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Abstract
In present paper, we study the fractional Choquard equation

ε2s(−�)su + V (x)u = εμ−N
(

1

|x |μ ∗ F(u)

)
f (u) + |u|2∗

s−2u

where ε > 0 is a parameter, s ∈ (0, 1), N > 2s, 2∗
s = 2N

N−2s and 0 < μ < min{2s, N − 2s}.
Under suitable assumption on V and f , we prove this problem has a nontrivial nonnegative
ground state solution. Moreover, we relate the number of nontrivial nonnegative solutions
with the topology of the set where the potential attains its minimum values and their’s
concentration behavior.

Keywords Fractional Choquard equation · Ground state · Lusternik–Schnirelmann theory
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1 Introduction and themain results

In this paper, we are interested in the existence, multiplicity and concentration behavior of
the semi-classical solutions of the fractional Choquard equation

ε2s(−�)su + V (x)u = εμ−N
(

1

|x |μ ∗ F(u)

)
f (u) + |u|2∗

s−2u, x ∈ R
N (1.1)

where ε > 0 is a parameter, s ∈ (0, 1), N > 2s, 2∗
s = 2N

N−2s , 0 < μ < min{2s, N − 2s} and
F(u) = ∫ u

0 f (τ )dτ . The fractional Laplacian (−�)s is defined by

(−�)s�(x) = CN ,s P.V .

∫
RN

�(x) − �(y)

|x − y|N+2s dy, � ∈ S(RN ),
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where P.V . stands for the Cauchy principal value, CN ,s is a normalized constant, S(RN )

is the Schwartz space of rapidly decaying functions, s ∈ (0, 1). As ε goes to zero in (1.1),
the existence and asymptotic behavior of the solutions of the singularly perturbed equation
(1.1) is known as the semi-classical problem. It was used to describe the transition between
of Quantum Mechanics and Classical Mechanics.

Our motivation to study (1.1) mainly comes from the fact that solutions u(x) of (1.1)
corresponding to standing wave solutions �(x, t) = e−i Et/εu(x) of the following time-
dependent fractional Schrödinger equation

iε
∂�

∂t
= ε2s(−�)s� + (V (x)+ E)� − (K (x)∗|G(�)|)g(�) (x, t) ∈ R

N × R (1.2)

where i is the imaginary unit, ε is related to the Planck constant. Equations of the type
(1.2) was introduced by Laskin (see [22,23]) and come from an expansion of the Feynman
path integral from Brownian-like to Lévy-like quantum mechanical paths. With variational
methods, this kind equation has been studiedwidely, we refer to [11,17,45] and the references
therein.

When s = 1, the Eq. (1.1) turns out to be the Choquard equation

− ε2�u + V (x)u = εμ−N
(

1

|x |μ ∗ F(u)

)
f (u) + |u|2∗−2u in R

N . (1.3)

The existence, multiplicity and concentration of solutions for (1.3) has been widely investi-
gated. On one hand, some people have studied the classical problem, namely ε = 1 in (1.3).
When V = 1 and F(u) = |u|q

q , (1.3) covers in particular the Choquard–Pekar equation

− �u + u =
(∫

RN

1

|x |μ ∗ |u|qdy
)

|u|q−2u in R
N . (1.4)

The case N = 3, q = 2 and μ = 1 came from Pekar [36] in 1954 to describe the quantum
mechanics of a polaron at rest. In 1976 Choquard used (1.4) to describe an electron trapped
in its own hole, in a certain approximation to Hartree–Fock theory of one component plasma
[24]. In this context (1.4) is also known as the nonlinear Schrödinger-Newton equation.
By using critical point theory, Lions [26] obtained the existence of infinitely many radially
symmetric solutions in H1(RN ) and Ackermann [1] prove the existence of infinitely many
geometrically distinct weak solutions for a general case. For the properties of the ground
state solutions, Ma and Zhao [27] proved that every positive solution is radially symmetric
and monotone decreasing about some point for the generalized Choquard equation (1.4) with
q ≥ 2. Later, Moroz and Van Schaftingen [29,30] eliminated this restriction and showed
the regularity, positivity and radial symmetry of the ground states for the optimal range of
parameters, and also derived that these solutions decay asymptotically at infinity.

On the other hand, some people have focused on the semiclassical problem, namely,
ε → 0 in (1.3). The question of the existence of semiclassical solutions for the non-local
problem (1.3) has been posed in [6]. Note that if v is a solution of (1.3) for x0 ∈ R

N , then
u = v(εx + x0) verifies

− �u + V (εx + x0)u =
(∫

RN

G(u(y))

|x − y|μ dy

)
g(u) in R

N , (1.5)

whichmeans some convergence of the family of solutions to a solution u0 of the limit problem

− �u + V (x0)u =
(∫

RN

G(u(y))

|x − y|μ dy

)
g(u) in R

N . (1.6)
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For this case when N = 3, μ = 1 and G(u) = |u|2, Wei and Winter [43] constructed
families of solutions by a Lyapunov–Schmidt-type reduction when inf V > 0. This method
of construction depends on the existence, uniqueness and non-degeneracy up to translations
of the positive solution of the limiting equation (1.6), which is a difficult problem that has
only been fully solved in the case when N = 3, μ = 1 and G(u) = |u|2. Moroz and
Van Schaftingen [31] used variational methods to develop a novel non-local penalization
technique to show that equation (1.3) withG(u) = |u|q has a family of solutions concentrated
at the local minimum of V , with V satisfying some additional assumptions at infinity. In
addition, Alves and Yang [5] investigated the multiplicity and concentration behaviour of
solutions for a quasi-linear Choquard equation via the penalization method. Very recently,
in an interesting paper, Alves et al. [3] study (1.4) with a critical growth, they consider the
critical problem with both linear potential and nonlinear potential, and showed the existence,
multiplicity and concentration behavior of solutions when the linear potential has a global
minimum or maximum.

On the contrary, the results about fractional Choquard equation (1.1) are relatively few.
Recently, d’Avenia, Siciliano and Squassina [15] studied the existence, regularity and asymp-
totic of the solutions for the following fractional Choquard equation

(−�)su + ωu =
(∫

RN

|u(y)|q
|x − y|μ dy

)
|u|q−2u in R

N , (1.7)

where ω > 0, 2N−μ
N < q <

2N−μ
N−2s . Shen, Gao and Yang [39] obtained the existence of

ground states for (1.7) with general nonlinearities by using variational methods. Chen and
Liu [13] studied (1.7) with nonconstant linear potential and proved the existence of ground
states without any symmetry property. For critical problem, Wang and Xiang [41] obtain
the existence of infinitely many nontrivial solutions and the Brezis–Nirenberg type results
can be founded in [34]. For other existence results we refer to [8,9,19,20,28,42,48] and the
references therein.

For the concentration behavior of solutions, we note that the only works concerning the
concentration behavior of solutions come from [44,46]. Assuming the global condition on
V ∈ C(RN , R):

(V0) 0 < V0 := inf
x∈RN

V (x) < lim inf|x |→+∞ V (x) := V∞ < +∞,

which is firstly introduced by Rabinowitz [37] in the study of the nonlinear Schrödinger
equations. By using the method of Nehari manifold developed by Szulkin and Weth [40],
Zhang, Wang and Zhang in [46] obtained the multiplicity and concentration of positive
solutions for the following fractional Choquard equation

ε2s(−�)su+V (x)u = εμ−3

(∫
R3

|u(y)|2∗
μ,s + F(u(y))

|x − y|μ dy

)(
|u|2∗

μ,s−2u + 1

2∗
μ,s

f (u)

)
inR

3,

(1.8)
where ε > 0, 0 < μ < 3, F is the primitive function of f . Different to the global condition
(V0), Yang in [44] establish the existence and concentration of positive solutions for the
fractional Choquard equation (1.8) when the potential function V ∈ C(R3, R) satisfies the
following local conditions [16]:

(V1) There is a constant V0 > 0 such that V0 = inf x∈R3 V (x).
(V2) There is a bounded domain � such that

V0 < min
∂�

V .
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Note that in (1.8), the critical term is involved in the convolution-type nonlinearity, which
is totally different from our problem (1.1). It is natural to ask how about the concentration
behavior of solutions of (1.1) as ε → 0+? And how about the influence of the potential on
the multiplicity of solutions? However, to the best of our knowledge, it seems that these two
problems were not considered in literatures before. In this paper, we are concerned with the
multiplicity and concentration property of nontrivial nonnegative solutions to (1.1), and we
will give some answers to the above questions.

Concerning the continuous function f ∈ C(R, R), we assume that f (t) = 0 for t < 0
and satisfies the following conditions:

( f1) limt→0
f (t)
t = 0;

( f2) there exists q ∈ (
2N−μ

N ,
2N−μ
N−2s ) such that limt→∞ f (t)

tq−1 = 0;

( f3)
f (t)
t is increasing for every t > 0;

( f4) there exists σ ∈ (qN ,
2N−μ
N−2s ), c > 0 such that f (t) ≥ ctσ−1 for all t ∈ R

+, where

qN = max{ 2N−2s
N−2s , N+2s

N−2s }.
Then we state our main result as follows.

Theorem 1.1 Suppose (V0) hold and f satisfies ( f1)–( f4). Then there exists an ε∗ > 0 such
that for any ε ∈ (0, ε∗), the problem (1.1) possesses a nontrivial nonnegative ground state
solution.

In order to describe the multiplicity, we first recall that, if Y is a closed subset of a
topological space X , the Ljusternik–Schnirelmann category catXY is the least number of
closed and contractible sets in X which cover Y . Then we have our second result as follows.

Theorem 1.2 Suppose (V0) hold and f satisfies ( f1)–( f4). Then for any δ > 0, there exists
εδ > 0 such that for any ε ∈ (0, εδ), the problem (1.1) has at least cat�δ (�) nontrivial
nonnegative solutions. Moreover, if uε denotes one of these solutions and xε ∈ R

N is its
global maximum, then

lim
ε→0

V (xε) = V0,

where � := {x ∈ R
N : V (x) = V0} and �δ := {x ∈ R

N : d(x,�) ≤ δ}.
We shall use the method of Nehari manifold, concentration compactness principle and

category theory to prove the main results. There are some difficulties in proving our theo-
rems. The first difficulty is that the nonlinearity f is only continuous, we need to prove the
new Brezis–Lieb type Lemma for this kind of nonlinearity. The second one is the lack of
compactness of the embedding of Hs(RN ) into the space L2∗

s (RN ). We shall borrow the
idea in [3,12] to deal with the difficulties brought by the critical exponent. However, we
require some new estimates, which are complicated because of the appearance of fractional
Laplacian and the convolution-type nonlinearity.

This paper is organized as follows. In Sect. 2, besides describing the functional setting to
study problem (1.1), we give some preliminary Lemmas which will be used later. In Sect. 3,
we prove problem (1.1) has a ground state solution. Finally, we show themultiple of nontrivial
nonnegative solutions and investigate its concentration behavior, which completes the proof
Theorem 1.2.

Notation In this paper we make use of the following notations.

• For any R > 0 and for any x ∈ R
N , BR(x) denotes the ball of radius R centered at x .
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• L p(RN ), 1 ≤ p < +∞ denotes the Lebesgue spacewith the norm ‖u‖p = ‖u‖L p(RN ) =
(
∫
RN |u|pdx) 1

p .
• The letters C,Ci stand for positive constants (possibly different from line to line).
• “→” for the strong convergence and “⇀” for the weak convergence.
• u+ = max{u, 0} and u− = min{u, 0} denote the positive part and the negative part of a

function u, respectively.

2 Functional setting

Firstly, fractional Sobolev spaces are the convenient setting for our problem, so we will give
some sketches of the fractional order Sobolev spaces and the complete introduction can be
found in [17]. We recall that, for any s ∈ (0, 1), the fractional Sobolev space Hs(RN ) =
Ws,2(RN ) is defined as follows:

Hs(RN ) =
{
u ∈ L2(RN ) :

∫
RN

(|ξ |2s |F(u)|2 + |F(u)|2) dξ < ∞
}

,

whose norm is defined as

‖u‖2Hs (RN )
=
∫
RN

(|ξ |2s |F(u)|2 + |F(u)|2) dξ,

where F denotes the Fourier transform. We also define the homogeneous fractional Sobolev
space Ds,2(RN ) as the completion of C∞

0 (RN ) with respect to the norm

‖u‖Ds,2(RN ) :=
(∫∫

RN×RN

|u(x) − u(y)|2
|x − y|N+2s dxdy

) 1
2

= [u]Hs (RN ).

The embedding Ds,2(RN ) ↪→ L2∗
s (RN ) is continuous and for any s ∈ (0, 1), there exists

a best constant Ss > 0 such that

Ss := inf
u∈Ds,2(RN )\{0}

‖u‖2Ds,2(RN )

‖u‖2
L2∗s (RN )

.

According to [14], Ss is attained by

u0(x) = C

(
b

b2 + |x − a|2
) N−2s

2

, x ∈ R
N , (2.1)

where C ∈ R, b > 0 and a ∈ R
N are fixed parameters.

The fractional Laplacian, (−�)su, of a smooth function u : R
N → R, is defined by

F((−�)su)(ξ) = |ξ |2sF(u)(ξ), ξ ∈ R
N .

Also (−�)su can be equivalently represented [17] as

(−�)su(x) = −1

2
C(N , s)

∫
RN

u(x + y) + u(x − y) − 2u(x)

|y|N+2s dy, ∀x ∈ R
N

where

C(N , s) =
(∫

RN

(1 − cosξ1)

|ξ |N+2s dξ

)−1

, ξ = (ξ1, . . . , ξN ).

123
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Also, by the Plancherel formula in Fourier analysis, we have

[u]2Hs (RN )
= 2

C(N , s)
‖(−�)

s
2 u‖2L2(RN )

.

For convenience, wewill omit the normalization constant in the following. As a consequence,
the norms on Hs(RN ) defined below

u 
−→
(∫

RN
|u|2dx +

∫∫
RN×RN

|u(x) − u(y)|2
|x − y|N+2s dxdy

) 1
2

;

u 
−→
(∫

RN
(|ξ |2s |F(u)|2 + |F(u)|2)dξ

) 1
2 ;

u 
−→
(∫

RN
|u|2dx + ‖(−�)

s
2 u‖2L2(RN )

) 1
2 ;

are equivalent.
Making the change of variable x 
→ εx , we can rewrite the equation (1.1) as the following

equivalent form

(−�)su + V (εx)u =
(

1

|x |μ ∗ F(u)

)
f (u) + |u|2∗

s−2u in R
N . (2.2)

If u is a solution of the equation (2.2), then v(x) := u( x
ε
) is a solution of the equation (1.1).

Thus, to study the equation (1.1), it suffices to study the equation (2.2). In view of the presence
of potential V (x), we introduce the subspace

Hε =
{
u ∈ Hs(RN ) :

∫
RN

V (εx)u2dx < +∞
}

,

which is a Hilbert space equipped with the inner product

(u, v)Hε =
∫
RN

(−�)
s
2 u(−�)

s
2 vdx +

∫
RN

V (εx)uvdx,

and the norm

‖u‖2Hε
=
∫
RN

|(−�)
s
2 u|2dx +

∫
RN

V (εx)u2dx .

We denote ‖·‖Hε by ‖·‖ε in the sequel for convenience. The energy functional corresponding
to equation (2.2) is

Eε(u) = 1

2
‖u‖2ε − 1

2

∫
RN

(
1

|x |μ ∗ F(u)

)
F(u)dx − 1

2∗
s

∫
RN

|u|2∗
s dx .

Since we are interested in the nontrivial nonnegative solutions, we consider the following
functional

Jε(u) = 1

2
‖u‖2ε − 1

2

∫
RN

(
1

|x |μ ∗ F(u+)

)
F(u+)dx − 1

2∗
s

∫
RN

|u+|2∗
s dx .

Moreover, Jε(u) ∈ C1(Hs, R
N ),

〈J ′
ε(u), ϕ〉 =

∫ ∫
RN×RN

u(x) − u(y)

|x − y|N+2s (ϕ(x) − ϕ(y))dxdy +
∫
RN

V (εx)uϕdx

−
∫
RN

(
1

|x |μ ∗ F(u+)

)
f (u+)ϕdx −

∫
RN

|u+|2∗
s−2uϕdx .
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We collect the following useful result.

Lemma 2.1 [17] Let s ∈ (0, 1) and N > 2s. Then there exists a sharp constant C∗ =
C(N , s) > 0 such that for any u ∈ Hs(RN )

‖u‖2
L2∗s (RN )

≤ C−1∗ [u]2Hs (RN )
.

Moreover Hs(RN ) is continuously embedded in Lq(RN ) for any q ∈ [2, 2∗
s ] and compactly

in Lq
loc(R

N ) for any q ∈ [2, 2∗
s ).

Corollary 2.1 The space Hε is continuously embedded into Hs(RN ). Therefore, Hε is contin-
uously embedded into Lr (RN ) for any r ∈ [2, 2∗

s ] and compactly embedded into Lr
loc(R

N )

for any r ∈ [2, 2∗
s ).

Lemma 2.2 [38] Let N > 2s, If {un} is a bounded sequence in Hs(RN ) and if

lim
n→∞ sup

y∈RN

∫
BR(y)

|un |2dx = 0

where R > 0, then un → 0 in Lt (RN ) for all t ∈ (2, 2∗
s ).

Lemma 2.3 [25] Let t, r > 1 and 0 < μ < N such that 1r + μ
N + 1

t = 2. Let f ∈ Lr (RN ) and
h ∈ Lt (RN ). Then there exists a sharp constant C(r , N , μ, t) > 0, independent of f and h,

such that ∫
RN

∫
RN

f (x)h(y)

|x − y|μ dxdy ≤ C(r , N , μ, t)‖ f ‖Lr (RN )‖h‖Lt (RN ).

Lemma 2.4 [35]Let u ∈ Ds,2(RN ), ϕ ∈ C∞
0 (RN ) and for each r > 0, ϕr (x) = ϕ( xr ). Then

uϕr → 0 in Ds,2(RN ) as r → 0.

If, in addition, ϕ ≡ 1 in a neighbourhood of the origin, then

uϕr → u in Ds,2(RN ) as r → +∞.

3 Ground state solution

Lemma 3.1 Jε has a mountain pass geometry, that is

(i) There exists α, ρ > 0 such that Jε(u) ≥ α for any u ∈ Hε which ‖u‖ε = ρ.

(ii) There exists e ∈ Hε with ‖e‖ε > ρ such that Jε(e) < 0.

Proof In order to show this, we argue as in Lemma 2.2 in [7]. From ( f1) and ( f2), it follows
that for any ξ > 0 there exists Cξ > 0 such that

f (t) ≤ ξ |t | + Cξ |t |q−1, F(t) ≤ ξ |t |2 + Cξ |t |q . (3.1)

By (3.1) and Lemma 2.3, we get∣∣∣∣
∫
RN

(
1

|x |μ ∗ F(u+)

)
F(u+)dx

∣∣∣∣ ≤ C‖F(u)‖Lt (RN )‖F(u)‖Lt (RN )

≤ C

(∫
RN

(|u|2 + |u|q)t dx
) 2

t
(3.2)
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where t = 2N
2N−μ

. Since q ∈ (
2N−μ

N ,
2N−μ
N−2s ), we can see that tq ∈ (2, 2∗

s ), and from
Corollary 2.1, we have

(∫
RN

(|u|2 + |u|q)t dx
) 2

t ≤ C(‖u‖2ε + ‖u‖qε )2. (3.3)

Taking into account (3.2) and (3.3) we can deduce that
∫
RN

(
1

|x |μ ∗ F(u+)

)
F(u+)dx + 1

2∗
s

∫
RN

|u+|2∗
s dx ≤ C(‖u‖4ε + ‖u‖2qε + ‖u‖2∗

s
ε ).

(3.4)
As a consequence

Jε(u) ≥ 1

2
‖u‖2ε − C(‖u‖4ε + ‖u‖2qε + ‖u‖2∗

s
ε ).

We can see that (i) holds.
Fix a positive function u0 ∈ Hε \ {0} and u0 > 0, we set

h(t) = 1

2

∫
RN

(
1

|x |μ ∗ F

(
tu0

‖u0‖ε

))
F

(
tu0

‖u0‖ε

)
dx for t > 0.

By ( f3), we have

F(u) =
∫ 1

0
f (tu)udt =

∫ 1

0

f (tu)

tu
tu2dt ≤

∫ 1

0
f (u)tudt = 1

2
f (u)u for u > 0.

Hence,

h′(t) =
∫
RN

(
1

|x |μ ∗ F

(
tu0

‖u0‖ε

))
f

(
tu0

‖u0‖ε

)
u0

‖u0‖ε

dx

= 4

t

∫
RN

1

2

(
1

|x |μ ∗ F

(
tu0

‖u0‖ε

))
1

2
f

(
tu0

‖tu0‖ε

)
tu0

‖u0‖ε

dx

≥ 4

t
h(t).

(3.5)

Integrating (3.5) on [1, t‖u0‖ε] with t > 1
‖u0‖ε

, we find

h(t‖u0‖ε) ≥ h(1)(t‖u0‖ε)
4

which gives

1

2

∫
RN

(
1

|x |μ ∗ F(tu0)

)
F(tu0)dx ≥ 1

2

∫
RN

(
1

|x |μ ∗ F

(
u0

‖u0‖ε

))
F

(
u0

‖u0‖ε

)
dx‖u0‖4ε t4.

Therefore, we have

Jε(tu0) = t2

2
‖u0‖2ε − 1

2

∫
RN

(
1

|x |μ ∗ F(tu0)

)
F(tu0)dx − t2

∗
s

2∗
s

∫
RN

|u0|2∗
s dx

≤ C1t
2 − C2t

4

for t > 1
‖u0‖ε

. Taking e = tu0 with t sufficiently large, we can see that (ii) holds. ��

Lemma 3.2 For each u ∈ X+
ε := {u ∈ Hε : u+(x) �= 0} and t > 0, set hu(t) := Jε(tu).

123
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(i) Then there exists an unique tu > 0 such that hu(tu) = maxt≥0 hu(t) = maxt≥0 Jε(tu),

h′
u(tu) = 0, h′

u(t) > 0 in (0, tu), h′
u(t) < 0 in (tu,+∞) and tu ∈ Nε if and only if

t = tu, where Nε = {u ∈ X+
ε : 〈J ′

ε(u), u〉 = 0}.
(ii) There is κ > 0 independent on u, such that tu ≥ κ for all u ∈ Sε , where we denote by

Sε the unitary sphere in Hε. Moreover, for any compact set E ⊂ Sε, there is a CE > 0
such that tu ≤ CE for all u ∈ E .

Proof (i) For every u ∈ X+
ε , from Lemma 3.1 we know that hu(0) = 0, hu(t) > 0 for

t > 0 small enough and limt→+∞ hu(t) = −∞. Hence, there exists a tu > 0 such that
hu(tu) = maxt≥0 hu(t) and h′

u(tu) = 0. Notice that

h′
u(t) = 0 ⇔ tu ∈ Nε ⇔ ‖u‖2ε =

∫
RN

(
1

|x |μ ∗ F(tu+)

t

)
f (tu+)u+dx + t2

∗
s−2

∫
RN

|u+|2∗
s dx .

From ( f3) we know t 
→ f (t) and t 
→ F(t)
t are increasing for all t > 0. Hence, we get the

uniqueness of a such tu and (i) is completed.
(i i) Let u ∈ Sε. By tuu ∈ Nε and (3.4) we have

t2u =
∫
RN

(
1

|x |μ ∗ F(tuu
+)

)
f (tuu

+)tuu
+dx +

∫
RN

|tuu+|2∗
s dx ≤ C

(
t4u + t2qu + t

2∗
s

u

)
.

So, there exists κ > 0 independent of u, such that tu ≥ κ. Let, α ∈ (2, 2∗
s ), α ≤ 4 then

2
α

≥ 1
2 . We can infer that

F(t) ≤ 1

2
f (t)t ≤ 2

α
f (t)t, ∀ t ≥ 0.

For any v ∈ Nε, we have

Jε(v) = Jε(v) − 1

α
〈J ′

ε(v), v〉

=
(
1

2
− 1

α

)
‖v‖2ε − 1

2

∫
RN

(
1

|x |μ ∗ F(v+)

) (
F(v+)

− 2

α
f (v+)v+

)
dx +

(
1

α
− 1

2∗
s

)∫
RN

|v+|2∗
s dx

≥
(
1

2
− 1

α

)
‖v‖2ε.

(3.6)

If E ⊂ Sε is a compact set and un ⊂ E such that tun → ∞, up to a subsequence un → u in
Hε and Jε(tun un) → −∞. Taking vn = tun un ∈ Nε in (3.6), we can see that

0 <
1

2
− 1

α
≤ Jε(tun un)

t2un
≤ 0 as n → ∞,

which gives a contradiction. ��
Define the mappings n̂ε : Hε\{0} → Nε and nε := Sε → Nε by set

n̂ε(u) := tuu and nε := n̂ε|Sε .

We can apply [40, Proposition 8, Proposition 9 and Corollary 10 ] to deduce the following
Lemma.

Lemma 3.3 Suppose that (V0) and ( f1)–( f4), then
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33 Page 10 of 35 S. Chen et al.

(a) Themapping n̂ε is continuous and nε is a homeomorphism betweenSε andNε.Moreover,
n−1

ε (u) = u
‖u‖ε

.

(b) Wedefine themaps ψ̂ε : Hε\{0} → R by ψ̂ε(u) := Jε(n̂ε(u)).Then ψ̂ε ∈ C1(Hε\{0}, R)

and

〈ψ̂ ′
ε(u), v〉 = ‖n̂ε(u)‖ε

‖u‖ε

〈J ′
ε(n̂ε(u), v)〉

for every u ∈ Hε\{0} and v ∈ Hε.

(c) We define the mapsψ : Sε → R byψε := ψ̂ |Sε . Thenψε ∈ C1(Sε, R) and 〈ψ ′
ε(u), v〉 =

‖nε(u)‖ε〈J ′
ε(nε(u)), v〉 for any v ∈ TuSε.

(d) If {un} is a (PS)d sequence for ψε, then {nε(un)} is a (PS)d sequence for Jε. Moreover,
if {un} ⊂ Nε is a bounded (PS)d sequence for ψε, then {n−1

ε (un)} is a bounded (PS)d
sequence for the functional ψε.

(e) u is a critical point ofψε if and only if nε(u) is a nontrivial critical point for Jε.Moreover,
the corresponding critical values coincide and

inf
u∈Sε

ψε(u) = inf
u∈Nε

Jε(u).

Remark 3.1 As in [40], we have the following minimax characterization:

cε = inf
u∈Nε

Jε(u) = inf
u∈Hε\{0}

max
t>0

Jε(tu) = inf
u∈Sε

max
t>0

Jε(tu).

Next, we give some properties of (PS)d sequence of Jε.

Lemma 3.4 Let {un} ⊂ Hε is a (PS)d sequence of Jε, then {un} is bounded in Hs(RN ) and
{‖u−

n ‖ε} = on(1).

Proof Let, α ∈ (2, 2∗
s ), α ≤ 4 then 2

α
≥ 1

2 . We can infer that

F(t) ≤ 1

2
f (t)t ≤ 2

α
f (t)t, ∀t ≥ 0.

Since {un} is a (PS)d sequence of Jε, we have

d + 1 + ‖un‖ε ≥ Jε(un) − 1

α
〈J ′

ε(un), un〉

=
(
1

2
− 1

α

)
‖un‖2ε − 1

2

∫
RN

(
1

|x |μ ∗ F(u+
n )

) (
F(u+

n )

− 2

α
f (u+

n )u+
n

)
dx +

(
1

α
− 1

2∗
s

)∫
RN

|u+
n |2∗

s dx

≥
(
1

2
− 1

α

)
‖un‖2ε .

Therefore, we get that the sequence {un} is bounded in Hε. Next, we prove that ‖u−
n ‖ε =

on(1). Since 〈J ′
ε(un), u

−
n 〉 = on(1), by using f (t) = 0 for t ≤ 0 and (x − y)(x− − y−) ≥

|x− − y−|2 where x− = min{x, 0}, we can deduce that

‖u−
n ‖2ε ≤

∫
RN

∫
RN

(un(x) − un(y))(u−
n (x) − u−

n (y))

|x − y|N+2s dxdy +
∫
RN

V (εx)unu
−
n dx

=
∫
RN

(
1

|x |μ ∗ F(u+
n )

)
f (u+

n )u−
n dx +

∫
RN

|u+
n |2∗

s−2u+
n u

−
n dx + on(1)

= on(1).
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Therefore, we complete our proof. ��
Lemma 3.5 There exists a constant r > 0 such that ‖u‖ε ≥ r for all ε ≥ 0 and u ∈ Nε

Proof By using Lemma 2.3 and ( f1) − ( f2), we can see that for any u ∈ Nε

‖u‖2ε ≤ C
(
‖u‖4ε + ‖u‖2qε + ‖u‖2∗

s
ε

)

then, there exists r > 0 such that

‖u‖ε ≥ r for all u ∈ Nε. (3.7)

Hence, we deduce to the Lemma holds. ��
When V ≡ 1, then Hs(RN ) = Hε(R

N ). For τ > 0 and u ∈ Hs(RN ), let

Iτ (u) = 1

2

∫
RN

∫
RN

|u(x) − u(y)|2
|x − y|N+2s dxdy + τ

2

∫
RN

u2dx

− 1

2∗
s

∫
RN

|u+|2∗
s dx − 1

2

∫
RN

(
1

|x |μ ∗ F(u+)

)
F(u+)dx,

Mτ := {u ∈ Hs(RN ) : u+ �= 0, 〈I ′
τ (u), u〉 = 0}, mτ := inf

Mτ

Iτ .

For mτ , there also holds

mτ = inf
γ∈�

sup
t∈[0,1]

Iτ (γ (t)) = inf
u∈Hs (RN )

sup
t≥0

Iτ (tu)

where � = {γ ∈ C([0, 1], Hs(RN )) : γ (0) = 0, Iτ (γ (1)) < 0}.
Lemma 3.6 For any τ > 0, there exists u ∈ Hs(RN ) with u+ �= 0 such that

max
t≥0

Iτ (tu) <
s

N
S

N
2s ,

where S := infu∈Ds,2(RN )\{0}
‖u‖2Ds,2(RN )

‖u‖2
L2

∗
s (RN )

.

Proof Let ϕ ∈ C∞
0 (RN ) be such that ϕ = 1 in Bδ, ϕ(x) = 0 in R

N \ B2δ. Denote

Uε(x) = ε− N−2s
2 u∗ ( x

ε

)

where u∗(x) = ũ(x/S
1
2s )

‖ũ‖
L2

∗
s (RN )

, ũ(x/S
1
2s ) = α(

1+|x/S 1
2s |2

) N−2s
2

with α > 0. We define

uε(x) := ϕ(x)Uε(x)

then uε ∈ Hε. From [17] and [34], we have the following estimations

[uε]Hs (RN ) ≤ S
N
2s + O(εN−2s) (3.8)∫

RN
|uε(x)|2∗

s dx = S
N
2s + O(εN ) (3.9)

⎧⎪⎨
⎪⎩
Csε

2s + O(εN−2s) if N > 4s,

Csε
2s |lnε| + O(ε2s) if N = 4s,

Csε
N−2s + O(εN−2s) if N < 4s.

(3.10)

123



33 Page 12 of 35 S. Chen et al.

A standard argument shows that for any uε, there exists a unique tε such that tεuε ∈ Mτ

and Iτ (tεuε) = maxt≥0 Iτ (tuε). As a consequence mτ ≤ Iτ (tεuε) and

[uε]2Hs (RN )
+ τ

∫
RN

u2εdx = t−1
ε

∫
RN

(
1

|x |μ ∗ F(tεuε)

)
f (tεuε)uεdx + t

2∗
s−2

ε

∫
RN

|uε|2∗
s dx .

As a consequence tε ≥ t0,where t0 > 0 is independent of ε.Now,we estimate the convolution
term. For ε > 0 small enough, it follows from ( f4) that∫

RN

(
1

|x |μ ∗ F(tεuε)

)
F(tεuε)dx ≥ Ct2σε

∫
RN

(
1

|x |μ ∗ |uε|σ
)

|uε|σ dx

≥ Ct2σ0

∫
Bδ

∫
Bδ

|uε(y)|σ |uε(x)|σ
|x − y|μ dxdy

≥ Ct2σ0

∫
Bδ

∫
Bδ

C1ε
σ(N−2s)

(ε2 + |y|2) σ(N−2s)
2 (ε2 + |x |2) σ(N−2s)

2

dxdy

≥ Ct2σ0

∫
B δ
2

∫
B δ
2

C2ε
2N−σ(N−2s)

(1 + |x |2) σ(N−2s)
2 (1 + |y|2) σ(N−2s)

2

dxdy

≥ O(ε2N−σ(N−2s)).

(3.11)

Set g(t) := t2
2 ([uε]2Hs (RN )

+ τ
∫
RN u2εdx) − t2

∗
s

2∗
s

∫
RN |uε|2∗

s dx . If N > 4s, by a simple
calculation, we get

max
t≥0

g(t) = s

N

( [uε]2HsRN + τ
∫
RN u2εdx

‖uε‖22∗
s

) N
2s

= s

N

(
S

N
2s + O(εN−2s) + O(ε2s)

(S
N
2s + O(εN ))

N−2s
N

) N
2s

= s

N
S

N
2s + O(εN−2s) + O(ε2s).

(3.12)

Nothing that σ ∈ [qN ,
2N−μ
N−2s ), for ε > 0 small enough, using (3.11),(3.12) we can check

max
t≥0

Iτ (tuε) ≤ max
t≥0

g(t) −
∫
RN

(
1

|x |μ ∗ F(tεuε)

)
F(tεuε)dx

<
s

N
S

N
2s + O(εN−2s) − O(ε2N−σ(N−2s)) + O(ε2s)

<
s

N
S

N
2s .

In similar way, we can check N = 4s and N < 4s. ��

Lemma 3.7 Let {un} ⊂ Hε be a (PS)d sequence of Jε with d < s
N S

N
2s and un⇀0 in Hε.

Then one of the following conclusions holds:

(a) un → 0 in Hε;
(b) There exists a sequence {yn} ⊂ R

N and positive constants r , β such that

lim inf
n→∞

∫
Br (yn)

|un(x)|2dx > β.
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Proof If (b) does not occur, then for all R > 0, up to a subsequence

lim
n→∞ sup

y∈RN

∫
BR(y)

|un(x)|2dx = 0.

Since we know that {un} is bounded in Hε, we can use Lemma 2.2 to deduce that un → 0 in
Lr (RN ) for any r ∈ (2, 2∗

s ). So, apply Hardy–Littlewood–Sobolev inequality, we know that
∫
RN

(
1

|x |μ ∗ F(u+
n )

)
F(u+

n )dx = on(1). (3.13)

Taking into account 〈J ′
ε(un), un〉 = on(1) we can infer that

‖un‖2ε = ‖un‖2
∗
s

L2∗s (RN )
+ on(1).

Since {un} is bounded, up to a subsequence, we have

‖un‖2ε → l ≥ 0 and ‖un‖2
∗
s

L2∗s (RN )
→ l ≥ 0.

If l > 0, then

S ≤
∫
RN |(−�)

s
2 un |2dx

(‖un‖2
∗
s

L2∗s (RN )
)

2
2∗s

≤ ‖un‖2ε
(‖un‖2

∗
s

L2∗s (RN )
)

2
2∗s

→ l
2s
N

as n → ∞, hence l ≥ S
N
2s . Consequently, by (3.13), we have

d = lim
n→∞ Jε(un)

= lim
n→∞

(
1

2
‖un‖2ε − 1

2

∫
RN

(
1

|x |μ ∗ F(u+
n )

)
F(u+

n )dx − 1

2∗
s

∫
RN

|u+
n |2∗

s dx

)

= s

N
l

>
s

N
S

N
2s

a contradiction, hence l = 0. Consequently, by the boundedness of {un} in Hε, we have
un → 0 in Hε, so (a) holds. This completes the proof. ��
Lemma 3.8 Let {un} ⊂ Hε be a (PS)d sequence of Jε with d < mV∞ and un⇀0 in Hε.

Then un → 0 in Hε.

Proof By Lemma 3.4 we can assume un ≥ 0. For any subsequence of {un} still denoted by
{un}. Since un⇀0 in Hε, up to a subsequence, we can assume

un → 0 in Lr
loc(R

N ) r ∈ [2, 2∗
s ) and un(x) → 0 a.e. x ∈ R

N .

If un � 0 in Hε, by Lemma 3.2 we know for any {tn} ⊂ (0,+∞) such that {tnun} ⊂ NV∞ .
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Case 1 lim supn→∞ tn ≤ 1. If does not occur for any δ > 0, consider any subsequence of
{tn} and satisfies the following

tn ≥ 1 + δ, ∀ n ∈ N.

Since {un} is a (PS)d sequence of Jε, we can see that

[un]2Hs (RN )
+
∫
RN

V (εx)|un |2dx =
∫
RN

(
1

|x |μ ∗ F(un)

)
f (un)undx +

∫
RN

|un |2∗
s dx + on(1).

(3.14)
We observe that {tnun} ⊂ NV∞ , we have

t2n [un]2Hs (RN )
+t2n

∫
RN

V∞u2ndx =
∫
RN

(
1

|x |μ ∗ F(tnun)

)
f (tnun)tnundx+

∫
RN

|tnun |2∗
s dx .

(3.15)
Taking into account (3.14) and (3.15) we can deduce that

∫
RN

(V∞ − V (εx))|un |2dx =
∫
RN

⎛
⎝
(

1
|x |μ ∗ F(tnun)

)
f (tnun)u2n

tnun
−
(

1
|x |μ ∗ F(un)

)
f (un)u2n

un

⎞
⎠ dx

+
∫
RN

(
|tnun |2∗

s

t2n
− |un |2∗

s

)
dx + on(1).

By (V0), for any ξ > 0 there exists R(ξ) := R > 0 such that

V (εx) ≥ V∞ − ξ, |εx | ≥ R.

Notice that un → 0 in L2(BR(0)) and the boundedness of {un} in Hε, we get

∫
RN

⎛
⎝
(

1
|x |μ ∗ F(tnun)

)
f (tnun)u2n

tnun
−
(

1
|x |μ ∗ F(un)

)
f (un)u2n

un

⎞
⎠ dx

≤
∫
RN

(V∞ − V (εx))|un |2dx

=
∫
BR(0)

(V∞ − V (εx))|un |2dx +
∫
Bc
R(0)

(V∞ − V (εx))|un |2dx

≤ V∞
∫
BR(0)

|un |2dx + ξ

∫
Bc
R(0)

|un |2dx

≤ on(1) + ξ

V0

∫
Bc
R(0)

V (εx)|un |2dx

≤ on(1) + ξ

V0
‖un‖2ε ≤ on(1) + ξC .

If un � 0, there exists {yn} ⊂ R
N , r , δ > 0 such that

lim inf
n→∞

∫
Br (yn)

|un(x)|2dx ≥ δ.

Let ũn(x) = un(x + yn) then there exists ũ, up to a subsequence, we have

ũn⇀ũ in Hs(RN ), ũn → ũ in Lt
loc(R

N ), ũn(x) → ũ(x) a.e. x ∈ R
N .
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Therefore, there exists � ⊂ Br (0) such that ũ > 0 in �, then we can infer

∫
�

⎛
⎝
(

1
|x |μ ∗ F((1 + δ)ũ)

)
f ((1 + δ)ũ)

(1 + δ)ũ
−
(

( 1
|x |μ ∗ F(ũ)) f (ũ)

ũ

)⎞
⎠ ũ2dx ≤ ξC + on(1).

Taking the limit as n → ∞ and by applying Fatou’s lemma we obtain

0 <

∫
�

∫
�

(
F((1 + δ)ũ(y))

|x − y|μ
f ((1 + δ)ũ(x))

(1 + δ)ũ(x)
− F(ũ(y))

|x − y|μ
f (ũ(x))

ũ(x)

)
ũ2dxdy ≤ ξC .

For any ξ > 0, this gives a contradiction. Therefore, lim supn→∞ tn ≤ 1.

Case 2 lim supn→∞ tn = 1. Hence there exists a subsequence of {tn}, still denoted by {tn}
such that tn → 1. Clearly,

d + on(1) = Jε(un) ≥ Jε(un) + mV∞ − IV∞(tnun).

Moreover,

Jε(un) − IV∞(tnun) ≥1 − t2n
2

[un]2Hs (RN )
+ 1

2

∫
RN

(V (εx) − t2n V∞)|un |2dx

+ 1

2∗
s

∫
RN

(|tnun |2∗
s − |un |2∗

s )dx

+ 1

2

∫
RN

((
1

|x |μ ∗ F(tnun)

)
F(tnun) −

(
1

|x |μ ∗ F(un)

)
F(un)

)
dx .

Since {un} is bounded in Hε, by using the Mean Value Theorem and tn → 1, we have∫
RN

(V (εx) − t2n V∞)|un |2dx =
∫
BR(0)

(V (εx) − t2n V∞)|un |2dx

+
∫
Bc
R(0)

(V (εx) − t2n V∞)|un |2dx

≥ (V0 − t2n V∞)

∫
BR(0)

|un |2dx − ξ

∫
Bc
R(0)

|un |2dx

+ V∞(1 − t2n )

∫
Bc
R(0)

|un |2dx

≥ on(1) − ξC .

For any ξ and this gives a contradiction.

Case 3 lim supn→∞ tn := t0 < 1. Then there exists a subsequence of {tn}, still denoted by
{tn} such that tn → t0 and tn < 1 for any n ∈ N, we deduce that

mV∞ ≤ IV∞(tnun)

= Jε(tnun) + t2n
2

∫
RN

(V∞ − V (εx))|un |2dx
= Jε(tnun) + Cξ + on(1)

= d + Cξ + on(1).

This gives a contradiction. ��

123



33 Page 16 of 35 S. Chen et al.

By similar argument as the Lemma 3.1 in [2] and Lemma 4.7 in [47], we have the following
lemma.

Lemma 3.9 Let {un} be a sequence such that un⇀u in Hε and wn := un − u. Then, we have

(i)
∫
RN |F(wn) − F(un) + F(u)|t dx = on(1) where t = 2N

2N−μ
.

(ii)
∫
RN ( 1

|x |μ ∗ F(un − u))F(un − u)dx − ∫
RN ( 1

|x |μ ∗ F(un))F(un)dx + ∫
RN ( 1

|x |μ ∗
F(u))F(u)dx = on(1).

(iii) ∀ ξ > 0, we have∫
RN

| f (un − u) − f (un) + f (u)|t |ϕ|t dx ≤ Cξ‖ϕ‖tε ≤ Cξ. ∀ϕ ∈ Hε(R
N ), ‖ϕ‖ε = 1.

(iv)

|
∫
RN

(
1

|x |μ ∗ F(un − u)

)
f (un − u)ϕdx −

∫
RN

(
1

|x |μ ∗ F(un)

)
f (un)ϕdx

+
∫
RN

(
1

|x |μ ∗ F(u)

)
f (u)ϕdx | ≤ Cξ‖ϕ‖ε.

where, ξ > 0, ϕ ∈ Hε(R
N ).

Proof (i) By the Mean Value Theorem and (3.1), it follows that

|F(wn) − F(un)| =
∣∣∣∣
∫ 1

0

(
d

dt
F(un − tu)

)
dt

∣∣∣∣
≤
∫ 1

0
|u f (un − tu)|dt

≤
∫ 1

0
(ξ |u||un − tu| + Cξ |u||un − tu|q−1)dt

≤ ξ |un ||u| + ξ |u|2 + Cξ |un |q−1|u| + Cξ |u|q .
By applying Young inequality with δ > 0, we get

|F(wn) − F(un)| ≤ δ(|un |2 + |un |q) + Cδ(|u|2 + |u|q)
which yields

|F(wn) − F(un) + F(u)| ≤ δ(|un |2 + |un |q) + Cδ(|u|2 + |u|q) + C(|u|2 + |u|q).
|F(wn) − F(un) + F(u)|t ≤ 4tδ(|un |2t + |un |qt ) + C(|un |2t + |un |qt )

≤ 4tδ(|un |2t + |un |qt − |un |2t + |un |qt ) + C1(|un |2t + |un |qt ).
Let

Gδ,n(x) = max
{|F(wn) − F(un) + F(u)|t − 4tδ(|un |2t + |un |qt − |u|2t − |u|qt ), 0} .

Then Gδ,n → 0 a.e. in R
N as n → ∞ and 0 ≤ Gδ,n ≤ C1(|u|2t + |u|qt ) ∈ L1(RN ). As a

consequence of the Dominated Convergence Theorem, we have∫
RN

Gδ,n(x)dx → 0 as n → ∞.

On the other hand, from the definition of Gδ,n , we get

|F(wn) − F(un) + F(u)|t ≤ 4tδ(|un |2t + |un |qt ) + Gδ,n
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which together with the boundedness of {un} gives

lim sup
n→∞

∫
RN

|F(wn) − F(un) + F(u)|t dx ≤ Cδ for some C > 0.

As δ is arbitrary, we obtain∫
RN

|F(wn) − F(un) + F(u)|t dx = on(1).

(ii)
∫
RN

(
1

|x |μ ∗ F(un − u))F(un − u)dx −
∫
RN

(
1

|x |μ ∗ F(un)

)
F(un)dx

+
∫
RN

(
1

|x |μ ∗ F(u)

)
F(u)dx

=
∫
RN

(
1

|x |μ ∗ F(un − u)

)
(F(un − u) − F(un)

+ F(u))dx +
∫
RN

(
1

|x |μ ∗ F(un)

)
(F(un − u) − F(un) + F(u)) dx

+
∫
RN

(
1

|x |μ ∗ F(u)

)
(F(un − u) − F(un) + F(u))dx

− 2
∫
RN

(
1

|x |μ ∗ F(u)

)
F(un − u)dx

=: I1 + I2 + I3 + I4.

By the boundedness of {un} and ( f1) − ( f2). we know that

(∫
RN

|F(un − u)|t dx
) 1

t ≤ C .

From Lemma 2.3, we have

|I1| ≤
(∫

RN
|F(un − u)|t dx

) 1
t
(∫

RN
|F(un − u) − F(un) − F(u)|t dx

) 1
t → 0.

Likewise, I2 → 0, I3 → 0. By the boundedness of {un}, we have {F(un − u)} is bounded
in L

2N
2N−μ (RN ) and F(un − u) → 0 a.e. in R

N . So, F(un − u)⇀0 in L
2N

2N−μ (RN ). In view

of 1
|x |μ ∗ F(u) ∈

(
L

2N
2N−μ (RN )

)∗
, we obtain

I4 = −2
∫
RN

(
1

|x |μ ∗ F(u))F(un − u)dx → 0 as n → ∞.

Therefore, we can conclude (ii) holds.
(iii) By using ( f1) and ( f2),we know that for any ξ > 0, there exists N0 ∈ (0, 1) and N1 > 2
such that

| f (t)| ≤ ξ |t | in |t | ≤ 2N0,

| f (t)| ≤ ξ |t |q−1 in |t | ≥ N1 − 1,

| f (t)| ≤ Cξ |t | + ξ |t |q−1 for t ∈ R.
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Since f is a continuous function, we deduce that exists δ ∈ (0, N0) such that

| f (t1) − f (t2)| ≤ N0ξ, ∀|t1| ≤ N0 + N1, |t2| ≤ N0 + N1 and |t1 − t2| ≤ δ.

Taking into account u ∈ Hε, we know that there exists R0 > 0 such that

(∫
Bc
R0

(0)
|u|2t dx

) 1
2

< ξ,

(∫
Bc
R0

(0)
|u|tqdx

) q−1
q

< ξ.

For any ϕ ∈ Hε, ‖ϕ‖ε = 1, we have
∫
Bc
R0

(0)
| f (u)ϕ| 2N

2N−μ dx ≤
∫
Bc
R0

(0)
(ξ |u| + Cξ |u|q−1)

2N
2N−μ |ϕ| 2N

2N−μ dx

≤
∫
Bc
R0

(0)
(2tξ |u|t + C |u|t(q−1))|ϕ|t dx

≤ 2tξ

(∫
Bc
R0

(0)
|u|2t dx

) 1
2
(∫

Bc
R0

(0)
|ϕ|2t dx

) 1
2

+ C

(∫
Bc
R0

(0)
|u|tqdx

) q−1
q
(∫

Bc
R0

(0)
|ϕ|qt dx

) 1
q

≤ Cξ‖ϕ‖tε.

Let An :=
{
Bc
R0

(0) : |un(x)| ≤ N0

}
, Bn :=

{
Bc
R0

(0) : |un(x)| ≥ N1

}
, Cn :=

{
Bc
R0

(0) :
N0 < |un(x)| < N1

}
, then we have

∫
An

⋂{|u|≤δ}
| f (un − u) − f (un)|t |ϕ|t dx

≤ ξ

∫
An

⋂{|u|≤δ}
(|un − u| + |un |)t |ϕ|t dx

≤ 2tξ t
(∫

An
⋂{|u|≤δ}

|un − u|t |ϕ|t dx +
∫
An

⋂{|u|≤δ}
|un |t |ϕ|t dx

)

≤ 2tξ t

⎛
⎝
(∫

An
⋂{|u|≤δ}

|un − u|2t dx
) 1

2

+
(∫

An
⋂{|u|≤δ}

|un |2t dx
) 1

2
⎞
⎠
(∫

An
⋂{|u|≤δ}

|ϕ|2t dx
) 1

2

≤ ξ tC‖ϕ‖tε
(3.16)

and ∫
Bn

⋂{|u|≤δ}
| f (un − u) − f (un)|t |ϕ|t dx

≤ ξ t

(∫
Bn

⋂{|u|≤δ}
(|un − u|q−1 + |un |q−1)t |ϕ|t dx

)

≤ 2tξ t
(∫

Bn
⋂{|u|≤δ}

|un − u|t(q−1)|ϕ|t dx +
∫
Bn

⋂{|u|≤δ}
|un |t(q−1)|ϕ|t dx

)
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≤ 2tξ t

⎡
⎣
(∫

Bn
⋂{|u|≤δ}

|un − u|tqdx
) q−1

q
(∫

Bn
⋂{|u|≤δ}

|ϕ|tqdx
) 1

q

+
(∫

Bn
⋂{|u|≤δ}

|un − u|tqdx
) q−1

q
(∫

Bn
⋂{|u|≤δ}

|ϕ|tqdx
) 1

q
⎤
⎦

≤ 2tξ t

⎡
⎣
(∫

Bn
⋂{|u|≤δ}

|un − u|tqdx
) q−1

q

+
(∫

Bn
⋂{|u|≤δ}

|un − u|tqdx
) q−1

q
⎤
⎦
(∫

Bn
⋂{|u|≤δ}

|ϕ|tqdx
) 1

q

≤ ξ tC‖ϕ‖tε, (3.17)

and ∫
Cn

⋂{|u|≤δ}
| f (un − u) − f (un)|t |ϕ|t dx ≤ Nt

0ξ
t
∫
Cn

|ϕ|t dx

≤ Nt
0ξ

t |Cn | 12
(∫

RN
|ϕ|2t dx

) 1
2 ≤ ξ tC‖ϕ‖ε. (3.18)

Thus, putting together (3.16), (3.17) and (3.18) we get
∫

(Bc
R0

(0))
⋂{|u|≤δ}

| f (un) − f (un − u)|t |ϕ|t dx ≤ Cξ‖ϕ‖ε.

Moreover,
∫

(Bc
R0

(0))
⋂{|u|>δ}

| f (un) − f (un − u)|t |ϕ|t dx

≤ Cξ

∫
(Bc

R0
(0))

⋂{|u|>δ}
2t (|un − u|t |ϕ|t + |un |t |ϕ|t )dx

+ ξ

∫
(Bc

R0
(0))

⋂{|u|>δ}
2t (|un − u|(q−1)t |ϕ|t + |un |(q−1)t |ϕ|t )dx

≤ ξC‖ϕ‖ε + Cξ2
t
∫

(Bc
R0

(0))
⋂{|u|>δ}

(|un − u|t + |un |t )|ϕ|t dx .

In view of u ∈ Hε we know that
∣∣(RN \ BR(0))

⋂{|u| > δ}∣∣ → 0 as R → ∞, then there
exists R1 > 0 such that

∣∣(RN \ BR1(0))
⋂{|u| > δ}∣∣ < ξ. We define R2 = max{R0, R1},

we deduce that∫
(Bc

R2
(0))

⋂{|u|>δ}
|un − u|t |ϕ|t dx

≤
(∫

(Bc
R2

(0))
⋂{|u|>δ}

|un − u|t 2
∗
s
t dx

) t
2∗s
(∫

(Bc
R2

(0))
⋂{|u|>δ}

|ϕ|t 2
∗
s
t dx

) t
2∗s
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×
(∫

(Bc
R2

(0))
⋂{|u|>δ}

1dx

) 4s−μ
2N−μ

≤ Cξ
4s−μ
2N−μ ‖ϕ‖tε.

In similar way, we can prove that the following inequality is true.
∫

(Bc
R2

(0))
⋂{|u|>δ}

|un |t |ϕ|t dx ≤ Cξ
2s−μ
2N−μ ‖ϕ‖tε.

Hence, ∫
Bc
R2

(0)
| f (wn) + f (u) − f (un)|t |ϕ|t dx ≤ ξC‖ϕ‖tε.

It is easy to verify that
∫
BR2 (0)

| f (wn) + f (u) − f (un)|t |ϕ|t dx ≤ Cξ‖ϕ‖ε. (3.19)

Since un is bounded, we have un → u a.e. in R
N , un → u in L p

loc(R
N ), p ∈ [1, 2∗

s ). Let
l > q, such that lt ∈ (2, 2∗

s ),
l

l−1 t(q − 1) ∈ (2, 2∗
s ) and

1 <
l

l − 1
t ≤ q

q − 1
t =

(
1 + 1

q − 1

)
t <

(
1 + N

N − μ

)
· 2N

2N − μ
<

2N

N − 2s
= 2∗

s .

Hence, we have

| f (un − u) − f (un) + f (u)|t l
l−1

≤ C(|un − u| + |un − u|q−1 + |un | + |un |q−1 + |u| + |u|q−1)t
l

l−1

≤ C(|un − u|t l
l−1 + |un − u|t l

l−1 (q−1) + |un |t l
l−1 + |un |t l

l−1 (q−1) + |u|t l
l−1 + |u|t l

l−1 (q−1))

=: Chn .

Thus,

2
∫
BR2 (0)

C(|u| l
l−1 t + |u| l

l−1 t(q−1))dx

=
∫
BR2 (0)

lim
n→∞(Chn − | f (un − u) − f (un) + f (u)| l

l−1 t )dx

≤ lim
n→∞

[
C
∫
BR2 (0)

hndx −
∫
BR2 (0)

| f (un − u) − f (un) + f (u)|t l
l−1 dx

]

= lim
n→∞C

∫
BR2 (0)

hndx − lim sup
n→∞

∫
BR2 (0)

| f (un − u) − f (un) + f (u)|t l
l−1 dx

= 2
∫
BR2 (0)

C(|u| l
l−1 t + |u| l

l−1 t(q−1))dx

− lim sup
n→∞

∫
BR2 (0)

| f (un − u) − f (un) + f (u)|t l
l−1 dx .
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Consequently,

0 ≤ lim inf
n→∞

∫
BR2 (0)

| f (un − u) − f (un) + f (u)|t l
l−1 dx

≤ lim sup
n→∞

∫
BR2 (0)

| f (un − u) − f (un) + f (u)|t l
l−1 dx

≤ 0.

So, we obtain (3.19) holds. By applying Hölder inequality, for any ξ > 0, n large enough,
we have∫

BR2 (0)
| f (un − u) − f (un) + f (u)|t |ϕ|t dx

≤
(∫

BR2 (0)
| f (un − u) − f (un) + f (u)|t l

l−1 dx

) l−1
l
(∫

BR2 (0)
|ϕ|tldx

) 1
l

< ξ‖ϕ‖tε = ξ.

As a consequence,
∫
RN | f (un − u) − f (un) + f (u)|t |ϕ|t dx ≤ ξ‖ϕ‖tε = ξ.

(iv) ∫
RN

(
1

|x |μ ∗ F(un − u)

)
f (un − u)ϕdx −

∫
RN

(
1

|x |μ ∗ F(un)) f (un)ϕdx

+
(

1

|x |μ ∗ F(u)

)
f (u)ϕdx

=
∫
RN

(
1

|x |μ ∗ F(un − u)

)
( f (un − u) − f (un) + f (u))ϕdx

+
∫
RN

(
1

|x |μ ∗ F(u)

)
( f (u) − f (un))ϕdx

+
∫
RN

(
1

|x |μ ∗ (F(un − u) − F(un) + F(u))

)
f (u)ϕdx

−
∫
RN

(
1

|x |μ ∗ F(un − u)

)
f (u)ϕdx

= I1 + I2 +
∫
RN

(
1

|x |μ ∗ F(u)

)
( f (u) − f (un) + f (un − u))ϕdx

−
∫
RN

(
1

|x |μ ∗ F(u)

)
f (un − u)ϕdx −

∫
RN

(
1

|x |μ ∗ F(un − u)

)
f (u)ϕdx .

Clearly, we have

|I1| ≤
(∫

RN
|F(un − u)|t dx

) 1
t
(∫

RN
| f (un − u) − f (un) + f (u)|t |ϕ|t dx

) 1
t ≤ Cξ‖ϕ‖ε.

|I2| ≤
(∫

RN
| f (un)|t |ϕ|t dx

) 1
t
(∫

RN
|F(un − u) − F(un) + F(u)|t

) 1
t

≤
(∫

RN
| f (un)|t · l

l−1 dx

) l−1
lt
(∫

RN
|ϕ|lt dx

) 1
lt

ξ

≤ Cξ‖ϕ‖ε.

123



33 Page 22 of 35 S. Chen et al.

In similar way, we get |I3| ≤ Cξ‖ϕ‖ε. Let us observe that,∣∣∣∣
∫
RN

(
1

|x |μ ∗ F(u)

)
f (un − u)ϕdx

∣∣∣∣
≤ C

∫
RN

(
1

|x |μ ∗ F(u))(|un − u| + |un − u|q−1)|ϕ|dx

≤ C
∫
RN

(
1

|x |μ ∗ F(u)

)
|un − u||ϕ|dx + C

∫
RN

(
1

|x |μ ∗ F(u)

)
|un − u|q−1|ϕ|dx

≤ C

(∫
RN

|ϕ|2dx
) 1

2
(∫

RN

(
1

|x |μ ∗ F(u)

)2

|un − u|2dx
) 1

2

+ C

(∫
RN

|ϕ|qt dx
) 1

qt
(∫

RN

(
1

|x |μ ∗ F(u)

) qt
qt−1 |un − u| (q−1)qt

qt−1 dx

) qt−1
qt

.

Since 1
|x |μ ∗ F(u) ∈ L

2N
μ (RN ), we have ( 1

|x |μ ∗ F(u))2 ∈ L
N
μ (RN ) and 2N

N−μ
∈ (2, 2∗

s ). so,

we have |un − u|2 ∈ L
N

N−μ (RN ). Since |un − u|2⇀0 in L
N

N−μ (RN ), we deduce that
∫
RN

(
1

|x |μ ∗ F(u)

)2

|un − u|2 → 0.

Moreover, we have qt
qt−1 · qt−1

qt · 2N
μ

= 2N
μ

,
(q−1)qt
qt−1 · 2N (qt−1)

(2N−μ)qt−2N = qt ∈ (2, 2∗
s ) and

|un − u| (q−1)qt
qt−1 ⇀0 in L

2N (qt−1)
(2N−μ)qt−2N (RN ), we get ( 1

|x |μ ∗ F(u))
qt

qt−1 ∈ L
2N (qt−1)

qtμ (RN ), |un −
u| (q−1)qt

qt−1 ∈ L
2N (qt−1)

(2N−μ)qt−2N (RN ) and
∫
RN ( 1

|x |μ ∗ F(u))
qt

qt−1 |un − u| (q−1)qt
qt−1 dx → 0. Hence, we

have ∣∣∣∣
∫
RN

(
1

|x |μ ∗ F(u)

)
f (un − u)ϕ

∣∣∣∣ ≤ Cξ‖ϕ‖ε.

In similar way, | ∫
RN ( 1

|x |μ ∗ F(un − u)) f (u)ϕ| ≤ Cξ‖ϕ‖ε. Therefore (iv) holds. ��
By using Brezis–Lieb Lemma [10,18] and Lemma 3.9, we have the following lemma.

Lemma 3.10 Let {un} ⊂ Hε be a (PS)d sequence of Jε with un⇀u in Hε, then

(i) Jε(wn) = Jε(un) − Jε(u) + on(1),
(ii) ‖J ′

ε(wn)‖ = on(1).

Proof (i) We note that

Jε(un − u) − Jε(un) + Jε(u)

= 1

2
(‖un − u‖2ε − ‖un‖2ε + ‖u‖2ε) − 1

2

(∫
RN

(
1

|x |μ ∗ F((un − u)+)

)
F((un − u)+)dx

−
∫
RN

(
1

|x |μ ∗ F(u+
n )

)
F(u+

n )dx +
∫
RN

(
1

|x |μ ∗ F(u)

)
F(u)dx

)

− 1

2∗
s

∫
RN

(|(un − u)+|2∗
s − |u+

n |2∗
s + |u+|2∗

s )dx .

By the Lemma 3.9 (i i), un⇀u in Hε and Brezis–Lieb Lemma. we have (i) holds.
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(i i) Recall that {un} is a (PS)d sequence of Jε, we have ‖J ′
ε(un)‖ = on(1), J ′

ε(u) = 0. For
any ξ > 0, n large enough, ∀ ϕ ∈ Hε and ‖ϕ‖ε = 1, by the Lemma 3.9 (iv) we get

|〈J ′
ε(un − u), ϕ〉|
=
∣∣∣∣〈J ′

ε(un), ϕ〉 − 〈J ′
ε(u), ϕ〉 −

∫
RN

(
1

|x |μ ∗ F((un − u)+)

)
F((un − u)+)ϕdx

−
∫
RN

(
1

|x |μ ∗ F(u+
n )

)
f (u+

n )ϕdx

−
∫
RN

(
1

|x |μ ∗ F(u+)

)
f (u+)ϕdx −

∫
RN

(|(un − u)+|2∗
s −1 − |u+

n |2∗
s −1 + |u+|2∗

s −1)ϕdx

∣∣∣∣
≤ ‖J ′

ε(un)‖‖ϕ‖ε +
∣∣∣∣
∫
RN

(
1

|x |μ ∗ F((un − u)+)) f ((un − u)+)ϕdx

−
∫
RN

(
1

|x |μ ∗ F(u+
n )

)
f (u+

n )ϕdx

+
∫
RN

(
1

|x |μ ∗ F(u+)

)
f (u+)ϕdx

∣∣∣∣+
∫
RN

∣∣∣|(un − u)+|2∗
s −1 − |u+

n |2∗
s −1 + |u+|2∗

s −1
∣∣∣ |ϕ|dx

≤ ξ‖ϕ‖ε + Cξ‖ϕ‖ε +
(∫

RN
||un − u|2∗

s −1 − |u+
n |2∗

s −1 + |u+|2∗
s −1|

2∗s
2∗s −1 dx

) 2∗s −1
2∗s ‖ϕ‖ε

≤ ξ‖ϕ‖ε + Cξ‖ϕ‖ε + ξ‖ϕ‖ε.

This completes the proof of (i i). ��
Lemma 3.11 Jε satisfies the (PS)d condition at any level d ≤ mV∞ .

Proof Let un ⊂ Hε be a (PS)d sequence of Jε. Then, by Lemma 3.4 we know that {un} is
bounded in Hε and we can assume un ≥ 0.Hence, up to a subsequence, there is u ∈ Hε such
that un⇀u ≥ 0 in Hε, un → u in Lr

loc(R
N ) for each r ∈ [2, 2∗

s ), un(x) → u(x) a.e. in R
N

and J ′
ε(u) = 0. Set wn = un − u, by Lemma 3.9 we have

Jε(wn) = Jε(un) − Jε(u) + on(1) = d − Jε(u) + on(1) and J ′
ε(wn) = on(1).

Moreover, for any α ∈ (2, 2∗
s ) and α ≤ 4, we have

Jε(u) = Jε(u) − 1

α
〈J ′

ε(u),u〉

=
(
1

2
− 1

α

)
‖un‖2ε + 1

α

∫
RN

(
1

|x |μ ∗ F(un)

)
f (un)undx

− 1

2

∫
RN

(
1

|x |μ ∗ F(un)

)
F(un)dx

− 1

2∗
s

∫
RN

|un |2∗
s dx + 1

α

∫
RN

|un |2∗
s−2u2ndx

≥ 0.

By Lemma 3.6 we have d − Jε(u) ≤ d ≤ mV∞ < s
N S

N
2s and by Lemma 3.8 we know

un → u in Hε. Hence, the Lemma is proved. ��
By Lemmas 3.3 and 3.11 we have the following lemma.

Lemma 3.12 Jε|Nε satisfies the (PS)d condition at any level d < mV∞ .
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Proof of Theorem 1.1 By Lemma 3.1 we know that functional Jε satisfies the mountain pass
geometry, then using a version of the mountain pass theorem, there exists a sequence {un} ⊂
Hε such that

lim
n→∞ Jε = cε and (1 + ‖un‖ε)‖J ′

ε‖ = on(1).

For any τ ∈ RwithV0 < τ < V∞,wehavemV0 < mτ < mV∞ .ByLemma3.6,mτ < s
N S

N
2s .

Apply Lemma 3.4, Lemma 3.11 and Theorem 6.3.4 in [49], we obtain that mτ is a critical
value of Iτ with corresponding nontrivial nonnegative critical point u ∈ Hε. For any r > 0,
take ηr ∈ C∞

0 (RN , [0, 1]) be such that

ηr = 1 if |x | < r and ηr = 0 if |x | > 2r .

Set ur := ηr u, it is easy to verify that ur ∈ Hε for each r > 0. By Lemma 3.2 there exists
tr > 0 such that ũr := tr ur ∈ Mτ . Consequently, there is r0 > 0 such that ũ := ũr0 satisfies
Iτ (ũ) < mV∞ . In fact, if this is false, then Iτ (ũr ) = Iτ (tr ur ) ≥ mV∞ for all r > 0. Notice
that ur → u in Hε as r → +∞ and u ∈ Mτ . we can deduce that tr → 1 as r → +∞.

Hence,

mV∞ ≤ lim inf
r→+∞ Iτ (tr ur ) = Iτ (u) = mτ < mV∞ ,

which gives a contradiction, then Iτ (ũ) < mV∞ . The invariance by translation, we may
assume V0 = V (0) < τ and supp(ũ) is compact. We use the continuity of V , there is an
ε∗ > 0 such that

V (εx) < τ, ∀ε ∈ (0, ε∗) and x ∈ supp(ũ).

Hence,

Jε(t ũ) ≤ Iτ (t ũ), ∀ε ∈ (0, ε∗) and t ≥ 0,

and

max
t≥0

Jε(t ũ) ≤ max
t≥0

Iτ (t ũ) = Iτ (ũ) < mV∞ , ∀ ε ∈ (0, ε∗).

Consequently,

cε < mV∞ , ∀ ε ∈ (0, ε∗).

Lemma 3.11 guarantees up to a subsequence such that un → u in Hε, then J ′
ε(u) = 0 and

Jε(u) = cε. Hence u is a ground nontrivial nonnegative solution of (2.2). This completes the
proof of Theorem 1.1. ��

4 Multiplicity results

4.1 Technical results

In this section, we focus our attention on the study of the multiplicity of solutions to (1.1).

Since V0 > 0, by Lemma 3.6, mV0
< s

N S
N
2s . From the proof of Theorem 1.1 we know

that mV0
is a critical value of IV0 with corresponding nontrivial nonnegative critical point
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w ∈ Hs(RN ). Fix δ > 0 and let η ∈ C∞(R+, [0, 1]) be a function such that η(t) = 1 if
0 ≤ t ≤ δ

2 and η(t) = 0 if t ≥ δ. For any y ∈ �, we define

�ε,y(x) = η(|εx − y|)w
(

εx − y

ε

)
, ∀x ∈ R

N .

Then for small ε > 0, one has �ε,y ∈ Hε\{0} for all y ∈ �. In fact, using the change of
variable z = x − y

ε
, one has

∫
RN

V (εx)�2
ε,y(x)dx =

∫
RN

V (εx)η2(|εx − y|)w2
(

εx − y

ε

)
dx

=
∫
RN

V (εz + y)η2(|εz|)w2(z)dz

≤ C
∫
RN

w2(z)dz < +∞.

Moreover, using the change of variable x ′ = x − y
ε
, z′ = z − y

ε
, we have

‖(−�)
s
2 �ε,y‖2L2(RN )

= 1

2
C(s)

∫∫
RN×RN

∣∣η(|εx − y|)w ( εx−y
ε

)− η(|εz − y|)w ( εz−y
ε

)∣∣2
|x − z|N+2s dxdz

= 1

2
C(s)

∫∫
RN×RN

∣∣η(|εx ′|)w(x ′) − η(|εz′|)w(z′)
∣∣2

|x ′ − z′|N+2s dx ′dz′

= ‖(−�)
s
2 η(|εx |)w(x)‖2L2(RN )

= ‖(−�)
s
2 ηεw‖2L2(RN )

,

where ηε(x) = η(|εx |). By Lemma 2.4, we see that ηεw ∈ Ds,2(RN ) as ε → 0, and hence
�ε,y ∈ Ds,2(RN ) for ε > 0 small. Hence �ε,y ∈ Hε. Now we proof �ε,y �= 0. In fact,
∫
RN

�2
ε,y(x)dx =

∫
RN

η2(|εx − y|)w2
(

εx − y

ε

)
dx =

∫
|εx−y|<δ

η2(|εx − y|)w2
(

εx − y

ε

)
dx

≥
∫

|z|≤ δ
2ε

η2(|εz|)w2(z)dz ≥
∫
B0(

δ
2ε )

w2(z)dz →
∫
RN

w2(z)dz > 0

as ε → 0. Then �ε,y �= 0 for small ε > 0. Therefore, there exists unique tε > 0 such that

max
t≥0

Iε(t�ε,y) = Iε(tε�ε,y) and tε�ε,y ∈ Nε.

We introduce the map �ε : � → Nε by setting

�ε(y) = tε�ε,y .

By construction, �ε(y) has a compact support for any y ∈ � and �ε is a continuous map.

Lemma 4.1

lim
ε→0

Jε(�ε(y)) = mV0
uniformly in y ∈ �.

Proof Assume by contradiction, then there exists δ0 > 0, {yn} ⊂ � and εn > 0 with εn → 0
such that

|Jεn (�εn (yn)) − mV0
| ≥ δ0. (4.1)
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By using �εn ∈ Nεn and Lemma 3.5 we know that there is a r0 > 0 such that∫
RN

(
1

|x |μ ∗ F(�εn (yn))

)
f (�εn (yn))�εn (yn)dx +

∫
RN

|�εn (yn)|2
∗
s dx

= ‖�εn (yn)‖2εn
≥ r0

(4.2)

which implies that tε � 0. Hence there exists a T > 0 such that tεn ≥ T . If tεn → ∞, we
have

C‖w‖2ε ≥
∫
RN

|(−�)
s
2 �εn ,yn |2dx +

∫
RN

V (εnx)�
2
εn ,yn dx

= t−2
εn

∫
RN

(
1

|x |μ ∗ F(�εn (yn))

)
f (�εn (yn))�εn (yn)dx + t−2

εn

∫
RN

|�εn (yn)|2
∗
s dx

≥ t−2
εn

∫
RN

|tεn�εn ,yn |2
∗
s dx

≥ t−2
εn

∫
RN

|tεnη(|εnx |)w(x)|2∗
s dx

≥ t−2
εn

∫
|x |< δ

2εn

|tεnw(x)|2∗
s dx

≥ t
2∗
s−2

εn

∫
δ
2<|x |<δ

|w(x)|2∗
s dx

→ +∞
for large n. This yield a contradiction, then tε → t0 > 0. Now we claim that t0 → 1. By
using Lebesgue’s theorem, we can verify that

lim
n→∞ ‖�εn (yn)‖2ε = t20 ‖w‖2V0 ,

lim
n→∞

∫
RN

(
1

|x |μ ∗ F(�εn (yn))

)
f (�εn (yn))�εn (yn)dx =

∫
RN

(
1

|x |μ ∗ F(t0w)

)
f (t0w)t0wdx,

and

lim
n→∞

∫
RN

|�εn (yn)|2
∗
s dx =

∫
RN

|t0w|2∗
s dx .

Therefore, from (4.2), we get

t20‖w‖2V0 =
∫
RN

(
1

|x |μ ∗ F(t0w)) f (t0w)t0wdx +
∫
RN

|t0w|2∗
s dx .

This show t0w ∈ MV0 . Noting that w ∈ MV0 , we see t0 = 1, so claim is proved. Moreover,
similar to the above arguments, we can get

lim
n→∞ Jεn (�εn (yn)) = IV0(w) = mV0

which contradicts to (4.1). This completes the proof. ��
Now, we are ready to introduce the barycenter map. For any δ > 0, let ρ = ρ(δ) > 0

such that �δ ⊂ Bρ(0). Define ϒ : R
N → R

N as follow:

ϒ(x) =
{
x if |x | < ρ,
ρx
|x | if |x | ≥ ρ.
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We define the barycenter map βε : Nε → R
N as follows

βε =
∫
RN ϒ(εx)|w(x)|2dx∫

RN |w(x)|2dx .

Lemma 4.2

lim
ε→0

βε(�ε(y)) = y uniformly in y ∈ �.

Proof Assume by contradiction, then there exists δ0 > 0, {yn} ⊂ � and εn → 0+ such that

|βεn (�εn (yn)) − yn | ≥ δ0 > 0, ∀n ∈ N. (4.3)

By using the definitions of βεn and �εn , we can see that

βεn (�εn (yn)) = yn +
∫
RN [ϒ(εnx + yn) − yn]|η(|εnx |)w(x)|2dx∫

RN |η(|εnx |)w(x)|2dx .

Taking into account the Lebesgue dominant convergence theorem, we can infer that

|βεn (�εn (yn)) − yn | → 0

which contradicts (4.3). ��
Lemma 4.3 For any τ > 0, let {un} ⊂ Mτ with Iτ (un) → mτ . Then {un} has a subsequence
strongly convergent in Hs(RN ). In Particular, there exists a minimizer for mτ .

Proof From the proof of Lemmas 3.4 and 3.6, we know that {un} is bounded in Hs(RN ) and

mτ < s
N S

N
2s . By the Ekeland Variational principle, we may assume that {un} is a (PS)mτ

sequence of Iτ .Then, by Lemma 3.8, there exists u ∈ Hs(RN ) such that, up to a subsequence,
un → u in Hs(RN ). Moreover, u is a minimizer of mτ . ��
Lemma 4.4 Let εn → 0 and un ∈ Nεn be such that Jεn (un) → mV0

. Then there exists

a sequence {yn} ⊂ R
N such that un(· + yn) has a convergent subsequence in Hs(RN ).

Moreover, up to a subsequence, ỹn = εn yn → y ∈ �.

Proof Since un ∈ Nεn and limn→∞ Jεn (un) = mV0
, by Lemma 3.4 we can see that {un} is

bounded in Hs(RN ). By Lemma 3.5, we have ‖un‖εn � 0. we can argue as in Lemma 3.7
to obtain a sequence {yn} and constant r > 0 such that

lim inf
n→∞

∫
Br (yn)

|un(x)|2dx = β > 0. (4.4)

Note, if this is false, then for any r > 0, we have

lim
n→∞ sup

y∈RN

∫
Br (y)

|un |2dx = 0.

By Lemma 2.2, we know that un → 0 in Lt (RN ) for t ∈ [2, 2∗
s ), we can argue as the proof

of (3.2) and we deduce that∫
RN

(
1

|x |μ ∗ F(un)

)
f (un)undx = on(1).

As the proof of Lemma 3.7, we can prove
∫
RN |u|2∗

s dx = on(1). Since un ∈ Nεn , we
get ‖un‖εn = on(1), which gives a contradiction. Hence, (4.4) holds. Now, we set ũn =
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un(· + yn). Since, {un} is bounded in Hs(RN ) and (4.4), up to a subsequence, we have
ũn⇀ũ �= 0 in Hs(RN ) and ũn(x) → ũ(x) a.e. in R

N . Fix tn > 0 such that tn ũn ∈ MV0 and
set ỹn = εn yn . Since un ∈ Nεn , we can see that

mV0
≤ IV0 (tn ũn)

= 1

2
t2n [ũn]2 + t2n

2

∫
RN

V0ũ
2
ndx − 1

2∗
s

∫
RN

|tn ũ+
n |2∗

s dx − 1

2

(
1

|x |μ ∗ F(tn ũ
+
n )

)
F(tn ũ

+
n )dx

≤ Jεn (tnun)

≤ Jεn (un)

= mV0
+ on(1),

which gives

lim
n→∞ IV0(tn ũn) = mV0

> 0.

By Lemma 4.3, up to subsequence, we get tn ũn := vn → v0 in Hs(RN ). Note that,

β = lim inf
n→∞

∫
Br (yn)

|un(x)|2dx = lim inf
n→∞

∫
Br (0)

|ũn(x)|2dx ≤ lim inf
n→∞ ‖ũn‖2Hs (RN )

.

For large n, we have 0 <
β
2 < ‖ũn‖2Hs (RN )

, then

0 <
β

2
t2n < ‖tn ũn‖2Hs (RN )

= ‖vn‖2Hs (RN )
≤ C .

Hence {tn} is bounded, and we may assume that tn → t∗ > 0. So, up to a subsequence, we
have

vn → v0 = t∗ũ �= 0 in Hs(RN ), ũn → 1

t∗
v0 = ũ in Hs(RN ).

In order to complete the proof of the lemma, we show that {ỹn} is bounded in R
N . We

argue by contradiction, up to a subsequence, we assume that |ỹn | → ∞. Notice that, up to
subsequence, we have vn → v0 �= 0 in Hs(RN ). By Fatou’s lemma we get

mV0
= IV0(v0)

< IV∞(v0) − 1

2
〈I ′

V0(v0), v0〉

= 1

2

∫
RN

(V∞v20 − V0v
2
0)dx − 1

2

∫
RN

(
1

|x |μ ∗ F(v+
0 )

)
F(v+

0 )dx

+ 1

2

∫
RN

(
1

|x |μ ∗ F(v+
0 )

)
f (v+

0 )v+
0 dx

− 1

2∗
s

∫
RN

|v+
0 |2∗

S dx + 1

2

∫
RN

|v+
0 |2∗

s dx

≤ lim inf
n→∞ (Jεn (vn) − 1

2
〈I ′

V0(vn), vn〉)
= lim inf

n→∞ Jεn (vn)

≤ lim
n→∞ Jεn (un) = mV0
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which is a contradiction, so we get {ỹn} is bounded in R
N . Therefore, up to subsequence,

ỹn → y ∈ R
N . If y ∈ R

N\� then V0 < V (y). This is a contradiction. Hence, we can
conclude that y ∈ �. ��

Now, we introduce a subset Ñε of Nε by setting

Ñε = {u ∈ Nε : Jε(u) ≤ mV0
+ h(ε)},

where h(ε) := max
y∈�

|Jε(�ε(y)) − mV0
|. Then, we can use Lemma 4.1 to conclude that

lim
ε→0+ h(ε) = 0.

Hence, for each y ∈ � and ε > 0, we have �ε(y) ∈ Ñε. By Lemma 4.4, we can prove
the following Lemma.

Lemma 4.5 For any δ > 0, we have

lim
ε→0

sup
u∈Ñε

dist(βε(u),�δ) = 0.

Proof Let εn → 0. For any n ∈ N, there exists {un} ⊂ Ñεn such that

inf
y∈�δ

|βεn (un) − y| = sup
u∈Ñ

inf
y∈�δ

|βεn (u) − y| + on(1).

Since {un} ∈ Nεn , it follow that

mV0
≤ cεn ≤ Jεn(un) ≤ mV0

+ h(εn).

Then, Jεn (un) → mV0
.ByLemma 4.4, there exists {yn} ∈ R

N such that {ũn(·) := un(·+yn)}
has a convergent subsequence in Hs(RN ) and ỹn := εn yn → y ∈ �. Then,

βεn (un) = ỹn +
∫
RN [χ(εnx + ỹn) − ỹn]|ũn |2dx∫

RN |ũn |dx → y ∈ �.

The proof is completed. ��

4.2 Proof of Theorem 1.2

Lemma 4.6 Assume that (V ) and ( f1)–( f4) hold. Then, for any δ > 0 there exists εδ > 0
such that the problem (1.1) has at least cat�δ (�) nontrivial nonnegative solutions for all
ε ∈ (0, εδ).

Proof By Lemma 4.1 and the define of ψε, we have

lim
ε→0

ψε

(
n−1

ε (�ε(y))
) = lim

ε→0
Jε(�ε(y)) = mV0

uniformly in y ∈ �.

Then, there exists ε1 > 0 such that S̃ε := {u ∈ Sε : ψε(u) ≤ mV0
+ h(ε)} �= 0 for all

ε ∈ (0, ε1).
Applying Lemmas 3.3, 4.1, 4.2 and 4.5, we can find some ε1 = εδ > 0 such that the

following diagram

�
�ε→ Ñε

n−1
ε→ S̃ε

nε→ Ñε
βε→ �δ
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is well defined for any ε ∈ (0, ε1).By the proof of [7, Theorem5.1,Theorem5.2], we know
that for ε > 0 small enough, we deduce from Lemma 3.12 that ψε satisfies the PS condition
in S̃ε. And ψε has at least catS̃ε

(S̃ε) critical points on S̃ε. By Lemma 3.3 we conclude that
Jε admits at least cat�δ (�) critical points on Nε. ��

Now, we use a Moser iteration argument [32] to study of behavior of the maximum points
of the solutions.

Lemma 4.7 Let εn → 0 and un ∈ Ñεn is a nontrivial nonnegative solution to (2.2). Then
exists yn ∈ R

N such that vn = un(· + yn) satisfies the following problem

⎧⎪⎨
⎪⎩

(−�)svn + Vn(x)vn = ( 1
|x |μ ∗ F(vn)) f (vn) + |vn |2∗

s−2 in R
N

vn ∈ Hs(RN ),

vn ≥ 0 in R
N ,

(4.5)

where Vn(x) = V (εnx + εn yn), εn yn → y ∈ � and there exists C > 0 such that
‖vn‖L∞(RN ) ≤ C for all n ∈ N. Furthermore,

lim|x |→∞ vn(x) = 0 uniformly in n ∈ N.

Proof For any L > 0 and β > 1, let us define the function

r(vn) = rL,β(vn) = vnv
2(β−1)
L,n ∈ Hs(RN )

where vL,n = min{vn, L}. Since r is an increasing function in (0,+∞), then we have

(a − b)(r(a) − r(b)) ≥ 0 for any a, b ∈ R
+.

Define the functions

H(t) = |t |2
2

and L(t) =
∫ t

0
(r ′(τ ))

1
2 dτ.

For all a, b ∈ R such that a > b, by applying Jensen inequality we get

H ′(a − b)(r(a) − r(b)) = (a − b)(r(a) − r(b)) = (a − b)
∫ a

b
r ′(t)dt

= (a − b)
∫ a

b
(L ′(t))2dt ≥ (

∫ a

b
L ′(t)dt)2.

In similar way, we can prove that the above inequality is true for all a ≤ b. Therefore

H ′(a − b)(r(a) − r(b)) ≥ |L(a) − L(b)|2 for any a, b ∈ R. (4.6)

By using (4.6), we have

|L(vn)(x) − L(vn)(y)|2 ≤ (vn(x) − vn(y))
((

vnv
2(β−1)
L,n

)
(x) −

(
vnv

2(β−1)
L,n

)
(y)

)
.

(4.7)
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Now, we take r(vn) = vnv
2(β−1)
L,n as test-function in (4.5) and in view of (4.7), we obtain

[L(vn)]2 +
∫
RN

Vn(x)|vn |2v2β−1
L,n dx

≤
∫ ∫

R2N

vn(x) − vn(y)

|x − y|N+2s

((
vnv

2(β−1)
L,n

)
(x) −

(
vnv

2(β−1)
L,n

)
(y)

)
dxdy

+
∫
RN

Vn(x)|vn |2v2(β−1)
L,n dx

=
∫
RN

(
1

|x |μ ∗ F(vn)

)
f (vn)vnv

2(β−1)
L,n dx +

∫
RN

|vn |2∗
s−2vnv

2(β−1)
L,n dx .

(4.8)

Since

L(vn) ≥ 1

β
vnv

2(β−1)
L,n

and we can use Lemma 2.1 to deduce that

[L(vn)]2 ≥ C‖L(vn)‖2L2∗s (RN )
≥
(
1

β

)2

C‖vnv(β−1)
L,n ‖2

L2∗s (RN )
. (4.9)

On the other hand, since {vn} is bounded in Hs(RN ), there exists C0 > 0 such that∥∥∥∥ 1

|x |μ ∗ F(vn)

∥∥∥∥
L∞(RN )

< C0. (4.10)

Taking ξ ∈ (0, V0), and using (3.1), (4.9) and (4.10), we can see that (4.8) yields

‖vnvβ−1
L,n ‖2

L2∗s (RN )
≤ Cβ2

(∫
RN

|vn |qv2(β−1)
L,n dx +

∫
RN

|vn |2∗
s v

2(β−1)
L,n dx

)
.

Set q + 2β − 2 = 2∗
s ⇒ β = 1

2 (2
∗
s + 2 − q) > 1, then

(∫
RN

|vnvβ−1
L,n |2∗

s dx

) 2
2∗s

≤ Cβ2
(∫

RN
|vn |qv2β−1

L,n dx +
∫
RN

|vn |2∗
s −1(vnv

2(β−1)
L,n )dx

)

≤ Cβ2
(∫

RN
|vn |2∗

s dx +
∫

{vn≤R0}
|vn |2∗

s −1(vnv
2(β−1)
L,n )dx +

∫
{vn>R0}

|vn |2∗
s −2(vnv

β−1
L,n )2dx

)
.

By {un} is bounded in Hs , there exists R0 > 0 such that
(∫

{vn>R0} |vn |2∗
s dx

) 2∗s −2
2∗s ≤ 1

2Cβ2 .

Hence, we can see that∫
{vn≤R0}

|vn |2∗
s−q+1|vn |q−1(vnvL, n2(β−1))dx

+
(∫

{vn>R0}
|vn |2∗

s dx

) 2∗s −2
2∗s

(∫
{vn>R0}

(vnv
β−1
L,n )2

∗
s dx

) 2
2∗s

≤ R
2∗
s−q+1

0

∫
RN

|vn |2∗
s dx + 1

2Cβ2

(∫
RN

(vnv
β−1
L,n )2

∗
s dx

) 2
2∗s

.
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Therefore, we can deduce that

(∫
RN

|vnvβ−1
L,n |2∗

s dx

) 2
2∗s ≤ 2Cβ2

(
1 + R

2∗
s−q+1

0

) ∫
RN

|vn |2∗
s dx < C < +∞. (4.11)

Taking the limit in (4.11) as L → +∞ and Fatou lemma, we have
(∫

RN |vn |2∗
s βdx

) 2
2∗s ≤

C < +∞. So, vn ∈ L2∗
s β(RN ). For any β > 1

2 (2
∗
s + 2− q) > 1 and β ≤ 1+ 2∗

s
2 · 2∗

s−q
2 then

2 < q + 2β − 2 < 2∗
s + 2β − 2 ≤ 2∗

s (1 + 2∗
s−q
2 ). we can deduce that

(∫
RN

|vn |2∗
s βdx

) 2
2∗s ≤ Cβ2

(∫
RN

|vn |q+2β−2dx +
∫
RN

|vn |2∗
s+2β−2dx

)
≤ C0 < +∞.

Let a = 2∗
s (2

∗
s−q)

2(β−1) , b = q + 2β − 2 − a, r = 2∗
s
a , r ′ = 2∗

s
2∗
s−a , then 2∗

s b
2∗
s−a = 2∗

s + 2β − 2.
Taking into account Young inequality we have

∫
RN

|vn |q+2β−2dx ≤ a

2∗
s

∫
RN

|vn |2∗
s dx + 2∗

s − a

2∗
s

∫
RN

|vn |2∗
s+2β−2dx

≤ C

(
1 +

∫
RN

|vn |2∗
s+2β−2dx

)
.

Therefore,

(∫
RN

|vn |2∗
s βdx

) 2
2∗s ≤ Cβ2

(
1 +

∫
RN

|vn |2∗
s+2β−2dx

)
.

We note to β > 1, we deduce that

(
1 +

∫
RN

|vn |2∗
s βdx

) 2
2∗s ≤ Cβ2

(
1 +

∫
RN

|vn |2∗
s+β−2dx

)
. (4.12)

Now, we set β = 1 + 2∗
s
2 · 2∗

s−q
2 , then observing that 2∗

s + 2β − 2 = 2∗
s (

1
2 (2

∗
s + 2 − q)).

Iterating this process and recalling that 2∗
s + 2βi−1 − 2 = 2∗

sβi . Argue as [21]. Thus,

βi+1 − 1 = (
2∗
s

2
)i (β1 − 1).

Replacing it in (4.12) we have

(
1 +

∫
RN

|vn |2∗
s βi+1dx

) 1
2∗s (βi+1−1) ≤ (Cβ2

i+1)
1

2(βi+1−1)

(
1 +

∫
RN

v
2βi+2∗

s−2
n dx

) 1
2(βi−1)

.

Denoting Ci+1 = Cβ2
i+1 and Ki := (1 + ∫

RN v
2βi+2∗

s−2
n dx)

1
2(βi−1) . We conclude that there

exists a constant C0 > 0 independent of i, such that

Ki+1 ≤
i+1∏
i=2

C
1

2(βi−1)

i K1 ≤ CK1.

Therefore,

‖vn(x)‖L∞(RN ) ≤ C0K1 < ∞,
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uniformly in n ∈ N, thanks to vn ∈ L2∗
s β1(RN ) and ‖vn‖εn ≤ C . Arguing as in [4], we can

prove that

lim|x |→∞ vn(x) = 0 uniformly in n ∈ N.

��

Now we consider εn → 0+ and take a sequence un ∈ Ñε of solutions of the problem
(2.2) as above. There exists γ > 0 such that

‖un‖L∞(RN ) ≥ γ uniformly in n ∈ N. (4.13)

Assume by contradiction, we have lim
n→∞ ‖un‖L∞(RN ) = 0. For any ξ > 0, there exists n0

such that ‖un‖L∞(RN ) < ξ for any n > n0. Since un ∈ Ñε, we have

‖un‖2εn =
∫
RN

(
1

|x |μ ∗ F(un)

)
f (un)undx +

∫
RN

|un |2∗
s dx

≤C

(∫
RN

(|un |2t + |un |qt )dx
) 2

t +
∫
RN

|un |2∗
s dx

where t = 2N
2N−μ

. Since 2t ∈ (2, 2∗
s ) and qt ∈ (2, 2∗

s ), there exists σ > 0 small enough
such that (2t − σ) ∈ (2, 2∗

s ) and (qt − σ) ∈ (2, 2∗
s ). Since we have that {un} is bounded in

Hs(RN ), we can deduce to

‖un‖εn ≤ C

(∫
RN

(|un |2t−σ |un |σ + |un |qt−σ |un |σ )dx

) 2
t +

∫
RN

|un |2∗
s−σ |un |σ dx

≤ C‖un‖σ · 2t
L∞(RN )

(∫
RN

(|un |2t−σ + |un |qt−σ )dx

) 2
t + ‖un‖σ

L∞(RN )

∫
RN

|un |2∗
s−σ dx

< C1ξ
2σ
t + C2ξ

σ .

This implies that ‖un‖εn → 0 (n → ∞). In similar way, we can deduce

1

2

∫
RN

(
1

|x |μ ∗ F(un)

)
F(un)dx + 1

2∗
s

∫
RN

|un |2∗
s dx → 0 (n → ∞),

then Jεn (un) → 0 (n → ∞), this contradict with Jεn (un) → mV0
> 0. As a consequence,

(4.13) holds. By Lemma 4.7, we have

‖vn‖L∞(RN ) ≤ C, uniformly in n ∈ N,

and

lim|x |→∞ vn(x) = 0 uniformly in n ∈ N.

There exists R > 0 such that ‖vn‖L∞(Bc
R(0)) < γ, then

‖un‖L∞(Bc
R(yn)) < γ. (4.14)

Hence
‖un‖L∞(BR(yn)) ≥ γ. (4.15)

123



33 Page 34 of 35 S. Chen et al.

Let pn is the global maximum point of un, taking into account (4.14) and (4.15) we can get
pn ∈ BR(yn). Hence, pn = yn + qn for some qn ∈ BR(0). Then ξεn = εn yn + εnqn is the
maximum point of un( x

εn
). Since |qn | < R for any n ∈ N and εn yn → y0 ∈ �. Therefore,

lim
n→∞ V (ξεn ) = V (y0) = V0,

which ends the proof of the Theorem 1.2. ��
Acknowledgements We would like to thank the anonymous referee for his/her careful readings of our
manuscript and the useful comments made for its improvement.
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