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THE FRACTIONAL SCHRÖDINGER-POISSON SYSTEMS

WITH INFINITELY MANY SOLUTIONS

Tiankun Jin and Zhipeng Yang

Abstract. In this paper, we study the existence of infinitely many large

energy solutions for the supercubic fractional Schrödinger-Poisson sys-
tems. We consider different superlinear growth assumptions on the non-

linearity, starting from the well-know Ambrosetti-Rabinowitz type condi-
tion. We obtain three different existence results in this setting by using

the Fountain Theorem, all these results extend some results for semelinear

Schrödinger-Poisson systems to the nonlocal fractional setting.

1. Introduction

In this paper, we consider the following system

(1.1)

{
(−∆)su+ V (x)u+ φu = f(x, u) in R3,

(−∆)sφ = u2 in R3,

where 3
4 < s < 1 and (−∆)s is the fractional Laplace operator which can be

defined as

(−∆)su = C(s)P.V.

∫
R3

u(x)− u(y)

|x− y|3+2s
dy = C(s) lim

ε→0+

∫
Bc

ε(x)

u(x)− u(y)

|x− y|3+2s
dy.

Here P.V. stands for the Cauchy principal value, and C(s) is a positive constant
depending only on s, f is a continuous nonlinear function which satisfies differ-
ent supercubic conditions and V is the real valued external potential function.

In recent years, this kind of systems were studied in some papers, due to the
fact that solutions (u(x), φ(x)) of (1.1) correspond to standing wave solutions
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(e−iEtu(x), φ(x)) of the time-dependent system

(1.2)

{
i∂Ψ
∂t = (−∆)sΨ + Ṽ (x)Ψ + φΨ− f̃(x, |Ψ|)Ψ in R3 × R,

(−∆)sφ = |Ψ|2 in R3,

where i is the imaginary unit, Ṽ (x) = V (x) + E and f̃(x, |u|)u = f(x, u).
The first equation in (1.2) was introduced by Laskin [15, 16], which is the

so-called fractional Schrödinger equation, describes quantum (nonrelativistic)
particles interacting with the electromagnetic field generated by the motion.
An interesting Schrödinger equation class is when the potential φ(x) is deter-
mined by the charge of wave function itself, that is, when the second equation
in (1.2) (Poisson equation) holds. For this reason, (1.2) is refereed to as a frac-
tional nonlinear Schrödinger-Poisson system (also called Schrödinger-Maxwell
system).

In the local case that s = 1, we have the semilinear Schrödinger-Poisson
system

(1.3)

{
−∆u+ V (x)u+ φu = g(u) in R3,

−∆φ = u2 in R3,

which was proposed by Benci and Fortunato [6] in 1998 on a bounded domain,
and is related to the Hartree equation ([18]). In the past several years, the
existence and multiplicity of solutions to the systems similar to (1.3) has been
studied extensively by means of variational tools, we refer the interested readers
to see [1, 3, 34,35] and the references therein.

When s ∈ (0, 1), as pointed out in [24], the fractional Laplacian operator is a
nonlocal one. This makes the system (1.1) different with the local one (1.3) with
s = 1. Therefore, there are only few references on the existence of solutions
to the fractional Schrödinger-Poisson systems, see [21, 23, 27, 30–33], maybe
because the standard techniques that were developed for the local Laplacian
do not work immediately.

Motivated by an evident and increasing interest in the current literature on
fractional elliptic problems, the aim of our paper is finding infinitely many large
energy solution (i.e., high energy solutions) under different supercubic growth
assumptions on f ∈ C(R3 × R,R) and

F (x, t) =

∫ t

0

f(x, τ)dτ

for every (x, t) ∈ R3 × R. Such a type of problems is classical and one of the
main difficulties is the lack of compactness for Sobolev embedding theorem for
the whole space R3 case. To overcome this difficulty, motivated by the approach
used in [26], we will establish the existence results for (1.1), under the following
assumptions for potential V :

(V0) V (x) ∈ C(R3,R) and 0 < V0 = infx∈R3 V (x).
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(V1) For any M > 0, there exists r > 0 such that

lim
|y|→∞

meas{x ∈ R3 : |x− y| ≤ r, V (x) ≤M} = 0,

where meas denotes the Lebesgue measure.
Moreover, the nonlinearity f satisfies the following assumptions:

(f1) there exist c1 > 0 and p ∈ (2, 2∗s), where 2∗s = 6
3−2s , such that

|f(x, t)| ≤ c1(1 + |t|p−1).

(f2) limt→0
f(x,t)
t = 0 uniformly for any x ∈ R3.

(f3) f(x,−t) = −f(x, t) for any x ∈ R3 and t ∈ R.
(f4) there exists µ > 4 such that

0 < µF (x, t) ≤ tf(x, t).

We note that (f4) is a variant Ambrosetti-Rabinowitz type condition (AR
for short) which was originally introduced by Ambrosetti and Rabinowitz in [2],
where, as an application of the famous Mountain Pass Theorem, they obtained
the existence of nontrivial solutions of problem{

−∆u = f(x, u) in Ω,

u = 0 on ∂Ω,

under superlinear and subcritical growth conditions on the righthand side.
A lot of works concerning superlinear elliptic problem have been written by

using this usual (AR) condition (see, for instance, [10,25,28] and the references
therein), whose role consists in ensuring the boundedness of the Palais-Smale
sequences of the energy functional associated with the problem under consid-
eration. However, there are many functions which are supercubic at infinity,
but for which condition (f4) fails. Indeed, from (f4) it follows that for some
c2, c3 > 0

(1.4) F (x, t) ≥ c2|t|µ − c3.

Obviously, it is easy to see that the function

(1.5) f(x, t) = t3 log(1 + |t|)

does not satisfies the growth condition (1.4). At this purpose, we would note
that from (1.4) and the fact that µ > 4 mean that

(f5) lim|t|→∞
F (x,t)
|t|4 = +∞ uniformly for any x ∈ R3.

It is easily seen that the function (1.5) satisfies the condition (f5) but does
not verify (f4). In recent years, such a condition was often applied to the
existence of nontrivial solutions for superlinear problem without (f4) condition.
See, for instance, [7, 19,20] and references therein. Jeanjean introduced in [13]
the following assumption on f :
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(f6) there exists θ ≥ 1 such that

θF(x, t) ≥ F(x, ζt)

for every (x, t) ∈ R3 × R and ζ ∈ [0, 1], where we set

(1.6) F(x, t) := f(x, t)t− 4F (x, t).

Note that (f6) is a global condition and the function (1.5) also satisfies (f6).
Another interesting condition which is stronger than (f6) is the following one
(see e.g. [20]).

(f7) The function t → f(x,t)
t3 is increasing on (0,+∞) and decreasing on

(−∞, 0), a.e. x ∈ R3.

After this overview on the assumptions on nonlinearity f , we can state our
main result as follows.

Theorem 1.1. Assume that (V0)-(V1) holds and let f : R3 × R → R be a
function verifying (f1)-(f3) and one of the following assumptions

(a) (f4),
(b) (f5) and (f6),
(c) (f5) and (f7).

Then the system (1.1) has infinitely many solutions {(uk, φk)} in Hs(R3)×
Ds,2(R3) satisfying

1

2

∫
R3

(|(−∆)
s
2uk|2 + V (x)|uk|2)dx− 1

4

∫
R3

|(−∆)
s
2φk|dx

+
1

2

∫
R3

φuk
|uk|2dx−

∫
R3

F (x, uk)dx→ +∞.

From the viewpoint of variational method, the system (1.1) is a strongly
indefinite variational problem (see Section 2.2 below for more details). The
proof of Theorem 1.1 rely on the similar arguments for a single fractional equa-
tion as used in [7, 22]. More precisely, the strategy of our proofs consists in
looking for infinitely many critical points for the energy functional associated
with problem (1.1), namely here we apply the Fountain Theorem proved by
Bartsch in [5]. For this purpose, we have to analyze the compactness prop-
erties of the functional and its geometric features. As for the compactness,
when the nonlinearity satisfies the (AR) assumption (f4), we shall prove that
the Palais-Smale condition is satisfied; when f is assumed to satisfy conditions
(f5) and (f6) or (f7), the Cerami condition will be considered. In both cases the
main difficulty is related to the proof of the boundedness of the Palais-Smale
(or Cerami) sequence. Finally, we would note that Theorem 1.1 represents the
nonlocal counterpart of [11, 17, 29], where the limit case as s→ 1 (that is, the
Laplace case) was considered.

The remaining part of this paper is organized as follows. Some preliminary
results are presented in Section 2, including the functional space setting and
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some useful Lemmas. In Section 3, we are devoted to a completion the proof
of Theorem 1.1.

2. Variational settings and preliminary results

Throughout this paper, we denote ‖ ·‖p the usual norm of the space Lp(R3),
1 ≤ p < ∞, Br(x) denotes the open ball with center at x and radius r, c or
ci (i = 1, 2, . . .) denote some positive constants may change from line to line.
an ⇀ a and an → a mean the weak and strong convergence, respectively, as
n→∞.

2.1. The functional space setting

Firstly, fractional Sobolev spaces are the convenient setting for our problem,
so we will give some sketchs of the fractional order Sobolev spaces and the
complete introduction can be found in [12]. We recall that, for any s ∈ (0, 1),
the fractional Sobolev space Hs(R3) = W s,2(R3) is defined as follows:

Hs(R3) = {u ∈ L2(R3) :

∫
R3

(|ξ|2s|F(u)|2 + |F(u)|2)dξ <∞},

whose norm is defined as

‖u‖2Hs(R3) =

∫
R3

(|ξ|2s|F(u)|2 + |F(u)|2)dξ,

where F denotes the Fourier transform. We also define the homogeneous frac-
tional Sobolev space Ds,2(R3) as the completion of C∞0 (R3) with respect to the
norm

‖u‖Ds,2(R3) := (

∫∫
R3×R3

|u(x)− u(y)|2

|x− y|3+2s
dxdy)

1
2 = [u]Hs(R3).

The embedding Ds,2(R3) ↪→ L2∗
s (R3) is continuous and for any s ∈ (0, 1),

there exists a best constant Ss > 0 such that

Ss := inf
u∈Ds,2(R3)

‖u‖2Ds,2(R3)

‖u‖22∗
s(R3)

.

The fractional Laplacian, (−∆)su, of a smooth function u : R3 → R, is
defined by

F((−∆)su)(ξ) = |ξ|2sF(u)(ξ), ξ ∈ R3,

that is

F(φ)(ξ) =
1

(2π)
3
2

∫
R3

e−iξ·xφ(x)dx

for functions φ in the Schwartz class. Also (−∆)su can be equivalently repre-
sented [12] as

(−∆)su(x) = −1

2
C(s)

∫
R3

u(x+ y) + u(x− y)− 2u(x)

|y|3+2s
dy, ∀x ∈ R3,
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where

C(s) = (

∫
R3

(1− cos ξ1)

|ξ|3+2s
dξ)−1, ξ = (ξ1, ξ2, ξ3).

Also, by the Plancherel formula in Fourier analysis, we have

[u]2Hs(R3) =
2

C(s)
‖(−∆)

s
2u‖22.

As a consequence, the norms on Hs(R3) defined above

u 7−→ (

∫
R3

|u|2dx+

∫∫
R3×R3

|u(x)− u(y)|2

|x− y|3+2s
dxdy)

1
2 ;

u 7−→ (

∫
R3

(|ξ|2s|F(u)|2 + |F(u)|2)dξ)
1
2 ;

u 7−→ (

∫
R3

|u|2dx+ ‖(−∆)
s
2u‖22)

1
2

are equivalent.
In view of the presence of potential V (x), we introduce the subspace

E =

{
u ∈ Hs(R3) :

∫
R3

V (x)u2dx < +∞
}
,

which is a Hilbert space equipped with the inner product

(u, v)E =

∫
R3

(−∆)
s
2u(−∆)

s
2 vdx+

∫
R3

V (x)uvdx,

and the norm

‖u‖2E = (u, u) =

∫
R3

|(−∆)
s
2u|2dx+

∫
R3

V (x)u2dx.

We denote ‖ · ‖E by ‖ · ‖ in the sequel for convenience.
For the reader’s convenience, we review the main embedding result for this

class of fractional Sobolev spaces:

Lemma 2.1 ([12]). Let 0 < s < 1, then there exists a constant C = C(s) > 0
such that

‖u‖2
L2∗s (R3)

≤ C[u]2Hs(R3)

for every u ∈ Hs(R3), where 2∗s = 6
3−2s is the fractional critical exponent.

Moreover, the embedding Hs(R3) ↪→ Lr(R3) is continuous for any r ∈ [2, 2∗s]
and is locally compact whenever r ∈ [2, 2∗s).

We recall the following embedding properties of E.

Lemma 2.2 ([26]). The embedding E ↪→ Lr(R3) is continuous for r ∈ [2, 2∗s]
and is compact whenever r ∈ [2, 2∗s).
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2.2. A reduced problem

It is clear that the system (1.1) is the Euler-Lagrange equations of the func-
tional J : E ×Ds,2(R3)→ R defined by

(2.1) J(u, φ) =
1

2
‖u‖2 − 1

4

∫
R3

|(−∆)
s
2φ|2dx+

1

2

∫
R3

φu2dx−
∫
R3

F (x, u)dx.

Evidently, the energy functional J ∈ C1(E × Ds,2(R3),R) and its critical
points are the solutions of (1.1). It is easy to show that J exhibits a strong
indefiniteness, namely it is unbounded both from below and from above on
infinitely dimensional subspaces. This indefiniteness can be removed using the
reduction method described in [6]. First of all, for a fixed u ∈ E, there exists
a unique φsu ∈ Ds,2(R3) which is the solution of

(−∆)sφ = u2 in R3.

We can write an integral expression for φsu in the form

φsu(x) = Cs

∫
R3

u2(y)

|x− y|3−2s
dy, ∀x ∈ R3,

which is called s-Riesz potential (see [14]), where

Cs =
1

π
3
2

Γ(3− 2s)

22sΓ(s)
.

Then the system (1.1) can be reduced to the first equation with φ represented
by the solution of the fractional Poisson equation. This is the basic strategy of
solving (1.1). To be more precise about the solution φ of the fractional Poisson
equation, we have the following Lemma.

Lemma 2.3 ([27]). For any u ∈ E, we have
(i) φsu ≥ 0;
(ii) ‖φsu‖ ≤ c‖u‖2 12

3+2s

, where c > 0 does not depend on u. As a consequence

there exists M > 0 such that ∫
R3

φsuu
2 ≤M‖u‖4.

Putting φ = φsu into the first equation of (1.1), we obtain a semilinear elliptic
equation

(−∆)su+ V (x)u+ φsuu = f(x, u) in R3

with a nonlocal term. The corresponding functional I : E → R is defined by
(2.2)

I(u) =
1

2

∫
R3

|(−∆)
s
2u|2dx+

1

2

∫
R3

V (x)u2dx+
1

4

∫
R3

φsuu
2dx−

∫
R3

F (x, u)dx.
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Note that if s > 3
4 , there holds 2 ≤ 12

3+2s ≤ 2∗s and thus E ↪→ L
12

3+2s (R3), then
by Hölder inequality and Sobolev inequality, we have∫

R3

φsuu
2dx ≤

( ∫
R3

|u|
12

3+2s dx
) 3+2s

6
( ∫

R3

|φsu|2
∗
sdx
) 1

2∗s

≤ S−
1
2

s

( ∫
R3

|u|
12

3+2s dx
) 3+2s

6 ‖φsu‖Ds,2

≤ C‖u‖2‖φsu‖Ds,2 <∞.

Therefore, the functional I is well-defined for every u ∈ E and belongs to
C1(E,R). Moreover, for any u, v ∈ E, we have

〈I ′(u), v〉 =

∫
R3

(−∆)
s
2u(−∆)

s
2 vdx+

∫
R3

V (x)uvdx

+

∫
R3

φsuuvdx−
∫
R3

f(x, u)vdx.

(2.3)

It is standard to verify that a critical point u of the functional I corresponds
to a weak solution (u, φ) of (1.1) with φ = φsu. Hence in the following, we
consider critical points of I using variational method.

3. Proof of the main result

In order to prove our main results, we shall apply the Fountain Theorem
due to Bartsch (see [5]), which, under suitable compactness and geometric
assumptions on a functional, provides the existence of an unbounded sequence
of critical value for it. The compactness condition assumed in the Fountain
Theorem is the well-known Palais-Smale condition (see, for instance, [28]),
which in our framework reads as follows:

Definition. Assume functional I ∈ C1 and c ∈ R, if any sequence un satisfying
I(un) → c and I ′(un) → 0 has a convergence subsequence, we say I satisfies
Palais-Smale condition ((PS) in short) at the level c.

In [8,9] Cerami introduced the so-called Cerami condition, as a weak version
of the Palais-Smale assumption. With our notation, it can be written as follows:

Definition. Assume functional I ∈ C1 and c ∈ R, if any sequence un satisfying
I(un)→ c and (1 + ‖un‖)‖I ′(un)‖ → 0 has a convergence subsequence, we say
I satisfies Cerami condition ((C) in short) at the level c.

We would remark that Cerami condition is weaker than the Palais-Smale
condition. However, it was shown in [4] that from Cerami condition a deforma-
tion lemma follows and, as a consequence, we can also get minimax theorems.
Hence, the Fountain Theorem holds true also under this different compactness
assumption.
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Theorem 3.1. Let X be a Banach space with the norm ‖ · ‖ and let Xj be
a sequence of subspace of X with dimXj < +∞ for each j ∈ N. Further

X =
⊕
j∈N

Xj, the closure of the direct sum of all Xj. Set

Wk =

k⊕
j=0

Xj , Zk =
∞⊕
j=k

Xj , n ∈ N.

Consider an even functional I ∈ C1(X,R) (i.e., I(−u) = I(u) for all u ∈ X).
If for ever k ∈ N, there exist ρk > rk > 0 such that

(A1) ak := max
u∈Wk

‖u‖=ρk

I(u) ≤ 0,

(A2) bk := inf
u∈Zk

‖u‖=rk

I(u)→∞, k →∞,

(A3) I satisfies the (PS)c or (C)c condition for every c > 0,

then I has an unbounded sequence of critical values.

We choose an orthogonal basis {ej} ofX := E and defineWk := span{e1, . . .,
ek}, Zk := W⊥k−1. In order to perform the proof of Theorem 1.1, we first need
the following result:

Lemma 3.2. For any 2 ≤ p < 2∗s, we have that

βk := sup
u∈Zk,‖u‖=1

‖u‖p → 0 as k →∞.

Proof. Since the embedding from E into Lp(R3) is compact, then Lemma 3.1
can be proved by a similar way as Lemma 3.8 in [28]. �

3.1. The case (f4) holds

This section is devoted to the problem (1.1) in presence of a nonlinear term
satisfying condition (f4). In this framework we shall prove the following result
about the compactness of the functional I:

Lemma 3.3. Let f : R3 ×R→ R be a function verifying conditions (f1)-(f4).
Then I satisfies the (PS) condition at any level c ∈ R.

Proof. We split the proof into two steps. First, we show that the sequence
{un}n∈N is bounded in E and then that it admits a strongly convergent subse-
quence in E.

Step 1. The sequence {un}n∈N is bounded in E. From (f4), for n large
enough we have

1 + c+ ‖un‖ ≥ I(un)− 1

µ
〈I ′(un), un〉

= (
1

2
− 1

µ
)‖un‖2 + (

1

4
− 1

µ
)

∫
R3

φsun
u2
ndx
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+

∫
R3

1

µ
f(x, un)un − F (x, un)dx

≥ (
1

2
− 1

µ
)‖un‖2 + (

1

4
− 1

µ
)

∫
R3

φsun
u2
ndx.

Since µ > 4 and φsu ≥ 0, it follows that {un}n∈N is bounded in E.
Step 2. Up to a subsequence, {un}n∈N strongly converges in E. Since

{un}n∈N is bounded in E, we may assume that there exists u ∈ E such that

un ⇀ u in E,

un → u in Lr(R3), 2 ≤ r < 2∗s,

un(x)→ u(x) a.e. in R3

as n→ +∞. Observe that

‖un − u‖2 = 〈I ′(un)− I ′(u), un − u〉+

∫
R3

(f(x, un)− f(x, u))(un − u)dx

−
∫
R3

(φsun
un − φsuu)(un − u)dx.

It is clear that

〈I ′(un)− I ′(u), un − u〉 → 0 as n→ +∞.

According to assumptions (f1)-(f2) and the Hölder inequality, we obtain∫
R3

(f(x, un)− f(x, u))(un − u)dx

≤
∫
R3

c1(|un|+ |u|+ |un|p−1 + |u|p−1)|un − u|dx

≤ c2(‖un‖2 + ‖u‖2)‖un − u‖2 + c2(‖un‖p−1
p + ‖u‖p−1

p )‖un − u‖p.

Since un → u in Lr(R3) for all r ∈ [2, 2∗s), we have that∫
R3

(f(x, un)− f(x, u))(un − u)dx→ 0 as n→ +∞.

By Hölder inequality, the Sobolev inequality and Lemma 2.3 we have

|
∫
R3

φsun
un(un − u)dx| ≤ ‖φsun

‖2∗
s
‖un‖ 3

s
‖un − u‖2

≤ c3‖φsun
‖Ds,2‖un‖ 3

s
‖un − u‖2

≤ c3c4‖un‖2 12
3+2s
‖un‖ 3

s
‖un − u‖2,

where ci > 0 is a constant. Again using un → u in Lr(R3) for any r ∈ [2, 2∗s),
we have ∫

R3

φsun
un(un − u)dx→ 0 as n→∞,
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where we need s > 3
4 . Similarly, we obtain∫

R3

φsuu(un − u)dx→ 0 as n→∞.

Thus ∫
R3

(φsun
un − φsuu)(un − u)dx→ 0 as n→∞,

so that ‖un − u‖ → 0. Thus, we get I(u) satisfies Palais-Smale condition. �

Proof of Theorem 1.1 under assumption (a). By Lemma 3.2 we have that I
satisfies the Palais-Smale condition, while by (f3), we get that I(−u) = I(u)
for any u ∈ E. In order to apply the Fountain Theorem 3.1, it remains to study
the geometry of the functional I. For this purpose, we will verify I satisfies
the remaining conditions of Theorem 3.1.

Step 1. We verify that I satisfies (A1). Observe that assumption (f1)-(f4)
implies there exist c1, c2 > 0 such that

F (x, u) ≥ c1|u|µ − c2|u|2

for all x ∈ R3 and u ∈ R. Hence we have

I(u) ≤ 1

2
‖u‖2 +

M

4
‖u‖4 − c1‖u‖µ + c2‖u‖22.

Since, on the finitely dimensional space Wk all norms are equivalent, µ > 4
implies that

ak := max
u∈Wk,‖u‖=ρk

I(u) ≤ 0

for some ρk > 0 large enough.
Step 2. We prove I satisfies (A2). It follows form (f1) and (f2) that for

every ε > 0 there exists cε > 0 such that

|f(x, u)| ≤ ε|u|+ cε|u|p−1

for all x ∈ R3 and u ∈ R. By the equality F (x, t) =
∫ t

0
f(x, τ)dτ we obtain

F (x, u) ≤ ε|u|2 + cε|u|p

for all x ∈ R3 and z ∈ R. Hence, we have

I(u) ≥ 1

2
‖u‖2 − ε‖u‖22 − cε‖u‖pp

≥ (
1

2
− ε

V0
)‖u‖2 − c3βpk‖u‖

p,

where V0 is a lower bound of V (x) from (V1) and βk are defined in Lemma 3.1.

Choosing rk := (c3pβ
p
k)

1
2−p , we obtain

bk : = inf
u∈Zk,‖u‖=rk

I(u)

≥ inf
u∈Zk,‖u‖=rk

[(
1

2
− ε

V0
)‖u‖2 − c3βpk‖u‖

p]
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≥ (
1

2
− ε

V0
− 1

p
)(c3pβ

p
k)

2
2−p .

Because βk → 0 as k → 0 and p > 2, we have

bk ≥ (
1

2
− ε

V0
− 1

p
)(c3pβ

p
k)

2
2−p → +∞

for enough small ε. This prove (A2).
The proof of theorem under assumption (a) is completed and we would like to

emphasize that in the verification of the geometric structure of the functional I
the Ambrosetti-Rabinowitz condition (namely, (f4)) was used only for proving
Step 1. �

3.2. The case (f5) and (f6) hold

In this section we shall deal with the problem (1.1) when superlinear con-
ditions on the term f different from the Ambrosetti-Rabinowitz are satisfied.
Now, we show that the functional I satisfies the Cerami condition.

Lemma 3.4. Under the assumptions (f1)-(f2) and (f5)-(f6), the functional
I(u) satisfies the Cerami condition an any positive level.

Proof. We suppose that {un}n∈N is the Cerami sequence, that is for some c > 0

(3.1)

I(un) =
1

2

∫
R3

|(−∆)
s
2un|2dx+

1

2

∫
R3

V (x)|un|2dx+
1

4

∫
R3

φsun
|un|2dx

−
∫
R3

F (x, un)dx→ c as n→∞,

and

(3.2) (1 + ‖un‖)I ′(un)→ 0 as n→∞.

From (3.1) and (3.2), for n large enough, we have

1 + c ≥ I(un)− 1

4
〈I ′(un), un〉

=
1

4
‖un‖2 +

1

4

∫
R3

f(x, un)undx−
∫
R3

F (x, un)dx.
(3.3)

We claim that {un}n∈N is bounded. Otherwise there should exist a subsequence
of {un}n∈N satisfying ‖un‖ → ∞ as n→∞. Set vn = un

‖un‖ , then vn is bounded.

Passing to a subsequence, for some v ∈ E, we obtain

vn ⇀ v in E,

vn → v in Lr(R3), 2 ≤ r < 2∗s,

vn(x)→ v(x) a.e. in R3

as n→ +∞ and there exists h ∈ Lr(R3) such that

(3.4) |vn(x)| ≤ h(x) a.e. in R3 for any n ∈ N
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(see [28]). In the sequel we will consider separately the cases when v ≡ 0 and
v 6≡ 0 and we will prove that in both these situations a contradiction occurs.

Firstly, let us suppose that v 6≡ 0 in E. Dividing by ‖un‖4 in both side of
(3.1) and Lemma 2.3(i) we have that

(3.5) lim
n→∞

∫
R3

4F (x, un)

‖un‖4
dx = lim

n→∞

2‖un‖2 +
∫
R3 φ

s
un
u2
ndx− 4I(un)

‖un‖4
≤ C.

Let Ω := {x ∈ R3 : v(x) 6= 0}, then meas(Ω) > 0 and limn→∞ |un(x)| → ∞ for
a.e. x ∈ Ω. By (f5) and Fatou’s Lemma, for large n we have

lim
n→∞

∫
R3

4F (x, un)

‖un‖4
dx ≥ lim

n→∞

∫
Ω

4F (x, un)v4
n

|un|4
dx

≥
∫

Ω

lim inf
n→∞

4F (x, un)v4
n

|un|4
dx→∞

as n→∞. This contradicts (3.5).
Now, suppose that v ≡ 0. As in [13], we can say that for any n ∈ N there

exists tn ∈ [0, 1] such that

(3.6) I(tnun) = max
t∈[0,1]

I(tun).

Since ‖un‖ → ∞, for any m ∈ N, we can choose rm = 2
√
m such that

(3.7) rm‖un‖−1 ∈ (0, 1),

provided n is large enough.
By the continuity of the function F , we get that

F (x, rmvn)→ F (x, rmv) a.e. x ∈ R3

as n→ +∞ for any m ∈ N. Moreover, by (f1) and (f2), we have

|F (x, rmvn)| ≤ ε|rmvn|2 + cε|rmvn|p

≤ ε(rmh(x))2 + cε(rmh(x))p ∈ L1(R3),
(3.8)

a.e. x ∈ R3 and for any m,n ∈ N. Hence, (3.7), (3.8) and the Dominated
Convergence Theorem yield that

(3.9) F (x, rmvn)→ F (x, rmv) in L1(R3)

as n→ +∞ for any m ∈ N. Since F (x, 0) = 0 for any x ∈ R3 and v ≡ 0 holds
true, (3.9) gives that

(3.10)

∫
R3

F (x, rmvn)dx→ 0
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as n→ +∞ for any m ∈ N. Thus, (3.6), (3.7) and (3.10) yield

I(tnun) ≥ I(rm‖un‖−1un)

= I(rmvn)

=
1

2
‖rmvn‖2 +

1

4

∫
R3

φsrmvn |rmvn|
2dx−

∫
R3

F (x, rmvn)dx

≥ 2m−
∫
R3

F (x, rmvn)dx ≥ m,

(3.11)

provided n is large enough and for any m ∈ N. From this we deduce that

(3.12) I(tnun)→ +∞

as n→ +∞. Since I(0) = 0 and I(un)→ c, then 0 < tn < 1 if n large enough,
we have

‖tnun‖+

∫
R3

φstnun
|tnun|2dx−

∫
R3

f(x, tnun)tnundx

= 〈I ′(tnun), tnun〉 = tn
d

dt

∣∣∣∣
t=tn

I(tun) = 0.

Thus, by (f6) we obtain

I(un)− 1

4
〈I ′(un), un〉

=
1

4
‖un‖2 +

∫
R3

[
1

4
f(x, un)un − F (x, un)]dx

=
1

4
‖un‖2 +

1

4

∫
R3

H(x, un)dx

≥ 1

4θ
‖tnun‖2 +

1

4θ

∫
R3

H(x, tnun)dx

=
1

4θ
‖tnun‖2 +

1

θ

∫
R3

[
1

4
f(x, tnun)tnun − F (x, tnun)]dx

=
1

θ
I(tnun)− 1

4θ
〈I ′(tnun), tnun〉 → +∞.

(3.13)

This contradicts (3.3). So {un}n∈N is bounded. In order to prove the Lemma
from now on we can argue as in Step 2 of the proof of Lemma 3.2. �

Proof of Theorem 1.1 under assumption (b). Due to Lemma 3.3, I(u) satisfies
Cerami condition. Next, we verify that I(u) satisfies the rest conditions of
Theorem 3.1. The verification of geometric assumption (A2) of the Fountain
Theorem follows as in Step 2 in Section 3.1. It remains to verify that I(u)
satisfies (A1).

Indeed, it following from (f5) that for any c1 > 0, there exists δ > 0 such
that

F (x, u) ≥ c1|u|4
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for all x ∈ R3, and all |u| > δ. From (f1)-(f2), there exists c2 > 0 such that for
all x ∈ R3, 0 < |u| < δ, we have

|f(x, u)u|
|u|2

≤ c2.

Denote c3 = c1|δ|2 + c2
2 we have

F (x, u) ≥ c1|u|4 − c3|u|2.

Hence, we have

I(u) ≤ 1

2
‖u‖2 +

M

4
‖u‖4 − 1

4
c1‖u‖44 + c3‖u‖22.

Since, on the finitely dimensional space Wk all norms are equivalent, we have
that

I(u) ≤ 1

2
‖u‖2 +

C

4
‖u‖4 − 1

4
c1c4‖u‖4 + c3c5‖u‖2,

where ci is a constant. Now take c1 sufficiently large such that

C

4
− 1

4
c1c4 < 0,

it follows that

ak := max
u∈Wk,‖u‖=ρk

I(u) ≤ 0

for some ρk > 0 large enough. This proves that I satisfies condition (A1) of
Theorem 3.1 and the proof of Theorem 1.1 is completed. �

3.3. The case (f5) and (f7) hold

In this setting we need the following Lemma, which will be crucial in the
proof of this subsection.

Lemma 3.5 ([20]). If (f7) holds, then for any x ∈ R3, the function F(x, t) :=
f(x, t)t− 4F (x, t) is increasing when t > 0 and decreasing when t < 0. That is

F(x, s) ≤ F(x, t), ∀ 0 ≤ s < t or t < s ≤ 0 for x ∈ R3.

Lemma 3.6. Under the assumptions (f1), (f2), (f5) and (f7), the functional
I(u) satisfies the Cerami condition an any positive level.

Proof. We can argue exactly as in the proof of Lemma 3.3. We only have to
modify the proof of inequality (3.13). Here we will show the validity of (3.13)
by making use of assumption (f7) and Lemma 3.4. We point out that our
notation is the one used in the proof of Lemma 3.3. In view of Lemma 3.4 we
have that

I(un)− 1

4
〈I ′(un), un〉

=
1

4
‖un‖2 +

∫
R3

[
1

4
f(x, un)un − F (x, un)]dx
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=
1

4
‖un‖2 +

1

4

∫
R3

H(x, un)dx

≥ 1

4
‖tnun‖2 +

1

4

∫
R3

H(x, tnun)dx

=
1

4
‖tnun‖2 +

∫
R3

[
1

4
f(x, tnun)tnun − F (x, tnun)]dx

= I(tnun)− 1

4
〈I ′(tnun), tnun〉 → +∞

as n→∞. Thus, we get a contradiction. Combining the arguments in Lemma
3.3, the proof of this Lemma is completed. �

Proof of Theorem 1.1 under assumption (c). The functional I satisfies the Ce-
rami condition by Lemma 3.5, as for the geometric features of I, condition (A2)
of the Fountain Theorem follows as in Step 2 of the proof of Section 3.1, whereas
condition (A1) can be proved as in the proof of Section 3.2. Hence, the assertion
of Theorem 1.1 under assumption (c) is obtained. �
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