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Geometrically distinct solutions of nonlinear elliptic systems
with periodic potentials

Zhipeng Yang and Yuanyang Yu

Abstract. In this paper, we study the following nonlinear elliptic systems:{
−Δu1 + V1(x)u1 = ∂u1F (x, u) x ∈ R

N ,

−Δu2 + V2(x)u2 = ∂u2F (x, u) x ∈ R
N ,

where u = (u1, u2) : RN → R
2, F and Vi are periodic in x1, . . . , xN and

0 /∈ σ(− Δ + Vi) for i = 1, 2, where σ(− Δ + Vi) stands for the spectrum
of the Schrödinger operator − Δ + Vi. Under some suitable assumptions
on F and Vi, we obtain the existence of infinitely many geometrically
distinct solutions. The result presented in this paper generalizes the result
in Szulkin and Weth (J Funct Anal 257(12):3802–3822, 2009).
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1. Introduction and main results. In this paper, we study the multiplicity of
solutions for the nonlinear elliptic systems:{

−Δu1 + V1(x)u1 = f1(x, u), x ∈ R
N ,

−Δu2 + V2(x)u2 = f2(x, u), x ∈ R
N ,

(1.1)

where f := (f1, f2) = ∂uF and F : R
N × R

2 → R. This type of systems
arises when one considers standing wave solutions of time-dependent 2-coupled
Schrödinger systems of the form{

i∂φ1
∂t = −Δφ1 + a1(x)φ1 − g1(x, |φ|)φ1,

i∂φ2
∂t = −Δφ2 + a2(x)φ2 − g2(x, |φ|)φ2,

(1.2)

where φ = (φ1, φ2), i is the imaginary unit, ai(x) is a potential function, gi is
a coupled nonlinear function modeling various types of the interaction effect
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among many particles. System (1.2) has applications in many physical prob-
lems, especially in nonlinear optics and in Bose–Einstein condensates theory
for multispecies Bose–Einstein condensates (see [1,10,14]). A standing wave
solution of system (1.2) is a solution of the form

φi(x, t) = e−iλitui(x), λi ∈ R, t > 0,

and (u1, u2) solves the system (1.1) with Vi(x) = ai(x)−λi, fi(x, u) = gi(x, |u|)ui

for i = 1, 2.
System (1.2) has been studied by some authors quite recently. In a bounded

smooth domain Ω ⊂ R
N , the similar systems were extensively studied by some

authors, see for instance [3,5–7,19] and the references therein. The problem
settled on the whole space R

N was also considered recently in some works.
One of the main difficulties of this problem is the lack of the compactness of
the Sobolev embedding. And the second difficulty is that the negative definite
space of the quadratic form which appears in the energy functional is infinitely
dimensional, i.e., the energy functional is strongly indefinite. There are many
different conditions and methods involved to avoid these difficulties, we refer
to [4,8,9,16,24,25] and the references therein.

Recall that the spectrum σ(−Δ + V ) of −Δ + V is purely continuous
and may contain gaps, i.e., open intervals free of spectrum (see [18]). In [21],
Szulkin and Weth considered the following Schrödinger equation:

− Δu + V (x)u = f(x, u) x ∈ R
N , (1.3)

and proved that Eq. (1.3) possesses a ground state solution under the assump-
tion 0 /∈ σ(−Δ + V ). Later, Mederski [12] considered the system of coupled
Schrödinger equations as follows:

−Δui + Vi(x)ui = ∂ui
F (x, u), x ∈ R

N , i = 1, 2, . . . ,K,

where F and Vi are periodic in x, 0 /∈ σ(−Δ + Vi), i = 1, 2, . . . ,K, and proved
the existence of a ground state solution based on a new linking-type result
involving the Nehari-Pankov manifold.

Inspired by the above facts, more precisely by [12,21], the aim of this paper
is to study the existence and multiplicity of nontrivial solutions to system (1.1)
via variational methods. As far as we know, it seems that this problem was
not considered in literature before.

We assume that V and f satisfy the following hypotheses:
(V ) Vi ∈ C(RN ,R), 1-periodic in x1, . . . , xN , and 0 /∈ σ(−Δ+Vi) for i = 1, 2;
(f1) fi : R

N × R
2 → R is continuous with respect to the second variable,

1-periodic in x1, . . . , xN ;
(f2) there are 2 < p < 2∗ = 2N

(N−2)+
and c0 > 0 such that |f(x, u)| ≤ c0(1 +

|u|p−1) for all (x, u) ∈ R
N × R

2;
(f3) lim

|u|→0

|f(x,u)|
|u| = 0 and lim

|u|→∞
F (x,u)

|u|2 = ∞ uniformly in x ∈ R
N ;

(f4) 1
2f(x, u)u ≥ F (x, u) > 0 for all (x, u) ∈ R

N × R
2\{0};

(f5) if f(x, u)v = f(x, v)u > 0, then F (x, u) − F (x, v) ≤ (f(x,u)u)2−(f(x,u)v)2

2f(x,u)u .
If in addition, F (x, u) �= F (x, v), then the strict inequality holds.
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We note that if u0 is a solution of (1.1), then so are all elements of the orbit
of u0 under the action of ZN , O(u) := {u(· − k) : k ∈ Z

N}. Two solutions u1

and u2 are said to be geometrically distinct if O(u1) and O(u2) are disjoint.
We now describe our main result.

Theorem 1.1. Assume that (V ) and (f1)–(f5) hold, then the following conclu-
sions are true:

(i) system (1.1) has a ground state solution;
(ii) if in addition F is even in u, that is, F (x, u) = F (x,−u) for any (x, u) ∈

R
N ×R

2, then system (1.1) admits infinitely many pairs of geometrically
distinct solutions.

Remark 1.1. The condition (f5) was first introduced by Bartsch and Mederski
[2] to study the time-harmonic Maxwell equations and then as used in [12]
for a Schrödinger system where our first conclusion was covered. In fact, this
condition can be regarded as a vector version of the following monotonicity
condition :

u 	→ f(x, u)
|u| is strictly increasing on (−∞, 0) and on (0,∞),

so that assumptions (f1)–(f5) are more general than those in [21].

Remark 1.2. Here is an example which satisfies the assumptions (f1)–(f5). For
example, F (x, u) = Γ(x)|Mu|q for q ∈ (2, 2∗), where Γ ∈ L∞(RN ) is 1-periodic
in x1, . . . , xN , positive, and bounded away from 0, M ∈ GL(2) is an invertible
2 × 2 matrix.

In the present paper, we are concerned with the existence of infinitely many
solutions of (1.1). The main technical difficulty we need to overcome is that
the energy functional is strongly indefinite. On the other hand, since f is only
continuous, M (see Section 2) may not be of class C1 in our case, so we
cannot use standard arguments on the Nehari manifold in the standard way.
To overcome the nondifferentiability of the Nehari manifold, we shall use the
reduction method developed by Szulkin and Weth [21,22].

2. Variational setting and preliminaries. First, (f2)–(f3) imply that for every
ε > 0, there is Cε > 0 such that, for all (x, u) ∈ R

N × R
2,

|f(x, u)| ≤ ε|u| + Cε|u|p−1 and |F (x, u)| ≤ ε|u|2 + Cε|u|p. (2.1)

Since 0 /∈ σ(−Δ + Vi), the spectral theory implies that there exist continuous
projections P+

i and P−
i onto E+

i and E−
i , respectively, such that H1(RN ) =

E+
i ⊕ E−

i for i = 1, 2 (see [17]). Denote P±
i u = u±

i for u ∈ H1(RN ) in the
sequel. Moreover, we introduce new inner products in H1(RN ) by

〈u, v〉i :=
∫
RN

∇u+
i ∇v+

i + Vi(x)u+
i v+

i dx −
∫
RN

∇u−
i ∇v−

i + Vi(x)u−
i v−

i dx

and norms given by ‖u‖i := (〈u, u〉i)
1
2 for i = 1, 2, which are equivalent to the

H1-norm. Let

E+ := E+
1 × E+

2 , E− := E−
1 × E−

2 ,
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and observe that any u ∈ E := H1(RN ) × H1(RN ) admits a unique decompo-
sition u = u+ + u−, where u+ = (u+

1 , u+
2 ) ∈ E+ and u− = (u−

1 , u−
2 ) ∈ E−. We

introduce a new norm in E given by

‖u‖2 =
2∑

i=1

(‖u+
i ‖2

i + ‖u−
i ‖2

i

)
=

2∑
i=1

‖ui‖2
i .

Thus, the energy functional Φ corresponding to (1.1) is given by

Φ(u) =
1
2

2∑
i=1

∫
RN

|∇ui|2 + Vi(x)|ui|2dx −
∫
RN

F (x, u)dx

=
1
2

2∑
i=1

(‖u+
i ‖2

i − ‖u−
i ‖2

i

) −
∫
RN

F (x, u)dx

=
1
2
‖u+‖2 − 1

2
‖u−‖2 −

∫
RN

F (x, u)dx,

which is of C1-class and its critical points correspond to solutions of (1.1).
In order to look for the ground state solutions of system (1.1), we consider

the following set

M := {u ∈ E\E− : Φ′(u)u = 0 and Φ′(u)v = 0 for all v ∈ E−},

which has been introduced by Pankov [13]. Clearly, M contains all nontrivial
critical points of Φ.

We consider the following minimizing problem:

c0 := inf
u∈M

Φ(u).

Since c0 is the lowest level for Φ at which there are nontrivial solutions of (1.1),
u0 will be called a least energy solution or ground state solution.

Before proving our result, we need some preliminary lemmas.

Lemma 2.1. Let u ∈ E, v ∈ E−, and s ≥ 0 with u �= su + v, then

Φ(u) > Φ(su + v) − Φ′(u)
(s2 − 1

2
u + sv

)
.

Proof. Let u, v, and s be as in the statement. Then we need to show that

Φ(su + v) − Φ′(u)
(s2 − 1

2
u + sv

) − Φ(u) = −1

2
‖v‖2 +

∫
R3

ϕ(s, x)dx < 0, (2.2)

where

ϕ(s, x) := f(x, u)(
s2 − 1

2
u + sv) + F (x, u) − F (x, su + v).

We first claim that ϕ(s, x) ≤ 0 for s ≥ 0 and x ∈ R
N . Without loss of

generality, we assume that u �= 0. Then by (f4), we have ϕ(0, x) ≤ 0 and it
follows from (f2) that

lim
s→∞ ϕ(s, x) = −∞.
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Let s0 ≥ 0 be such that ϕ(s0, x) = max
s≥0

ϕ(s, x). We may assume that s0 > 0

and thus ∂sϕ(s0, x) = 0. Therefore,

f(x, u)(s0u + v) = f(x, s0u + v)u.

If f(x, u)(s0u + v) ≤ 0, then by (f4),

ϕ(s0, x) =
−s2

0 − 1
2

f(x, u)u + s0f(x, u)(s0u + v) + F (x, u) − F (x, s0u + v)

≤ −s2
0

2
f(x, u)u − F (x, s0u + v)

≤ 0.

If f(x, u)(s0u + v) > 0, then by (f5),

ϕ(s0, x) ≤ f(x, u)
(s2

0 − 1
2

u + s0v
)

+
(f(x, u)u)2 − (

f(x, u)(s0u + v)
)2

2f(x, u)u

= − (f(x, u)v)2

2f(x, u)u
≤ 0.

Then we infer that ϕ(s, x) ≤ 0 for any s ≥ 0 and x ∈ R
N . If v �= 0, then (2.2)

holds.
Now we consider the case v = 0. If there exists s0 > 0 and s0 �= 1 such that

ϕ(s0, x) = max
s≥0

ϕ(s, x), then ∂s(s0, x) = s0f(x, u)u − f(x, s0u)u = 0. Thus, it

follows from (f5) that

ϕ(s0, x) =
s2
0 − 1
2

f(x, u)u + F (x, u) − F (x, s0u)

<
s2
0 − 1
2

f(x, u)u +
(f(x, u)u)2 − (

f(x, u)(s0u)
)2

2f(x, u)u
= 0,

which implies that ϕ(s, x) has only one maximum point at s = 1. Therefore,
ϕ(s, x) < ϕ(1, x) = 0. �

From Lemma 2.1, we have the following lemma.

Lemma 2.2. Let u ∈ M, v ∈ E−, and s ≥ 0 with u �= su + v, then

Φ(u) > Φ(su + v).

We define for any u ∈ E+\{0},

Ê(u) := E− ⊕ R
+u.

Thus, Lemma 2.2 implies that u is the unique global maximum of Φ
∣∣
Ê(u)

.
Applying Lemma 2.2, we can prove the following results, we omit the proof
here.

Lemma 2.3. (i) There is a constant ρ > 0 such that inf
M

Φ ≥ inf
Sρ

Φ > 0, where

Sρ = {u ∈ E+ : ‖u‖ = ρ}.
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(ii) ‖u+‖ ≥ max{√
2c0, ‖u−‖} > 0 for every u ∈ M.

Lemma 2.4. If W is a compact subset of E+\{0}, then there exists R > 0 such
that Φ < 0 on E(u)\BR(0) for each u ∈ W.

Proof. Assume that this is not true. Then there exist sequences {un} ⊂ W
and wn ∈ E(un) such that Φ(wn) ≥ 0 for all n ∈ N and ‖wn‖ → ∞ as n → ∞.
By the compactness of W, we can assume that un → u ∈ W, ‖u‖ = 1. Set
vn = wn

‖wn‖ = snun + v−
n , then

0 ≤ Φ(wn)
‖wn‖2

=
1
2
(s2

n − ‖v−
n ‖2) −

∫
RN

F (x,wn)
|wn|2 |vn|2dx, (2.3)

which implies that ‖v−
n ‖2 ≤ s2

n = 1 − ‖v−
n ‖2. So 1√

2
≤ sn ≤ 1 and then, up to

a subsequence, sn → s > 0, vn ⇀ v, and vn(x) → v(x) for a.e. x ∈ R
N . Thus

v = su + v− �= 0. Set Ω := {x ∈ R
N : v(x) �= 0}. Then meas(Ω) > 0. Hence,

for x ∈ Ω, |wn(x)| → +∞. Consequently, by Fatou’s lemma, one has∫
RN

F (x,wn)
|wn|2 |vn|2dx ≥

∫
Ω

F (x,wn)
|wn|2 |vn|2dx → ∞,

which is a contradiction to (2.3). This completes the proof. �
As a consequence of Lemmas 2.2–2.4, one has

Lemma 2.5. For any u ∈ E\E−, the set M ∩ Ê(u) consists of precisely one
point m̂(u) which is the unique global maximum of Φ

∣∣
Ê(u)

.

Lemma 2.6. Φ is coercive on M, i.e., Φ(u) → ∞ as ‖u‖ → ∞, u ∈ M.

Proof. If the conclusion is false, then there exist a sequence {un} ⊂ M such
that ‖un‖ → ∞ and Φ(un) ≤ d for some d ∈ [c0,∞). Let vn = un

‖un‖ . Then,
up to a subsequence, vn ⇀ v in E and vn(x) → v(x) for a.e. in x ∈ R

N . By
Lemma 2.3(ii), ‖v+

n ‖2 ≥ 1
2 . By Lions’ concentration principle [11, Lemma 1.1],

it is not difficult to check that {v+
n } is nonvanishing, that is, there exist r, δ > 0

and a sequence {yn} ⊂ R
N such that∫

Br(yn)

|v+
n |2dx ≥ δ.

By the assumptions of periodicity, we may assume that {yn} is bounded in
Z

N . Thus, up to a subsequence, one has v+
n → v+ in L2

loc(R
N ) with v+ �= 0.

Set Ω = {x ∈ R
N : v(x) �= 0}. Then meas(Ω) �= 0 and |un(x)| → ∞ for each

x ∈ Ω. It follows from (f3) and Fatou’s lemma that∫
RN

F (x, un)
‖un‖2

dx ≥
∫
Ω

F (x, un)
|un|2 |vn|2dx → ∞,

and therefore,

0 ≤ Φ(un)
‖un‖2

=
1
2
(‖v+

n ‖2 − ‖v−
n ‖2) −

∫
RN

F (x, un)
‖un‖2

dx → −∞
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as n → ∞, a contradiction. �

Lemma 2.7 (see [21]). The map m̂ : E+\{0} → M is continuous, and the
restriction of the map m̂ to S+ is a homeomorphism with inverse given by

m̌ : M → S+, m̌(u) =
u+

‖u+‖ ,

where S+ := {u ∈ E+ : ‖u‖ = 1}.
Define the mapping Ψ̂ : E+\{0} → R and Ψ : S+ → R by

Ψ̂(u) = Φ(m̂(u)) and Ψ = Ψ̂|S+ ,

which are continuous by Lemma 2.7.
By [21, Proposition 2.9 and Corollary 2.10], we have the following Lemma 2.8.

Lemma 2.8 (see [21]).

(i) Ψ̂ ∈ C1(E+\{0},R), and Ψ̂′(w)z = ‖m̂(w)+‖
‖w‖ Φ′(m̂(w))z for w, z ∈ E+, w �=

0.
(ii) Ψ ∈ C1(S+,R) and for each w ∈ S+, one has

Ψ′(w)z = ‖m̂(w)+‖Φ′(m̂(w))z for all z ∈ Tw(S+) = {v ∈ E+ : 〈w, v〉 = 0}.

(iii) If {wn} is a (PS)-sequence for Ψ, then {m̂(wn)} is a (PS)-sequence for
Φ.

(iv) w ∈ S+ is a critical point of Ψ if and only if m̂(w) ∈ M is a critical
point of Φ. Moreover, the corresponding values of Ψ and Φ coincide and
inf
S+

Ψ = inf
M

Φ.

3. Proof of the main result. Now we are in a position to give the proof of
existence in Theorem 1.1.

Proof of Theorem 1.1. (i) If u0 ∈ M satisfies Φ(u0) = c0, then m̌(u0) ∈ S+

is a minimizer of Ψ and therefore a critical point of Ψ, thus u0 is a critical
point of Φ by Lemma 2.8. It remains to show that there exists a minimizer
u ∈ M of Φ|M. By Ekeland’s variational principle [23], there exists a sequence
{wn} ⊂ S+ with Ψ(wn) → c0 and Ψ′(wm) → 0. Set un = m̂(wn) ∈ M. Then
Φ(un) → c0 and Φ′(un) → 0. By Lemma 2.6, {un} is bounded in E. Therefore,
up to a subsequence, un ⇀ u in E. By Lions’ concentration principle [11,
Lemma 1.1], it is not difficult to check that {un} is nonvanishing, that is,
there exist r, δ > 0 and a sequence {yn} ⊂ R

N such that∫
Br(yn)

|un|2dx ≥ δ,

here we may assume that yn ∈ Z
N by taking a large r if necessary. By the

assumptions of periodicity, we may assume that {yn} is bounded in Z
N . Thus,

one has u �= 0,Φ′(u) = 0, and then u ∈ M. Using a standard argument, one
obtains that Φ(u) = c0. This completes the first part of Theorem 1.1.
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In the following, we focus on the proof of the multiplicity of Theorem 1.1.
Set

K := {u ∈ S+ : Ψ′(u) = 0}, Kd := {u ∈ K : Ψ(u) = d},

and

Uδ(Kd) := {u ∈ S+ : dist(u,Kd) < δ}.

Let Σ := {A ⊂ S+ : A is closed and A = −A}. For each A ∈ Σ, γ(A) denotes
the Krasnoselskii genus (see [15,20]) of A, which is defined as the least integer
k such that there exists an odd continuous mapping σ : A → R

k\{0}. If there
is no such mapping for any k, then γ(A) = ∞. Moreover, γ(∅) = 0. Set

ck := inf{d ∈ R : γ(Ψd) ≥ k}
for all k ∈ N. It is easy to prove that c0 ≤ ck and ck ≤ ck+1. �

Lemma 3.1. ck is a critical value of Ψ.

Proof. If ck is not a critical value of Ψ, then for any w ∈ S+, one has Ψ(w) �= ck

or Ψ′(w) �= 0. Hence, there exists δ > 0 such that

Nck,δ := {w ∈ S+ : |Ψ(w) − ck| < δ, ‖Ψ′(w)‖ < δ} = ∅.

Otherwise, there exists a sequence {wn} ⊂ S+ such that Ψ(wk) → ck and
‖Ψ′(wn)‖ → 0. Set vn = m̂(wn). Then, by Lemma 2.8(iii), {vn} ⊂ M is a
(PS)ck

sequence of Φ. Lemma 2.6 implies that {vn} is bounded in E. Hence,
up to a subsequence, one has un ⇀ u in E, un → u in Lt

loc(R
N ) for all

t ∈ [1, 2∗), and un(x) → u(x) for a.e. x ∈ R
N . As in the proof of Theorem 1.1,

we can prove that Φ′(v) = 0 and vn → v in E, and hence Φ(v) = ck ≥ c0 > 0.
Consequently, v ∈ M, and hence Lemma 2.8(iii) implies w := m−1(v) ∈ Kck

,
a contradiction. This show Nck,δ = ∅. Therefore, by [20, Remark � 3.12], there
exists ε0 > 0 such that for any 0 < ε < ε̄ ≤ ε0, and there exists a continuous
1-parameter family of homeomorphisms η(t, ·) of S+, 0 ≤ t < ∞, with the
properties:
(1◦) η(w, t) = w if t = 0, or Ψ′(w) = 0, or |Ψ(w) − ck| ≥ ε̄;
(2◦) Ψ(η(w, t)) is nonincreasing in t for any w ∈ S+;
(3◦) η(Ψck+ε, 1) ⊂ Ψck−ε;
(4◦) η(·, s) ◦ η(·, t) = η(·, s + t) for all s, t ≥ 0;
(5◦) η(w, t) is odd in w for t ≥ 0.
Moreover, by Nck,δ = ∅, we know that there exists 0 < ε1 < ε0 such that

Ψck+ε1
ck−ε1

⋂
K = ∅.

For each w ∈ Ψck+ε1 , by the property (3◦) of η, we know that Ψ(η(w, 1)) ≤
ck −ε1. Let e = e(w) be the infimum of the time for which Ψ(η(w, t)) ≤ ck −ε1.
It is easy to see that e : Ψck+ε1 → [0,∞) is a continuous mapping. Since Ψ is
even, so is e. Define a mapping h : Ψck+ε1 → Ψck−ε1 by h(w) := η(w, e(w)).
Then h is odd and continuous. It follows from the mapping property of the
genus and the definition of ck that

k ≤ γ(Ψck+ε1) ≤ γ(Ψck−ε1) ≤ k − 1,
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a contradiction. �

Now, set

K̃ :=
∞⋃

k=1

Kck
.

Choose a subset F of K̃ such that F = −F and each orbit has a unique
representation. Arguing indirectly, from now on, we always assume that

F is a finite set.

The following lemma has been proved in [21, Lemma 2.13].

Lemma 3.2. κ := inf{‖v − w‖ : v, w ∈ K̃, v �= w} > 0.

The following key lemma gives the discreteness property of (PS)-sequences
of Φ.

Lemma 3.3 (Discreteness of (PS)-sequences). Let d ≥ c0. If {v1
n}, {v2

n} ⊂ Φd

are two (PS)-sequences for Φ, then either lim
n→∞ ‖v1

n −v2
n‖ = 0 or lim sup

n→∞
‖v1

n −
v2

n‖ ≥ ρ(d) > 0, where ρ(d) depends only on d but not on the particular choice
of the (PS)-sequences.

Proof. We put u1
n := m̂(v1

n), u2
n := m̂(v2

n). Then by Lemmas 2.8(iii) and 2.6,
both sequences {u1

n}, {u2
n} ∈ Φd ∩ M are bounded (PS)-sequence for Φ. We

distinguish two cases.

Case 1 {u1
n − u2

n} is vanishing. Then ‖u1
n − u2

n‖p → 0 as n → ∞. Thus,
‖(u1

n − u2
n)+‖p → 0 since the orthogonal projection of E on E+ is continuous

in the Lp-norm. By the Hölder inequality and (2.1), one has

‖(u1
n − u2

n)+‖2 = Φ′(u1
n)(u1

n − u2
n)+ − Φ′(u2

n)(u1
n − u2

n)+

+
∫
R3

(
f(x, u1

n) − f(x, u2
n)

)
(u1

n − u2
n)+dx

≤ ε‖(u1
n − u2

n)+‖

+
∫
R3

(
ε(|u1

n| + |u2
n|) + Cε(|u1

n|p−1 + |u2
n|p−1)

)
|(u1

n − u2
n)+|dx

≤ (1 + C)ε‖(u1
n − u2

n)+‖ + Dε‖(u1
n − u2

n)+‖p,

which implies that ‖(u1
n − u2

n)+‖ → 0 as n → ∞. Similarly, ‖(u1
n − u2

n)−‖ → 0
as n → ∞, so ‖u1

n − u2
n‖ → 0 as n → ∞. As a consequence, ‖v1

n − v2
n‖ → 0

as n → ∞ because m̌ is Lipschitz continuous on M; indeed for u, v ∈ M, by
Lemma 2.3,

‖m̌(u) − m̌(v)‖ = ‖ u+

‖u+‖ − v+

‖v+‖‖ = ‖u+ − v+

‖u+‖ − (‖u+‖ − ‖v+‖)v+

‖u+‖‖v+‖ ‖

≤ 2
‖u+‖‖(u − v)+‖ ≤

√
2
c0

‖u − v‖.
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Case 2 {u1
n − u2

n} is nonvanishing. That is, there exist r, δ > 0 and a sequence
{yn} ⊂ R

N such that ∫
Br(yn)

|u1
n − u2

n|2dx ≥ δ. (3.1)

By the assumptions of periodicity, we may assume that {yn} is bounded in
R

N . Up to a subsequence, we may assume that u1
n ⇀ u1 and u2

n ⇀ u2 in E,
where u1 �= u2 by (3.1) and Φ′(u1) = Φ′(u2) = 0. Now we suppose

‖u1
n‖ → α1 and ‖u2

n‖ → α2,

then it follows from Lemma 2.3(ii) that
√

2c0 ≤ αi ≤ ν(d) := sup{‖u‖ : u ∈
Φd ∩ M} (note that ν(d) < ∞ by Lemma 2.6) for i = 1, 2.

Suppose u1, u2 �= 0. Then u1, u2 ∈ M. We put v1 := m̌(u1) ∈ K, v2 :=
m̌(u2) ∈ K, v1 �= v2. Hence

lim inf
n→∞ ‖v1

n − v2
n‖ = lim inf

n→∞

∥∥∥∥ (v1
n)+

‖(v1
n)+‖ − (v2

n)+

‖(v2
n)+‖

∥∥∥∥
≥

∥∥∥∥ (u1)+

α1
− (u2)+

α2

∥∥∥∥ ≥ ‖β1v1 − β2v2‖,

where

β1 :=
‖(u1)+‖

α1
≥

√
2c∗

ν(d)
and β2 :=

‖(u2)+‖
α2

≥
√

2c∗
ν(d)

.

Since ‖v1‖ = ‖v2‖ = 1, it is easy see from the above inequalities that

lim inf
n→∞ ‖v1

n − v2
n‖ ≥ ‖β1v

1 − β2v
2‖ ≥ min{β1, β2}‖v1 − v2‖ ≥ κ

√
2c0

ν(d)
,

(3.2)

where κ is given by Lemma 3.2. Hence (3.2) implies lim inf
n→∞ ‖v1

n −v2
n‖ ≥ ρ(d) >

0, where ρ(d) depends only on d.
If u2 = 0, then u1 �= 0 and

lim inf
n→∞ ‖v1

n − v2
n‖ = lim inf

n→∞

∥∥∥∥ (v1
n)+

‖(v1
n)+‖ − (v2

n)+

‖(v2
n)+‖

∥∥∥∥ ≥ ‖(u1)+‖
α1

≥
√

2c0

ν(d)
.

The case u1 = 0 can be treated similarly. The proof is completed. �

It is known that Ψ admits a pseudo-gradient vector field H : S+\K → TS+.
Let η1 : G → S+\K be the corresponding flow defined by{

d
dtη1(t, w) = −H(η1(t, w)),
η1(0, w) = w,

where

G := {(t, w) : w ∈ S+\K,T−(w) < t < T+(w)} ⊂ R × (S+\K)

and (T−(w), T+(w)) are the maximal existence times of the trajectory t →
η1(t, w) in negative and positive direction. Here η1(t, w) is odd in w and
Ψ(η1(t, w)) is strictly decreasing in t.
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We then have the following important deformation type results which play
a crucial role in our proof.

Lemma 3.4. Let d ≥ c0. Then for every δ > 0, there exists ε = ε(δ) > 0 such
that

(i) Ψd+ε
d−ε ∩ K̃ = Kd;

(ii) lim
t→T+(w)

Ψ(η1(t, w)) < d − ε for w ∈ Ψd+ε\Uδ(Kd).

Proof of Theorem 1.1 (completed). (ii) If F is an infinite set, then Ψ admits
infinitely many pairs ± v of geometrically distinct critical points. So, Theorem
1.1(ii) follows from Lemmas 2.8 and 3.1.

By Lemma 3.2, Kck
is either empty or a discrete set, hence γ(Kck

) = 0 or
1. By the continuity property of the genus, there exists δ > 0 such that γ(Ū) =
γ(Kck

), where U := Uδ(Kck
) and δ < κ

2 . For such δ, choose ε > 0 so that the
conclusions of Lemma 3.4 hold with d = ck. Then for each w ∈ Ψck+ε\U ,
there exists t ∈ [0, T+(w)) such that Ψ(η1(t, w)) < ck − ε. Let e = e(w) be
the infimum of the time for which Ψ(η1(w, t)) ≤ ck − ε. Since ck − ε is not a
critical value of Ψ, it is easy to see by the implicit function theorem that e is
a continuous mapping and since Ψ is even, e(−w) = e(w). Define a mapping
h : Ψck+ε\U → Ψck−ε by setting h(w) := η1(e(w), w). Then h is odd and
continuous, so it follows from the properties of the genus and the definition of
ck that

γ(Ψck+ε) ≤ γ(Ū) + γ(Ψck−ε) ≤ γ(Ū) + k − 1 = γ(Kck
) + k − 1. (3.3)

If γ(Kck
) = 0, then γ(Ψck+ε) ≤ k − 1, in contrast to the definition of ck.

Therefore, γ(Kck
) = 1 and Kck

�= ∅.
If ck = ck+1, then by the definition of ck+1, there exists r < ck+1 + ε such

that γ(Ψr) ≥ k + 1. Therefore, γ(Ψck+1+ε) ≥ γ(Ψr) ≥ k + 1, and hence, by
(3.3), one has

γ(Kck
) ≥ γ(Ψck+ε) − k + 1 ≥ 2.

But, by Lemma 3.2, γ(Kck
) = 1, a contradiction. Therefore, ck < ck+1. This

contradicts the fact that F is a finite set. Therefore, Ψ admits infinitely many
pairs ±v of geometrically distinct critical points. Consequently, Theorem 1.1(ii)
follows from Lemmas 2.8 and 3.1. �
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