,
if {up} C N is a bounded (P S)y sequence for Ve, then {n;1 (un)} is a bounded (P S)q4
sequence for the functional .

(e) uisacritical point of . if and only if ng (1) is a nontrivial critical point for J.. Moreover,
the corresponding critical values coincide and

inf = inf J.(u).
ulgSg Ye (1) uler.l/\/g e (1)
Remark 3.1 As in [40], we have the following minimax characterization:

Ce = uler}\f/g Je(u) = eg:{{o} max Jg (tu) = ulélg max Je(tu).

Next, we give some properties of (PS), sequence of J;.

Lemma3.4 Let{u,} C H, isa (PS)q sequence of J., then {u,} is bounded in H*(RN) and
{lluy lle} = o0 (1).

Proof Let,a € (2,2}), a <4 then % > Z ‘We can infer that

1
F@) < *f(t)t < ff(l‘)t vt > 0.
Since {u,} is a (PS)4 sequence of J;, we have

1
d+ 14+ uplle = Je(uy) — &(Jg/(”n)’ Uy)

_ (11 21 1 + +

- (E - &) bt =5 [, <| o * )> (Fe)
2 1 1 *

- ff(u:{)u;f) dx + (— - —) / ;1% dx

o a 28] Jry
1 1

= (E - &) ||“n||§

Therefore, we get that the sequence {u,} is bounded in H,. Next, we prove that [[u,, ¢

vl

on(1). Since (J/(uy,), u, ) = 0,(1), by using f(r) =0forr <0and (x — y)(x~ —y7)
|x~ — y~|? where x~ = min{x, 0}, we can deduce that
(0 (x) — un(y))(u, (x) — u, () _
llue,, ||s < / / u l’; — dxdy + » V(ex)uyu, dx

= f (— * F(u+)> FhHu, dx + /N |u;r|2;‘—2un+u;dx + 0, (1)
R

x|
= on(1).
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Therefore, we complete our proof.

Lemma 3.5 There exists a constant r > 0 such that ||ul|¢ > r forall e > 0 and u € N;

Proof By using Lemma 2.3 and (f1) — (f2), we can see that for any u € N,
23
el = € (el + 22 + )
then, there exists r > 0 such that
lulle > r forall u e Ne.
Hence, we deduce to the Lemma holds.

When V = 1, then H*(RY) = H,(R"). Fort > 0 and u € HS(RN), let

Ju(x) — u(y)|? T/ 2
I.(u) = /RNf]RN —y |N+2sddy+2 RNudx

1 1
lut|Bdx — f/ ( * F(u+)> Fut)dx,
2;‘ RN 2 JrN \ |x[#

My i={ue H®RY) :ut £0,(IL(w),u) =0}, m, = iﬁglf I

T

For m, there also holds

m; = inf sup I;(y(t))= inf supl (tu)
7€l e10,1] ueHS(RN) t>0

where I' = {y € C([0, 1], H*(RY)) : y(0) =0, I (y(1)) < O0}.
Lemma 3.6 Foranyt > 0, there exists u € H*(RN) with u™ # 0 such that

s N
max I;(tu) < — 82,
t>0 N

lullZs 5
. DS~ RY)
where S := inf,,cps2 @)\ (o) [Z.

Proof Let ¢ € CSO(RN) be such that ¢ = 1 in Bs, ¢(x) = 0in RY \ Bys. Denote
N—2s X
Uelr) = e~ "0 (7)
&

where u*(x) = W u(x/SZ\) = % with o > 0. We define
(1+|x/SZ|2>

ug(x) = @(X)Ue (x)

then u, € H,. From [17] and [34], we have the following estimations
[Me]HS(RN) < S% + 0(8N72s)
/ |”£(x)|2?dx = S% 4 O(SN)
RN

Cee® 4+ 0(eV2) if N > 4s,
Cie¥|lne| + 0(s%) if N = 4s,
CeeV" 5 4+ 0EN ) if N < d4s.

3.7

(3.8)

(3.9)

(3.10)
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A standard argument shows that for any u,, there exists a unique 7, such that f,u, € M;
and I (t;u.) = max,>o I (tug). As a consequence m, < I (t;u.) and

_ 1 252 *
2 2 1 s 2
[ug]HS(RN) +1 /]RN ugdx =t / <| m * F(taug)) fteug)ugdx + t¢ /RN lug|*s dx.

Asaconsequencef, > ty, wherefp > 0isindependent of ¢. Now, we estimate the convolution
term. For ¢ > 0 small enough, it follows from ( f4) that

1 1
/ (le“ * F(tm;)) F(toug)dx > cﬂ"/ (W * [ug|” ) [up|® dx

(e (o2
> cr / / lue (y)] Iue(X)l lueWNI7lueCOF )y
Bs J Bs Ix_
C o (N-2s)
>Ct / / 18 J(N mdxdy
Bs JBs (82+|yI2) (62 + x?)

o £2N—0(N=2s5)
G/ / U(N 2s5) dXdy
By /By (1+|x|2) 1+ 1yP)

z 0(821\] (T(N 23))'

(3.11)

2% 5 .
Set g(t) == & ([ug]H:(RN) + 7 [gy uZdx) — tT}* I lug|>dx. If N > 4s, by a simple
calculation, we get l

N
s ([ug]ipRN + T [on u%dx> 2

max g(t) = —
20 N e I3
y ) 260\ 3.12
s (ST +0EVE) + 06 (3.12)
N\ (52 4 0@EN) ™

= 255 + 0N + 0(e>).
N
Nothing that o € [qN, N o LY, for ¢ > 0 small enough, using (3.11),(3.12) we can check

1
maé( I (tug) < maé(g(t) — / <— * F(tgu8)> F(teug)dx
1> 1>

x[#

< %S% + 0(8N—2S) _ 0(82N—0’(N—25)) + 0(825)
< iS%

In similar way, we can check N = 4s and N < 4s. O

Lemma3.7 Let {u,} C H; be a (PS)y sequence of J. with d < %S% and u,—0 in H,.
Then one of the following conclusions holds:
(@) u, — 0in H;

(b) There exists a sequence {y,} C RN and positive constants r, B such that

n—oo

lim inf/ lun(X)|?dx > B.
By (yn)
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Proof 1f (b) does not occur, then for all R > 0, up to a subsequence

lim sup / un (x))?dx = 0.
Br(y)

n_moye]RN

Since we know that {u, } is bounded in H,, we can use Lemma 2.2 to deduce that u,, — 0 in
L"(RN) forany r € (2, 2¥). So, apply Hardy-Littlewood—Sobolev inequality, we know that

/ (L * F(u;)> F(u)dx = 0,(1). (3.13)
RN\ x|

Taking into account (J/(u,), u,) = 0,(1) we can infer that

2 2
ety ”g = ”u””sz(]RN) +0,(1).

Since {u,} is bounded, up to a subsequence, we have
*
s

lun> —1>0 and IIu,,IIi > 0.

25 RN) -tz
If [ > 0, then
¢ o v 1A PuPdx

< =
Ul

Z
2
vy

llun ||52~
- 2 *
a1 )

— [N

asn — oo, hence [ > S% Consequently, by (3.13), we have

d= lim J,(up)
n—o0

2P| 1 1 -
= lim <5|Iunllg -3 /RN (W * F(u,T)) F(udx — > /RN Ju | -vdx)

a contradiction, hence / = 0. Consequently, by the boundedness of {u,} in H,, we have
u, — 0in H,, so (a) holds. This completes the proof. O

Lemma3.8 Ler {un} C He be a (PS)q sequence of Je withd < m,_ and uy,—0 in H,.
Then u, — 0in Hy.

Proof By Lemma 3.4 we can assume u, > 0. For any subsequence of {u,} still denoted by
{u,}. Since u,—0 in H,, up to a subsequence, we can assume

u, — 0in L (RY) re[2,2) and wu,(x) >0 ae. xeRV,

If u, - 0in H,, by Lemma 3.2 we know for any {t,} C (0, +00) such that {t,u,} C Ny,_.
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Case 1 lim sup,,_, ., #» < 1. If does not occur for any § > 0, consider any subsequence of
{t,} and satisfies the following

t,>1+68, VnelN.
Since {u,} is a (P S)4 sequence of J;, we can see that
1 *
[n %, mn +/ V(sx>|un|2dx=/ —— x F(up) f(un)undx+/ |y | dx + 0, (1).
HY RN T oy RN RV

x|
(3.14)
We observe that {t,u,} C Ny, , we have

1 *
tr%[u”]ilS(RN)_i_tr% /H;N VOOM121d-x = /B;N (7 * F(tnl/ln)> f(tnun)tnund.X‘i‘/I:RN |tnun|2st.

x|#
(3.15)
Taking into account (3.14) and (3.15) we can deduce that

Xl; * F(tguy) ) f (tautn)u? ﬁ * F ) fQun)u?
/ (Voo—V(Sx))|u,1|2dx:/ (( ! ) B <| \ ) W
RN RN

thltp Un

2*
1, s *
+/ <|nu;21| —u,,|25>dx+0n(1).
RN ln

By (W), for any £ > O there exists R(§) := R > 0 such that

V(ex) > Voo — &, |ex| = R.

Notice that u, — 0 in L2(B(0)) and the boundedness of {un}in H,, we get

— dx
Ihip Un

/. (ﬁ * F(lnun)) f(tnun)u% (ﬁ * F(Mn)) f(u”)u’zl
RN

< / (Voo — V(ex))|un|*dx
RN

= / (Voo — V(ex)) |un|*dx +/ (Voo — V (ex)|un|*dx
Br(0) B (0)

< voo/ |un|2dx+s/ ln 2dx
Bg(0) B (0)

<on(l) + %/ V (ex)|un|*dx
B (0)
< on(D + %nunni < ou(l) + £C.

If u, - 0, there exists {y,} C RM, r, 8 > 0 such that

n—oo

lim inf / lun(X)|?dx > 6.
By (yn)

Let i1, (x) = u,(x + y,) then there exists i, up to a subsequence, we have

iip—iiin H*R"Y), i, — @in L! (R"Y), ii,(x) - i(x) ae. xeRY.
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Therefore, there exists 2 C B, (0) such that # > 0 in €2, then we can infer

/ (e P+ ) (1 +8)d) ((;w « F(@) f (@)
Q _

(1 + )i ) @dx < £C + ou(1).

u

Taking the limit as n — oo and by applying Fatou’s lemma we obtain

0 < / / (F((l +8u(y)) f((1+8ulx))  Fuly)) fu(x))
aJa lx —y# (I +8)u(x) lx =yl ax)

) ildxdy < £C.

For any & > 0, this gives a contradiction. Therefore, limsup,,_, . t, < 1.

Case 2 limsup,,_, ., = 1. Hence there exists a subsequence of {,}, still denoted by {#,}
such that #, — 1. Clearly,

d+o,(1) = Je(uy) > Je(uy) + my  — IVoo(tnun)~

Moreover,

1—12 1
Je(utn) = Ty (tn) == [t s vy + 5 /RN(V(sx) — 1 Vo) |y *dx

1 * *
+ b fRqununFs — Jup|*)dx

1 1 1
+ 5 /I;N ((W * F(lnun)) F(Znun) — (W * F(un)) F(un)> dx.

Since {u,} is bounded in H,, by using the Mean Value Theorem and t, — 1, we have
f (V(ex) = ty Voo |y |*dx = / (V(&x) = ty Vo) lutn| *dx
RN Bgr(0)
+ / (V(ex) — 12 Vo) lun|*dx
B(0)

> (Vo — 12 Vo) lun|?dx — & |un|?dx
Br(0) B%(0)

+ Vool — £2) / |, |>dx
B (0)
> on(1) —&C.
For any & and this gives a contradiction.

Case 3 limsup,,_, . #, := fo < 1. Then there exists a subsequence of {z,}, still denoted by
{t,} such thatt, — tp and #,, < 1 for any n € N, we deduce that

my_ < Iy, (tattn)
t2
= Je(tqun) + i/ (Voo — V (&x))|un|*dx
2 RN

= Je(thun) + C§ + 0, (1)
=d+ C&+o0,(1).

This gives a contradiction. O
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By similar argument as the Lemma 3.1 in [2] and Lemma 4.7 in [47], we have the following
lemma.

Lemma 3.9 Let{u,} be a sequence such that u,—u in H, and w, := u, — u. Then, we have

(@) fgn [F(wy) — F(uy) + Fu)|'dx = 0,(1) where t = zz\zﬂu'
G Jer (gl * Fun = ) Pty = )y = fen (e Pun) Funds + fon (e
F))F(w)dx = 0,(1).

(iii) V& > 0, we have

/]RN |fun —u) — flun) + f@)|'lo'dx < CEllgl’, < C&. Yo € H:RY), gl = 1.
(@iv)
1 1
| (7 * F(uy — u)) Sfup —u)pdx — / (7 * F(un)) fup)pdx
RV \ [x|# RV \ [x[*

1
+/ <7 * F(u)) fw)edx| < CE|lo]le.
RN\ |x[*

where, € > 0, ¢ € H.(RV).

Proof (i) By the Mean Value Theorem and (3.1), it follows that

1
|F(wy,) — F(uy)| = ’/0 <%F(un —tu)) dt

1
S/ luf up — tu)lde
0

1
< / Elulluy — tul + Celullu, — tul™")dt
0
< Elunllul + &lul* + Celun|? " ul + Celul?.
By applying Young inequality with § > 0, we get
|F(wy) — F )| < 8(unl? + [un|?) + Cs(Jul* + ul9)
which yields
|F(wy) — F(un) + F@)| < 8(lunl? + [un|9) + Cs(ul* + [ul?) + C(jul* + ul9).
|F(wn) — Fun) + F@)|" < 4 8(un* + lun]?) + Cltn)* + |un|9")
< A8unl® + [un? — unl® + [unl?) + Cr(un + un ).
Let

G n(x) = max {|F(wy) — F(un) + F@)|" — 4" 8(un* + lun|9" — [ul* — u|?), 0} .

Then G5, — Oa.e.inRY asn — coand 0 < Gs,, < C1(|u|* + [u|?") € L'RN). Asa

consequence of the Dominated Convergence Theorem, we have
/ Gsn(x)dx - 0 as n — oo.
RN
On the other hand, from the definition of G5 ,, we get

|F(wy) — Fun) + F@)|" < 4 8(uy* + |un)?) + Gs
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which together with the boundedness of {u,} gives
lim sup/ |F(w,) — F(u,) + Fu)|'"dx < C8 for some C > 0.
n—o00 JRN

As § is arbitrary, we obtain
/N |F(wn) — F(up) + F)|"dx = 0,(1).
R
(ii)

/ (L * F(u, —u))F(u, —u)dx — / (L * F(un)> F(uy)dx
R RN

N |x|M [x]#

—I—/ (L * F(u)) F(u)dx
RN\ |x|#

=/ ( 1 *F(un—u)>(F(un_“)_F(un)
RN\ |x[#

+ F()dx + f (i " F(un)) (Fltn — ) — Flun) + F(u)) dx
RN

|x[#

+ / ) (i « F(u)) (Fun — u) — Fun) + F(u))dx
R

||~

1
—2/ — x F(u) | F(u, — u)dx
RV \ [x[*
=NL+DL+ 5+ 14

By the boundedness of {u,} and (f1) — (f>). we know that

1
13
(/ |F(u, — u)|’dx> <C.
RN
From Lemma 2.3, we have

| < </ |F (un —u)l’dx>? (/ |F(up —u) — F(uy) — F(u)l’dx>7 — 0.
RN RN

Likewise, I, — 0, I3 — 0. By the boundedness of {u,}, we have { F (i, — u)} is bounded
2N 2N
in L2V (RNY) and F(u, —u) — O a.e. in RY. So, F(u, — u)—0in LZV-x (RN). In view
2N *
of 4 % F(u) € (L IN-p (RN)> , We obtain

[x|#

1
I4=—2/ ( * F(u))F(u, —u)dx — 0asn — oo.
RV |x[*

Therefore, we can conclude (ii) holds.
(iii) By using ( f1) and ( f2), we know that for any £ > 0, there exists Ng € (0, 1) and N| > 2
such that

[f(Ol <&lt] in 7] = 2Ny,

fOI <& in il = Ny -1,

|f(O)] < Celt| +&Elt]7 " for reR.
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Since f is a continuous function, we deduce that exists § € (0, Ng) such that
[f(t1) — f(2)] < No&, Viti] < No+ N1, |t2| < No+ Nyand |f; — 1] < 6.

Taking into account # € H,, we know that there exists Ry > 0 such that

g—1

1
2 q
/ udx| <&, / lu|"9dx < E.
B, (©) B, (0)

For any ¢ € Hg, ||¢lle = 1, we have

A PRI e
|f@el™rdx < | (Elul+ Celul?™") T o] T dx
C c )

B, (0) B,

< / QElul’ + Clul @)l dx
B

c
RO(

1 1
2 2
<2 / P dx f o dx
B% ©) B, (©)

q-—1 1

q q
+C / |u|"dx / lp|9"dx
B, (© Bg, (0)

< Céllgll;.

Let Ay = { B 0) t lun(0)] < Nol ., By = [Bg 0t lun @) = M}, €, 1= [ B, @)

No < |u,(x)| < Nj }, then we have
/ |f (un —u) — fun)|' |l dx
n Ml <8}

<£ (ltn — ul + |un)' gl dx
An Mlul=0)

<2'¢' / lun —ul'lo|"dx -I-/ lun 'l dx
A Ol <8) An OV(lul <8}
1

1 1
2 2 2
<2 f lup —ul¥dx | + / iy |* dx / lo|* dx
Anm””‘fs} nﬂ“’”fa} Anm{|“|55}

<E'Clol
(3.16)
and

/ 1 tn — 1) — f )l dx
By, (Nl <8}

<& / (itn — ™" + g [l dx
By (f{lu| <8}

<2 / g — ul @Dl dx + / PRICEUPIS
B, ﬂ{‘mf‘s} n m{lulfs}
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g—1 1

q
<2'¢ / lup — ul"ldx / lp["?dx
By {lul <8} By ({Iul<8)

q—1

1
q
+/ lu, — ul"dx / lo|"dx
(|| <8} By (N{lu|<8)
g—1
<2e| ([ n — w9z
B, ({Jul <8}

g—1 1
q q
+ / |, — ul"dx f lp)"9dx
By (M|u|<8} By (u|<8}

<& Clel:, (3.17)

and

/ 1 f = ) — f )l dx < Nés’/ lpl'dx
nn{lulfa} Cy

1 2
< No&'|Cyl2 (/RN |§0|2th> <E'Cloll. (3.18)
Thus, putting together (3.16), (3.17) and (3.18) we get

/ ' | f(un) = fun —w)'|@l'dx < CEll@]le.
(B, (0) N{Iul<8)

Moreover,

/ | f () — fun —w)' gl dx
(B, (0) N{Iul>6)

= Cs/ 2" (lun — ul'lel" + lun|"1p|"dx
(B, (0) Mlul>3)

+sf 2! (Juy — w0l + u, |9V @) dx
(Biy ) N{lu|>3)

=&Clels + CgZ’/ _ (lun — ul" + |un )@l dx.
(B, (0) M{ul>3)

In view of u € H, we know that |(RN \ Br(0) N{lu| > 8}| — 0 as R — oo, then there
exists R; > 0 such that |(RY \ Bg, (0)) N{|u| > 8}| < &. We define R, = max{Ro, Ri},
we deduce that

lun — ul'lo|"dx

/wgz (0) N{lul>8)

t

2 * 2 B
< / g — ul'* dx / ol T dx
(Bﬁéz (0)) Mflu|>6} (Bfgz 0)) N{lul>8}
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4s—p
2N—n
X / ldx
(B, (0) N{lul>4}
ds—p '
= s ol

In similar way, we can prove that the following inequality is true.

25—
f unl'lol'dx < CETH gL
(B, O) llul>5)

Hence,
[ 1f)+ s - fanlieldr < £Clolt.
B, (0)
It is easy to verify that

/ Lf (wp) + f ) — fun)|' |ol"dx < C&lg]e.
By (0)

Since u, is bounded, we have u, — u a.e.in RY, u, — uin L RN), p € [1,2

loc

I > g, such thatlr € (2,2%), tL1(g — 1) € (2,2) and

l q 1 N 2N 2N
l< —t1< t=1+—)t < |1+ . < =2
-1 qg—1 qg—1 N—-—pn) 2N—p N —2s

Hence, we have

e
|f(un - u) - f(un) + f(u)|t171
1
< Cllun — ul + |t — w77+ [un| + 97"+ ] + [ul™ =T

(3.19)

¥). Let

k
5°

L L (g— L A (g— L L (g—
< Cllun = ul T — ] 1O a1ty 1970 75T o Juf @)

=: Ch,,.
Thus,

1 1
2/ C (|| 77" 4 u] 11~ D)dx
Br, (0)

= / im (Chy — | £ty — ) = f () + f@)|7T)dx
B

Ry (0) 17
< lim c/ hndx—/ f Gt — ) — Flun) + Fa) T dx
=00 B, (0) B, (0)

n—00 n—s00

= lim C/ hpdx — lim sup/ | f(up —u) — fup) + f(u)ltﬁdx
B, (0) B, (0)

- 2/ CQul ™" + [ul P4~V dx
Bg, (0)

n—oo

— lim SUP/B 0 |f Gt — 1) = ) + fG0)|' FTdx.
Ry
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Consequently,

n—oo

0 < lim inf/ |y — ) = f ) + @) TTdx
Bg, (0)

n—oo

< lim sup /B =0 = f) + F) ' dx
R

<0.

So, we obtain (3.19) holds. By applying Holder inequality, for any £ > 0, n large enough,
we have

/ f Gt — ) — Flun) + F@) o dx
Biy (0)

-1 1

T T
< (/ | f = 1) = f ) + f<u>|‘f’1dx> (f |<p|”dx)
Biy (0) Br, (0)

<éllely =¢.

As a consequence, [py | f (un — u) — f(un) + f@|'lpl'dx < &ll@ll; = &.
(iv)

/ <L * F(up — M)) S lup —wedx — / (L * F(un)) f (un)pdx
RN |x|l’« RN

|x[#

+ (L * F(M)) Swpdx

Eals
| |#
1
_|_/ (— * F(u)) (f (W) — f(un))pdx
RV \ x|

+ / (L * (F(up —u) — F(up) + F(“))) fu)pdx
RN

|x[#

—/ < ! *F(un—u)>f(u)(pdx
RV \ [xX|*

1
:Il+12+/RN (**F(u)) (f ) = fun) + fun —u))pdx

|x[#

— / (L * F(u)) fu, —u)pdx — / <L * F(uy — M)) Su)pdx.
RN\ [x[# RV \ [x[#

Clearly, we have

1
= /I%N <7 * F(un — M)) (f(un —M) — f(un) + f(M))godx

1 1
L = (/RN |F(un — u)l’dX> (/RN Lf un —u) — fun) + f(u)ltlwlth> = C&llolle-

1
|| < (f If(un)ltlgﬂltd)c)l (/ |F(un —u) — Fup) + F(u)|t>
RN RN

-1

g(f |f<un>|fﬁdx) " (/ |<p|”dx)”s
RN RN

= Céllgle-
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In similar way, we get |I3] < C&||¢||.. Let us observe that,

1
A&N <W * F(”)) Sfup —u)pdx

1
< C/ (— % F)(|tn — u| + [uy — ul?"")|pldx
RN x|

1 1
c/ L Fw |un—u||<p|dx+c/ L F @) un — ut N pldx
RV \ |x|H RV \ x|

1 2 2
2, \° 1 2
<C lp|“dx — x F(u) ) |u, —ul~dx
RN RNV \ |x[#
1 g o
e o9dx )" L r @) = u P
[ AN "

N N
Since i % F(u) € L7 (RY), we have (i * F(w)* € L (R) and 32 € (2,2). so,

N N
we have |u, — u|> € L7 (RN). Since |u, — u|>*—0 in L¥-# (RY), we deduce that

1 2
/ (— * F(u)) lu, — u|2 — 0.
RN \ [x|H

IA

qt gt—1 2N _ 2N (g—Dgt 2N(gt—1) _
Moreover, we have 7T gt p = u giml GN—jgiaN = 4! € (2,2%) and
(@=Dgt . 2N (gi=1) N | gt W=l
lu, —u| 4= —0in L @N-wai=2N (RY), we get (W * F(u))a-1T e L an (RY), |u, —
(g—Dqt 2N(qt—1) N 1 _qt (g—Daqt
u| 9= € LCN-wq=2N (R™) and fRN (W * F(u))9-T|u, —u| #-1 dx — 0. Hence, we
have
1
——x F(u) | fup —uw)p| < C&ll@lle.
RV \ [x]#
In similar way, | fRN (ﬁ * F(up —u)) f(u)p| < C&|l@lle. Therefore (iv) holds. ]

By using Brezis—Lieb Lemma [10,18] and Lemma 3.9, we have the following lemma.
Lemma 3.10 Let {u,} C H; be a (PS)y4 sequence of J. with u,—u in Hg, then

(1) Je(wy) = Je(up) — Je(u) + o0p (1),
(i) 17 (wn)|l = 0 (1).

Proof (i) We note that

Je(un —u) = Je(un) + Je(u)

1 1 1
= 5 (lun — wll2 = llunll2 + llull?) - 3 (/ (— * F((uy — u>+>> F((un — u)")dx
RN

|x[#

1 1
_/ <7 % F(u,f)> Fub)dx +/ (— % F(u)) F(u)dx)
RN\ |x[# BN\ |x|#
- i/ (Gun — w1 = Ja % % )dx,
2% Jrn

By the Lemma 3.9 (i7), u,—u in H, and Brezis-Lieb Lemma. we have (i) holds.
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(i) Recall that {u,} is a (P S)4 sequence of J,, we have ||J.(un)| = 0,(1), J.(u) = 0. For
any & > 0, n large enough, V ¢ € H; and ||¢|| = 1, by the Lemma 3.9 (iv) we get

(S — 1), @)

/ / 1 + +
Je@un), ) — (Jo(u), @) — /]RN (7 * F((un —u) )) F((un —u)")edx

|x |
- / (—1 *F(u,T))f(u,T)sodx
RN\ |x|#

1 * * *
—f (— *F(zﬁ)) fuh)edx —/ (G — )15 = a5 w2 Dpdx
RN RN

|x[#

/ 1 + +
< e lllells + V (= * F(un —w)™)) f((un —u)")pdx
RV [x|H

—/ (L *F(u;)) fhHedx
RN\ [x|#
2%-1

+/ < 1 *F(u+)> Ffwedx
RNV \ |x[#
2*

2 7
< Elglle + CEllglle + (/R I |u+|25“|2?*1dx) lelle

=élells + Céllells +Ellelle-

This completes the proof of (ii). O

2¥—1 25—-1 2%—-1
+/RN)|<un—u>+w Bt gl

Lemma 3.11 J, satisfies the (P S)q condition at any leveld < m,__.

Proof Letu, C H. be a (PS)y sequence of J.. Then, by Lemma 3.4 we know that {u,} is
bounded in H, and we can assume u, > 0. Hence, up to a subsequence, there is u € H, such
that u,—u > 0in H,, u, — uin Lj _(R") for each r € [2,2}), u,(x) = u(x) a.e. in RN
and J/(u) = 0. Set w, = u, — u, by Lemma 3.9 we have

Je(wp) = Je(up) — Je(u) +0,(1) =d — Je(u) + 0,(1) and Jg/(wn) = o0,(1).

Moreover, for any « € (2, 2¥) and o < 4, we have

1
Je(u) = Je(u) — &( ey

—(1—1) ||"‘+1/<1 F( ))()d
= 5 & ||14n5 &RN W* uy) ) f(up)updx

1 1
— 5 /I‘{N <W * F(un)> F(un)dx

* 1 .
- — |u,,|25dx + — |un|ZS 2Mﬁdx
2% Jrv o JrN
> 0.

By Lemma 3.6 we have d — Jo(u) < d < my, < %S% and by Lemma 3.8 we know
u, — u in H;. Hence, the Lemma is proved. O

By Lemmas 3.3 and 3.11 we have the following lemma.

Lemma3.12 J |y, satisfies the (PS)q condition at any level d < my,.
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Proof of Theorem 1.1 By Lemma 3.1 we know that functional J, satisfies the mountain pass
geometry, then using a version of the mountain pass theorem, there exists a sequence {u,} C
H, such that

lim Jo =c; and (1+[luall)IIJ;] = o0n(D).

n—o0

Foranyt € RwithVy < 7 < Vi, wehavemy, < m; < my_,.ByLemma3.6,m, < %S%.
Apply Lemma 3.4, Lemma 3.11 and Theorem 6.3.4 in [49], we obtain that m is a critical
value of I; with corresponding nontrivial nonnegative critical point # € H,. For any r > 0,
take n, € C§° (R, [0, 1]) be such that

n=1if|x| <r and n, =0if |x| > 2r.

Set u, := n,u, it is easy to verify that u, € H, for each r > 0. By Lemma 3.2 there exists
tr > Osuch thatit, := t,u, € M. Consequently, there is ro > 0 such that & := ii,, satisfies
I (1) < my,,. In fact, if this is false, then I (ii,) = I (t,u,) > my,, for all r > 0. Notice
that u, — u in H, as r — +o0o0 and u € M. we can deduce that t, — 1 asr — 4o0.
Hence,

m, < lrlgl+ng I (truy) = Ir(w) =me <m,_,

which gives a contradiction, then I;(#) < m,_ . The invariance by translation, we may
assume Vo = V(0) < t and supp(it) is compact. We use the continuity of V, there is an
&* > 0 such that

V(ex) <1, Vee€(0,6%) and x € supp(ir).

Hence,
Je(tin) < I (tii), Ve e (0,6") and t >0,
and
1}12218( Je(tin) < 1}12218; L(ti) = I (@) <m,_, Y e€(0,¢&%).
Consequently,

ce<my _, Y ee(0,&%).
Lemma 3.11 guarantees up to a subsequence such that u, — u in H,, then J/(u) = 0 and

Je(u) = c.. Hence u is a ground nontrivial nonnegative solution of (2.2). This completes the
proof of Theorem 1.1. O

4 Multiplicity results
4.1 Technical results
In this section, we focus our attention on the study of the multiplicity of solutions to (1.1).

. N
Since Vo > 0, by Lemma 3.6, m,, < xS . From the proof of Theorem 1.1 we know
that my is a critical value of Iy, with corresponding nontrivial nonnegative critical point
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w e HS(RY). Fix § > 0 and let n € C®(R™, [0, 1]) be a function such that n(z) = 1 if
0<r< % andn(t) =0ifr > §. Forany y € A, we define

EX —
W y(x) = n(lex — yDw (Ty> , Vx e RN,

Then for small ¢ > 0, one has ¥, , € H,\{0} for all y € A. In fact, using the change of
variable z = x — %, one has

/ V(ex) W7, (x)dx = / V(ex)n*(Jex — y)w? (m;y) dx
RN : RN .
= / V(ez + y)n*(lez)w?(2)dz
RN

< C/ w(2)dz < +oo.
RN

Moreover, using the change of variable x’ = x — % 7 =z- ’g’, we have
_ —y\ 2
s 1 In(lex — yDw (52) — n(lez — yhw (52)|
2 _ 3 B
I=2)> ey l2 @y = ZC(S) /:/]RNX]RN |x — z|N+2s drdz
1 ex'Dw(x’) — n(lez Dw@)|?
:7C(S)// [nexDw ) = nlezDw "
2 BN xRN |x/ _Z/|N+25

= (=) n(exDw® 172w, = I(=A) I nswl 72 g ),

where 7. (x) = 5(|ex|). By Lemma 2.4, we see that n,w € D*?>(R") as ¢ — 0, and hence
W,y € D52(RN) for ¢ > 0 small. Hence WV, y € He. Now we proof W, y, # 0. In fact,

ex — ex —
/ \pe?z,y(x)dx = / n”(lex — )’|)w2 (7}1) dx = / n*(lex — y|)w2 (7))) dx
RY R € lex—y|<d &

2/ n*(lezhw?(2)dz 2/ w?(2)dz — / w?(2)dz > 0

lzl<£ Bo(£) RN

as ¢ — 0. Then W, , # 0 for small ¢ > 0. Therefore, there exists unique #; > 0 such that
max ItV y) = I (1, Ve y) and £, W, ,, € N,
>

We introduce the map @, : A — N by setting

D (y) = ta\ljs,y-

By construction, ®,(y) has a compact support for any y € A and &, is a continuous map.
Lemma 4.1

lim Je (P (y)) =m, uniformlyin y e A.
e—0 0

Proof Assume by contradiction, then there exists 8o > 0, {y,} C A ande, > Owithe, — 0
such that
ey (@, () — my, | = So. @.1)
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By using ®;, € N, and Lemma 3.5 we know that there is a 7o > 0 such that

1 £
f (—*F(cbgn(yn))) F(®e, () ®a, (y)dx + f (s, ()% dx
RV \ |x|# RN

= [|®e, )12,

=10

4.2)

which implies that #, - 0. Hence there exists a T > 0 such that t,, > T.If t,, — oo, we
have

Cllwli; Z/ |(_A)%\ya,,,y,,|2dx+/ Vienx)WZ | dx
RN RN .

1 *
=17 /R . (— * F (D, (yn») f (@, () @e, (yu)dx + 1, fR 1@, ) Fdx

[x]#

v

-2 2%
[8;1 /]RN |t€n lIJE}'u)’n' sdx

fg_nz/ |te, n(lenx)w (X)[ dx
RN

A%

> 1,2 lte, w(x)| > d
= s o, W(X X
|X|<m
2%_2
= e
%<|x|<8
— +00

for large n. This yield a contradiction, then 7, — fo > 0. Now we claim that f) — 1. By
using Lebesgue’s theorem, we can verify that

: 2 _ 2 2
im0, G2 = Gllwl,,

1 1
lim /RN <7 * F (D, (yn))> S (@, (yn)) P, (yn)dx = /RN (7 * F(low)) fow)towdx,

n—00 [x | ||

and

lim |q>an(yn)|2?dx:/ ltow|* dx.
N RN

n—o0 Jp

Therefore, from (4.2), we get

1 *
fgllwll%/o = /N(W * F(tow)) f (fow)towdx +/N ltow|> dx.
R R

This show fow € My,. Noting that w € My,, we see fop = 1, so claim is proved. Moreover,
similar to the above arguments, we can get

lim Jg, (P, (yn)) = Iy, (w) =my
n—o0
which contradicts to (4.1). This completes the proof. O

Now, we are ready to introduce the barycenter map. For any § > 0, let p = p(§) > 0
such that As C B,(0). Define Y : RN — RN as follow:

X if |x] < p,
T("):{ﬂ if |x| > p.

x|
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We define the barycenter map 8, : Ny — RY as follows

Sy Y(ex)|w(x)|?dx
/35 = P
S lw(x)|2dx

Lemma 4.2

lin}) Be (P (y)) =y uniformlyin y e A.
e—

Proof Assume by contradiction, then there exists 89 > 0, {y,} C A and &, — 07 such that
|Be, (Pe, (¥n)) — ynl =80 >0, VneN. 4.3)
By using the definitions of B, and ®,,, we can see that

f]RN [T(snx + y,,) — Yn]|77(|8nXI)w(x)|2dx
Jan [n(lenx Dw () 2dx '

Taking into account the Lebesgue dominant convergence theorem, we can infer that

|,BE,,(q>a,, ) —ynl — 0
which contradicts (4.3). ]

Ben (Pe, (¥n)) = yn +

Lemma4.3 Foranyt > 0, let {u,} C My with I (u,) — my. Then {u,} has a subsequence
strongly convergent in H*(RN). In Particular, there exists a minimizer for m.

Proof From the proof of Lemmas 3.4 and 3.6, we know that {u,,} is bounded in H*(R") and
me < %8 5 By the Ekeland Variational principle, we may assume that {u,} is a (PS),

sequence of I;. Then, by Lemma 3.8, there existsu € H* (]RN ) such that, up to a subsequence,
u, — u in H*(RY). Moreover, « is a minimizer of m.. ]

Lemma4.4 Let ¢, — 0 and u, € N, be such that J., (uy,) — my. Then there exists

a sequence {y,} C RN such that u,(- + y,) has a convergent subsequence in H*(RN).
Moreover, up to a subsequence, ¥, = e,y, — y € A.

Proof Since u, € Ny, and lim,,_, o0 Je, (11p) = my by Lemma 3.4 we can see that {u,} is

bounded in H* (RY). By Lemma 3.5, we have |lu,||;, - 0. we can argue as in Lemma 3.7
to obtain a sequence {y,} and constant » > 0 such that

lim inf / lun(x))?dx = B > 0. (4.4)
By (yn)

n—oo

Note, if this is false, then for any » > 0, we have

lim sup/ |un|2dx:O.
B, (y)

n—>00 RN

By Lemma 2.2, we know that u,, — 0 in L'®RN) forr € [2, 2¥), we can argue as the proof
of (3.2) and we deduce that

AN (ﬁ % F(un)) f(un)undx = 0”(1)'

As the proof of Lemma 3.7, we can prove fRN Iulzfdx = 0,(1). Since u, € N, we
get |luylle, = on(1), which gives a contradiction. Hence, (4.4) holds. Now, we set i, =
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Uy (- + yp). Since, {u,} is bounded in HS(RV) and (4.4), up to a subsequence, we have
in—i #0in H*(RN) and ii, (x) — #(x) a.e. in RV, Fix t, > 0 such that t,,ii,, € My, and
set Y, = &,yn. Since u, € N, , we can see that

mVO =< IVo(tnizn)

1, . t2 . 1 I 1/ 1 . .
— Etnz[un]Z +5 /RN Voi2dx — 7 s |tit} 1% dx — 3 (W * F(tnu,J{)) F(tyit;))dx
s
=< ]8,, (thutn)
= Js,, (un)
= mVO +0,(1),

which gives

nlingo Ty, (taity) = my > 0.
By Lemma 4.3, up to subsequence, we get 1,ii, = v, — vg in H*(R"). Note that,

p = lim inf | (x)|*dx = lim inf liin (¥)[2dx < Hminf |y |2, ox.-
By (yn) n—>o0 Jp (0) n—00 H* (RY)

n—o0

For large n, we have 0 < g < ||1Z,,||%1S(RN), then

B 2 ~ 2 2
0< Etn < ”tl’lun”Hs(RN) = ”vl’l ||HS(RN) <C.

Hence {z,} is bounded, and we may assume that f, — t* > 0. So, up to a subsequence, we
have

1
vy — vo =¥ #0in H*RY), i, — v = i in H*(RN).

In order to complete the proof of the lemma, we show that {3,} is bounded in RY. We
argue by contradiction, up to a subsequence, we assume that |y,| — oo. Notice that, up to
subsequence, we have v, — vg # 0in H*(R"). By Fatou’s lemma we get

rnv0 = IV()(UO)
1
< Iy, (vo) — 5(1{/0(110), vo)
= 1/ (Vaova — Voud)dx — l/ B F(h) ) F(vhHdx
2 Jen 0 0 2 Jon \Ix|® 0 0
1 1
+5 fRN <W * F(vg)) FHvgdx

1

* 1 *
+2 +2
— vy |“Sdx + — vy |“sdx

2 o 100 +2/RN|0|

. !
< liminf (Js, (va) — 5 (Fj, (v, va)
= liminf J;, (v,)

n—oo

< 1 =
_nlgréo Je, (up) = my,
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which is a contradiction, so we get {3,} is bounded in RY . Therefore, up to subsequence,
. — vy € RN.If y € R¥\A then V5 < V(y). This is a contradiction. Hence, we can
conclude that y € A. O

Now, we introduce a subset A/ of NV, by setting
Ne = {u € Ne : Je() < my +h(e)),
where h(e) = maji( [Je (D (y)) — my, |. Then, we can use Lemma 4.1 to conclude that
ye
lim h(e) =0.
e—01

Hence, for each y € A and & > 0, we have ®,(y) € N,. By Lemma 4.4, we can prove

the following Lemma.

Lemma 4.5 Forany§ > 0, we have

lin}) sup dist(Be(u), As) = 0.

E7Y ueN,
Proof Let ¢, — 0. For any n € N, there exists {u,} C ./\78n such that

inf |B, (un) — y| = sup inf |B,, () — y| + on(1).
YEAs

ueN YEAS

Since {u,} € N,,, it follow that
My, < Cg = Js,,(u,z) < my, + h(en).

Then, J;, (u,) — My, . By Lemma 4.4, there exists {y,} € R suchthat {ii,, (-) := u, (-+y,)}
has a convergent subsequence in H*(RV) and j, := &,y, — y € A. Then,

fRN [x (enx + Yn) — yn]|ﬁn|2dx
fRN ity |dx

The proof is completed. O

€ A.

ﬂs,, (up) = yn +

4.2 Proof of Theorem 1.2

Lemma 4.6 Assume that (V) and (f1)—(f4) hold. Then, for any § > 0O there exists ¢5 > 0
such that the problem (1.1) has at least catp;(A) nontrivial nonnegative solutions for all
e € (0, &5).

Proof By Lemma 4.1 and the define of 1., we have

lim ¥, (n; ' (®:(y))) = lim Jo(®c(y)) = m,_ uniformlyiny € A.

e—0 e—0 0
Then, there exists ¢ > 0 such that S, := {fu eS8 : Ye(u) < my + h(e)} # 0 for all
e € (0,¢r).

Applying Lemmas 3.3, 4.1, 4.2 and 4.5, we can find some ¢; = &5 > 0 such that the
following diagram
~ ng

-1
ABNE S ALK A,
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is well defined for any ¢ € (0, €1).By the proof of [7, Theorem5.1,Theorem5.2], we know
that for ¢ > 0 small enough, we deduce from Lemma 3.12 that v, satisfies the P .S condition
in S,. And ¥, has at least catg, (55) critical points on S, By Lemma 3.3 we conclude that
J. admits at least cata, (A) critical points on N. ]

Now, we use a Moser iteration argument [32] to study of behavior of the maximum points
of the solutions.

Lemmad4.7 Lete, — 0 and u, € /\78n is a nontrivial nonnegative solution to (2.2). Then
exists y, € RN such that v, = u, (- + yy) satisfies the following problem

(=A) vy + Va()vp = (5 % F) f@Wa) + a5 72 in RV
v, € H'(RY), 4.5)
v, >0 in RV,

where V,(x) = V(eyx + €yyn), €nyn — y € A and there exists C > 0 such that
lvll Lo mny < C for all n € N. Furthermore,

lim v,(x) =0 wuniformlyin n € N.
|x|—o00

Proof Forany L > 0 and 8 > 1, let us define the function
r(un) = rLp(n) = vavy € H'RY)
where v, , = min{v,, L}. Since r is an increasing function in (0, +00), then we have
(a—>b)(r(a)—r)) >0 forany a,be R*.

Define the functions
|[|2 t , |
H() = > and L(t) = (r'(r))2dr.
0

For all a, b € R such that a > b, by applying Jensen inequality we get
a
H'(a —b)(r(a) —r(b)) = (a = b)(r(a) — r(b)) = (a — b)/ r'(t)dt
b
a a
=(a—b) / (L'(1)%d1 = ( / L'(t)dr)*.
b b
In similar way, we can prove that the above inequality is true for all @ < b. Therefore

H'(a — b)(r(a) — r(b)) > |L(a) — L(b)|2 forany a,b e R. 4.6)

By using (4.6), we have

L@@ = LoD = @00 = mo) ((207%77) @ = (00757") ).
4.7)
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Now, we take r(v,) = v, vi(g D a5 test-function in (4.5) and in view of (4.7), we obtain

[L(Un)]z / Vn(x)|vﬂ|2viﬁn ldx

/‘/sz % ((vn i(ﬁ 1)) (x) — (vnvi(ﬁ 1)) (y)) dxdy

(4.8)
/ Vi) [vn Po; 6~V
RN
1 *
- / ( F(vn)) F gtV + / Joal 20,5 V.,
| x|# RN
Since
1
L(vy) > Evnvi(ﬁ b
and we can use Lemma 2.1 to deduce that
1\2
(L)) > CIIL(v)]? —) Clvd, 12 4.9)
n n Lz* RN) /3 n L n LZ* RN) .
On the other hand, since {v,} is bounded in H*(R™), there exists Co > 0 such that
1
— % F(v,) < Cp. (4.10)
x| L (RN)

Taking € € (0, Vp), and using (3.1), (4.9) and (4.10), we can see that (4.8) yields

HU"UL” ”LZ* RNy = <cp’ (/ lun|? vy, (B l)dx-i-/ [Vn | SUL(ﬂ 1)abc>

Setq +2f —2=2f= =12 +2—¢q) > |, then

2
—1 9% 2F
(/ |v,1vfn|2xdx>
RN ’
*_ 1
< cp? (fN|vn| v dx+/ oa %~ (w076 )>dx)
R

* — 2 1 *_ -1
< cp? (f |vn|2sdx+f o v B >>dx+/ a5 2, >2dX)-
RN {vn=<Ro} {va>Ro}

22

¥
onlPidx) ¥ <

By {u,} is bounded in Hj, there exists Ry > 0 such that (f{ < 2(:17

Hence, we can see that

vp>Ro}

f fon 2 0,9 oo L, 2BV
{vi<Ro}

%

2352 2
* 2 _ * 2
+ </ [V |5 dx) (/ (vnvg nl)zxdx>
{va>Ro} {va>Ro} '
2
2—g+1 2 1 p—1y2r o, V%
<R, /RN|1)”|»dx—‘r-zcﬂ2 (/RN(U"UL*”) dx)
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Therefore, we can deduce that

2
—1,9% 2 2 —g+1 *
(/RN |vnv5n1|25dx> <2082 (1 +RE I )/RN a2 dx < C < 400. (411

2
S

Taking the limit in (4.11) as L — 400 and Fatou lemma, we have (f]RN |vn|2§“ﬁdx) % <

C < +00. S0, v, € LEP(RY). For any 8 >*%(2;k+2—q) > land B < 1+% . Zj;q
2<q+2-2<2F+28-2<2¥1+ Z'Yz_q).wecandeducethat

2
" ¥ )
(/ |Un|25’3dx) 5Cﬁ2</ |vn|’“2/3*2dx+/ |v,,|2s+2/3*2dx>
RV RN RN

2% (25—
Leta = Egﬂ“flz),b:q—i—Zﬂ—Z—a,r:

2%—a’ 2%—a
Taking into account Young inequality we have
a *
/ |97 2dx < —/ onZdx + 2 / v |5 TP 2%
RN 2:,‘ RN

¢ <1 +/ [Un | S de)
]RN
2
* 2? *
( / |vn|2xﬁdx) < Ccp? (1 + f |vn|zx+2ﬁ*2dx).
RN RN

We note to 8 > 1, we deduce that

2
* 2? *
(1 +/ |u,,|2xﬁdx> <cp? <1 +/ |u,,|2x+ﬁ*2dx>. (4.12)
RN RN

Now, we set 8 = 1 + % . Z?T_‘ﬂ then observing that 2§ + 28 — 2 = 2;*(%(2:7 +2 —q)).
Iterating this process and recalling that 2§ +28;_1 — 2 = 2} ;. Argue as [21]. Thus,

IA

Co < +o00.

2 2 2t
== then =2F+28—2.

IA

Therefore,

2% .
Biv1i —1= (75)’ Br— 1.

Replacing it in (4.12) we have

’ 1
g, 2XBir1—D o i s
(1 +/ |vn|25ﬁl+]dx> R (C5i2+1)2<ﬁi+]_” (1 "‘/ vyz.ﬁ'ﬂf 2dx> .
RN N

. 284252 o
Denoting C; 11 = C,Bl.ZJrl and K; := (14 [ Unﬂl+ S “dx)2Pi-D . We conclude that there
exists a constant Cp > 0 independent of i, such that

i+1 1
26 -D
Kit1 < HC,- "V K, < CK;.
i=2
Therefore,

||v,,(x)||L00(]RN) < CpKj < 00,
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uniformly in n € N, thanks to v, € LEPL(RN) and lvalle, < C. Arguing as in [4], we can
prove that

lim v,(x) = 0 uniformly inn € N.
[x]—o00

[m}

Now we consider &, — 07 and take a sequence u, € N, of solutions of the problem
(2.2) as above. There exists y > 0 such that

lunllpooqgyy >y uniformlyin n € N. (4.13)

Assume by contradiction, we have lim |[lu,|l e @yy = 0. For any § > 0, there exists ng
n—0o0

such that [lup |l Loy < & for any n > ng. Since u,, € N, we have

1 «
lunll?, = f (W * F(un)> fun)updx + /R | lun| % dx

2
t *
§c</ (|un|2’+|un|q’>dx) +/ g P dx
RN RN
where t =

= 2N . Since 2t € (2,2¥) and gt € (2,2}), there exists 0 > 0 small enough
such that (2t — a) € (2,2}) and (gt — o) € (2,2}). Since we have that {u,} is bounded in
H(RN), we can deduce to

2
7
2 - 2
lunlle, < C (/ (lun | ! Tunl® + |un|qt G|“n|a)dx> +/ 1] ™ |un|®dx
RN RN

2
0.2 B 3 7 .
< Cllunll oo vy (/RN(Iunlz’ 7+ Jup | ")dx) + et G o v, /RN lun |~ dx
20
< CiET +Cr8°.
This implies that ||uy ¢, — 0 (n — 00). In similar way, we can deduce

1

| I '
5/ <W * F(un)> F(un)dx + E /RN |un|25dx —- 0 (I’l - OO),

then Jg, (u,) — 0 (n — 00), this contradict with Jg, (u,) — my > 0. As a consequence,
(4.13) holds. By Lemma 4.7, we have

lvnllpoogyy < C,  uniformlyin n € N,
and

lim v,(x) =0 uniformlyin »n € N.
|x|—o00

There exists R > 0 such that ||v, ||LoO(B;\;(0)) < vy, then
lunllLoo (B (ya)) < V- 4.14)

Hence
lunllLooBr(yn)) = V- (4.15)
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Let p,, is the global maximum point of u,,, taking into account (4.14) and (4.15) we can get
Pn € Br(y,). Hence, p, = y, + g, for some g, € Br(0). Then &, = &,y, + €,gx is the
maximum point of un(é). Since |g,| < R forany n € Nand ¢, y, — yo € A. Therefore,

lim V(&,) = V() = Vo,
n—00

which ends the proof of the Theorem 1.2. O
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