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Abstract: In this paper, we study the singularly perturbed fractional Choquard equation

ε2s(−∆)su + V(x)u = εµ−3(
∫
R3

|u(y)|2
*
µ,s + F(u(y))
|x − y|µ dy)(|u|2

*
µ,s−2u + 1

2*µ,s
f (u)) in R3,

where ε > 0 is a small parameter, (−∆)s denotes the fractional Laplacian of order s ∈ (0, 1), 0 < µ < 3,
2*µ,s = 6−µ

3−2s is the critical exponent in the sense ofHardy-Littlewood-Sobolev inequality and fractional Laplace
operator. F is the primitive of f which is a continuous subcritical term. Under a local condition imposed on
the potential V, we investigate the relation between the number of positive solutions and the topology of the
set where the potential attains its minimum values. In the proofs we apply variational methods, penalization
techniques and Ljusternik-Schnirelmann theory.
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1 Introduction and the main results
In the present paper we are interested in the existence, multiplicity and concentration behavior of the

semi-classical solutions of the singularly perturbed nonlocal elliptic equation

ε2s(−∆)su + V(x)u = εµ−N(
∫
R3

G(u(y))
|x − y|µ dy)g(u) in RN , (1.1)

where ε > 0 is a small parameter, 0 < µ < N, V , g = G′ are real continuous functions onRN and the fractional
Laplacian (−∆)s is de�ned by

(−∆)sΨ(x) = CN,sP.V .
∫
RN

Ψ(x) − Ψ(y)
|x − y|N+2s dy, Ψ ∈ S(RN),

P.V . stands for the Cauchy principal value, CN,s is a normalized constant, S(RN) is the Schwartz space of
rapidly decaying functions, s ∈ (0, 1). As ε goes to zero in (1.1), the existence and asymptotic behavior of the
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solutions of the singularly perturbed equation (1.1) is known as the semi-classical problem. It was used to
describe the transition between Quantum Mechanics and Classical Mechanics.

Ourmotivation to study (1.1)mainly comes from the fact that solutions u(x) of (1.1) correspond to standing
wave solutions Ψ(x, t) = e−iEt/εu(x) of the following time-dependent fractional Schrödinger equation

iε ∂Ψ∂t = ε2s(−∆)sΨ + (V(x) + E)Ψ − (K(x) * |G(Ψ)|)g(Ψ) (x, t) ∈ RN ×R (1.2)

where i is the imaginary unit, ε is related to the Planck constant. Equations of the type (1.2) was introduced
by Laskin (see [25, 26]) and come from an expansion of the Feynman path integral from Brownian-like to
Lévy-like quantum mechanical paths. It also appeared in several areas such as optimization, �nance, phase
transitions, strati�ed materials, crystal dislocation, �ame propagation, conservation laws, materials science
and water waves (see [11]).

When s = 1, the equation (1.1) turns out to be the Choquard equation

−ε2∆u + V(x)u = εµ−N(
∫
RN

G(u(y))
|x − y|µ dy)g(u) in RN , (1.3)

The existence,multiplicity and concentration of solutions for (1.3) has beenwidely investigated.Ononehand,
some people have studied the classical problem, namely ε = 1 in (1.3). When V = 1 and G(u) = |u|q

q , (1.3)
covers in particular the Choquard-Pekar equation

−∆u + u = (
∫
RN

1
|x|µ * |u|

qdy)|u|q−2u in RN . (1.4)

The case N = 3, q = 2 and µ = 1 came from Pekar [38] in 1954 to describe the quantum mechanics of
a polaron at rest. In 1976 Choquard used (1.4) to describe an electron trapped in its own hole, in a certain
approximation to Hartree-Fock theory of one component plasma [27]. In this context (1.4) is also known as
the nonlinear Schrödinger-Newton equation. By using critical point theory, Lions [29] obtained the existence
of in�nitely many radialy symmetric solutions in H1(RN) and Ackermann [1] prove the existence of in�nitely
manygeometrically distinctweak solutions for a general case. For theproperties of the ground state solutions,
Ma and Zhao [30] proved that every positive solution is radially symmetric and monotone decreasing about
some point for the generalized Choquard equation (1.4) with q ≥ 2. Later, Moroz and Van Schaftingen [32, 33]
eliminated this restriction and showed the regularity, positivity and radial symmetry of the ground states for
the optimal range of parameters, and also derived that these solutions decay asymptotically at in�nity.

On the other hand, some people have focused on the semiclassical problem, namely, ε → 0 in (1.3). The
question of the existence of semiclassical solutions for the non-local problem (1.3) has been posed in [5]. Note
that if v is a solution of (1.3) for x0 ∈ RN , then u = v(εx + x0) veri�es

−∆u + V(εx + x0)u = (
∫
RN

G(u(y))
|x − y|µ dy)g(u) in RN , (1.5)

which means some convergence of the family of solutions to a solution u0 of the limit problem

−∆u + V(x0)u = (
∫
RN

G(u(y))
|x − y|µ dy)g(u) in RN . (1.6)

For this case when N = 3, µ = 1 and G(u) = |u|2, Wei and Winter [49] constructed families of solutions by a
Lyapunov-Schmidt-type reduction when inf

x∈RN
V > 0. This method of construction depends on the existence,

uniqueness and non-degeneracy up to translations of the positive solution of the limiting equation (1.6),
which is a di�cult problem that has only been fully solved in the case when N = 3, µ = 1 and G(u) = |u|2. Mo-
roz and Van Schaftingen [34] used variational methods to develop a novel non-local penalization technique
to show that equation (1.3) with G(u) = |u|q has a family of solutions concentrated at the local minimum of
V, with V satisfying some additional assumptions at in�nity. In addition, Alves and Yang [4] investigated
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the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the pe-
nalization method. Very recently, in an interesting paper, Alves et al. [2] study (1.3) with a critical growth,
they consider the critical problem with both linear potential and nonlinear potential, and showed the exis-
tence, multiplicity and concentration behavior of solutions when the linear potential has a global minimum
or maximum.

On the contrary, the results about fractional Choquard equation (1.1) are relatively few. Recently, d’Avenia,
Siciliano andSquassina [17] studied the existence, regularity and asymptotic of the solutions for the following
fractional Choquard equation

(−∆)su + ωu = (
∫
RN

|u(y)|q
|x − y|µ dy)|u|q−2u in RN , (1.7)

where ω > 0, 2N−µ
N < q < 2N−µ

N−2s . Shen, Gao and Yang [42] obtain the existence of ground states for (1.7) with
general nonlinearities by using variational methods. Chen and Liu [14] studied (1.7) with nonconstant linear
potential and proved the existence of ground states without any symmetry property. For critical problem,
Wang and Xiang [47] obtain the existence of in�nitely many nontrivial solutions and the Brezis-Nirenberg
type results can be founded in [36]. For the critical Choquard equations in the sense of Hardy-Littlewood-
Sobolev, Cassani and Zhang [12] developed a robust method to get the existence of ground states and qualita-
tive properties of solutions, where they do not require the nonlinearity to enjoymonotonicity nor Ambrosetti-
Rabinowitz-type conditions. For other existence results we refer to [6, 8, 23, 24, 31, 48, 52] and the references
therein.

It seems that the only works concerning the concentration behavior of solutions are due to [13, 51]. As-
suming the global condition on V:

0 < inf
x∈RN

V(x) < lim inf
|x|→∞

V(x) = V∞,

whichwas �rstly introduced by Rabinowitz [39] in the study of the nonlinear Schrödinger equations. By using
the method of Nehari manifold developed by Szulkin and Weth [46], authors in [13, 51] obtained the multi-
plicity and concentration of positive solutions for the following fractional Choquard equation

ε2s(−∆)su + V(x)u = εµ−3(
∫
R3

|u(y)|2
*
µ,s + F(u(y))
|x − y|µ dy)(|u|2

*
µ,s−2u + 1

2*µ,s
f (u)) in R3, (1.8)

where ε > 0, 0 < µ < 3, F is the primitive function of f .
Di�erent to [13, 51], in this paper,we are devote to establishing the existence and concentration of positive

solutions for the fractional Choquard equation (1.8) when the potential function satis�es the following local
conditions [18]:
(V1)V ∈ C(R3,R) and 0 < inf

x∈R3
V(x).

(V2)There is a bounded open domain Ω such that

V0 := inf
Ω
V(x) < min

∂Ω
V(x).

Without loss of generality, we may assume thatM = {x ∈ Ω : V(x) = V0} ≠ ∅ and V(0) = min
x∈R3

V(x) = V0.

To goon studying theproblem (1.8), the followingHardy-Littlewood-Sobolev inequality [28] is the starting
point.

Lemma 1.1. Let t, r > 1 and 0 < µ < 3 with
1
t + µ

3 + 1
r = 2,

f ∈ Lt(R3) and h ∈ Lr(R3). There exists a sharp constant C(t, µ, r), independent of f , h such that∫
R3

∫
R3

f (x)h(y)
|x − y|µ dydx ≤ C(t, µ, r)|f |t|h|r . (1.9)
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In particular, if t = r = 6
6−µ , then

C(t, µ, r) = C(µ) = π
µ
2
Γ( 3

2 −
µ
2 )

Γ(3 − µ
2 )

(
Γ() 3

2
Γ(3) )

µ
3 −1.

In this case there is equality in (1.9) if and only if f ≡ Ch and

h(x) = A
(a2 + |x − b|2)

6−µ
2

for some A ∈ C, a ∈ R\{0} and b ∈ R3.

Notice that, by the Hardy-Littlewood-Sobolev inequality, the integral∫
R3

∫
R3

|u(x)|q|u(y)|q
|x − y|µ dydx

ie well de�ned if uq ∈ Lt(R3) satis�es 2
t + µ

3 = 2. Therefore, for u ∈ Hs(R3) we will require that t · q ∈ [2, 2*s],
where 2*s = 6

3−2s is fractional critical Sobolev exponent for dimension 3. Then we have

6 − µ
3 ≤ q ≤ 6 − µ

3 − 2s .

Thus, 6−µ
3 is called the lower critical exponent and 2*µ,s := 6−µ

3−2s is the upper critical exponent in the sense of
Hardy-Littlewood-Sobolev inequality and the fractional Laplace operator.

For the nonlinearity term, we assume that the continuous function f vanishes in (−∞, 0) and satis�es:
(f1) |f (u)| ≤ c(|u|q1−1 + |u|q2−1) for some c > 0 and 6−µ

3 < q1 ≤ q2 < 2*µ,s.
(f2) The function u 7→ f (u) is increasing in (0,∞).
(f3) (i)

lim
|u|→+∞

F(u)
|u|2*µ,s−1 = +∞ for s ∈ ( 3

4 , 1);

(ii)
lim

|u|→+∞

F(u)
|u|2*µ,s−

2s
3−2s (log|u|) 1

2
= +∞ for s = 3

4 ;

(iii)
lim

|u|→+∞

F(u)
|u|2*µ,s−

2s
3−2s

= +∞ for s ∈ (0, 3
4 ).

Note that there is no (AR) type assumption on f . Then it is di�cult to show that the functional satis�es the
(PS) condition even for the autonomous case, which is necessary to use Ljusternik-Schnirelmann category
theory. We shall investigate the (PS) sequence carefully and restore the compactness for (PS) sequence via
some compactness Lemmas.

In order to describe the multiplicity, we �rst recall that, if Y is a closed subset of a topological space X,
the Ljusternik-Schnirelmann category catXY is the least number of closed and contractible sets in X which
cover Y. Then we state our main result as follows.

Theorem 1.1. If 0 < µ < 2s, assume that V satis�es (V1) and (V2) and the function f satis�es (f1) − (f3). Then
for any δ > 0 such that

Mδ = {x ∈ R3 : dist(x,M) ≤ δ} ⊂ Ω,

there exists εδ > 0 such that the problem (1.8) has at least catMδ (M) positive solutions for any ε ∈ (0, εδ).
Moreover, if uε denotes one of these positive solutions and ηε ∈ R3 its global maximum, then

lim
ε→0

V(ηε) = V0.



736 | Z. Yang, F. Zhao, Multiplicity and concentration behaviour of solutions for a fractional Choquard

Remark 1.1. Here, we make a few observations about the restriction on the parameter 0 < µ < 2s. In order
to adapt the penalization method introduced by del Pino and Felmer in [18], we will proposed some control
conditions on the non-local term ( 1

|x|µ (|u|2
*
µ,s + F(u))) , which need some regularity (see Lemma 2.7 and 2.8),

where we introduce the assumption 0 < µ < 2s.

We shall use the method of Nehari manifold, concentration compactness principle and category theory to
prove themain results. There are some di�culties in proving our theorems. The �rst di�culty is that the non-
linearity f is only continuous, we can not use standard arguments on the Nehari manifold. To overcome the
nondi�erentiability of theNeharimanifold,we shall use some variants of critical point theorems fromSzulkin
andWeth [46]. The second one is the lack of compactness of the embedding of Hs(R3) into the space L2*s (R3).
We shall borrow the idea in [2, 12] to deal with the di�culties brought by the critical exponent. However, we
require some new estimates, which are complicated because of the appearance of fractional Laplacian and
the convolution-type nonlinearity. Moreover, the potential V satis�es (V1) and (V2) instead of the global con-
dition. Since we have no information on the potential V at in�nity, we adapt the truncation trick explored in
[18]. It consists in making a suitable modi�cation on the nonlinearity, solving a modi�ed problem and then
check that, for ε small enough, the solutions of the modi�ed problem are indeed solutions of the original
one. It is worthwhile to remark that in the arguments developed in [18], one of the key points is the existence
of estimates involving the L∞-norm of the modi�ed problem. But for the critical nonlocal problem (1.8), this
kind of estimates are more delicate.

This paper is organized as follows. In section 2, besides describing the functional setting to study problem
(1.8), we give some preliminary Lemmas which will be used later. In section 3, in�uenced by the work [18]
and [45], we introduce a modi�ed functional and show it satis�es the Palais-Smale condition. In section 4,
we study the autonomous problem associated. This study allows us to show that the modi�ed problem has
multiple solutions. Finally, we show the critical point of the modi�ed functional which satis�es the original
problem, and investigate its concentration behavior, which completes the proof Theorem 1.1.

2 Variational settings and preliminary results
Throughout this paper, we denote | · |r the usual norm of the space Lr(R3), 1 ≤ r < ∞, Br(x) denotes the

open ball with center at x and radius r, C or Ci(i = 1, 2, · · · ) denote some positive constants may change from
line to line.⇀ and→mean the weak and strong convergence. Let E be a Hilbert space, the Fréchet derivative
of a functional Φ at u, Φ′(u), is an element of the dual space E* and we shall denote Φ′(u) evaluated at v ∈ E
by 〈Φ′(u), v〉.

2.1 The functional space setting

Firstly, fractional Sobolev spaces are the convenient setting for our problem, so wewill give some skrtchs
of the fractional order Sobolev spaces and the complete introduction can be found in [19]. We recall that, for
any s ∈ (0, 1), the fractional Sobolev space Hs(R3) = W s,2(R3) is de�ned as follows:

Hs(R3) = {u ∈ L2(R3) :
∫
R3

(
|ξ |2s|F(u)|2 + |F(u)|2

)
dξ < ∞},

whose norm is de�ned as
‖u‖2

Hs(R3) =
∫
R3

(
|ξ |2s|F(u)|2 + |F(u)|2

)
dξ ,
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where F denotes the Fourier transform. We also de�ne the homogeneous fractional Sobolev space Ds,2(R3)
as the completion of C∞0 (R3) with respect to the norm

‖u‖Ds,2(R3) :=
(∫∫
R3×R3

|u(x) − u(y)|2
|x − y|3+2s dxdy

) 1
2

= [u]Hs(R3).

The embedding Ds,2(R3) ↪→ L2*s (R3) is continuous and for any s ∈ (0, 1), there exists a best constant
Ss > 0 such that

Ss := inf
u∈Ds,2(R3)

‖u‖2
Ds,2(R3)
|u|22*s

According to [16], Ss is attained by

u0(x) = C
( b
b2 + |x − a|2

) 3−2s
2 , x ∈ R3, (2.1)

where C ∈ R, b > 0 and a ∈ R3 are �xed parameters. We use SH,L to denote the best constant de�ned by

SH,L := inf
u∈Ds,2(R3)\{0}

∫
R3 |(−∆) s2 u|2dx

(
∫
R3

∫
R3

|u(y)|2*µ,s |u(x)|2*µ,s

|x−y|µ dydx)
1

2*µ,s

. (2.2)

The fractional Laplacian, (−∆)su, of a smooth function u : R3 → R, is de�ned by

F((−∆)su)(ξ ) = |ξ |2sF(u)(ξ ), ξ ∈ R3.

Also (−∆)su can be equivalently represented [19] as

(−∆)su(x) = −1
2C(s)

∫
R3

u(x + y) + u(x − y) − 2u(x)
|y|3+2s dy, ∀x ∈ R3

where

C(s) =
(∫
R3

(1 − cosξ1)
|ξ |3+2s dξ

)−1
, ξ = (ξ1, ξ2, ξ3).

Also, by the Plancherel formular in Fourier analysis, we have

[u]2
Hs(R3) = 2

C(s) |(−∆)
s
2 u|22.

For convenience, we will omit the normalization constant in the following. As a consequence, the norms on
Hs(R3) de�ned below

u 7−→
(∫
R3

|u|2dx +
∫∫

R3×R3

|u(x) − u(y)|2
|x − y|3+2s dxdy

) 1
2

;

u 7−→
(∫
R3

(|ξ |2s|F(u)|2 + |F(u)|2)dξ
) 1

2

;

u 7−→
(∫
R3

|u|2dx + |(−∆)
s
2 u|22

) 1
2

.

are equivalent.
Making the change of variable x 7→ εx, we can rewrite the equation (1.8) as the following equivalent form

(−∆)su + V(εx)u = (
∫
R3

|u(y)|2
*
µ,s + F(u(y))
|x − y|µ dy)(|u|2

*
µ,s−2u + 1

2*µ,s
f (u)) in R3, (2.3)
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If u is a solution of the equation (2.3), then v(x) := u( xε ) is a solution of the equation (1.8). Thus, to study the
equation (1.8), it su�ces to study the equation (2.3). In view of the presence of potential V(x), we introduce
the subspace

Hε =
{
u ∈ Hs(R3) :

∫
R3

V(εx)u2dx < +∞
}
,

which is a Hilbert space equipped with the inner product

(u, v)Hε =
∫
R3

(−∆)
s
2 u(−∆)

s
2 vdx +

∫
R3

V(εx)uvdx,

and the norm
‖u‖2

Hε =
∫
R3

|(−∆)
s
2 u|2dx +

∫
R3

V(εx)u2dx.

We denote ‖ · ‖Hε by ‖ · ‖ε in the sequel for convenience.
For the reader’s convenience, we review some useful result for this class of fractional Sobolev spaces:

Lemma 2.1. [19] Let 0 < s < 1, then there exists a constant C = C(s) > 0, such that

|u|22*s ≤ C[u]2
Hs(R3)

for every u ∈ Hs(R3). Moreover, the embedding Hs(R3) ↪→ Lr(R3) is continuous for any r ∈ [2, 2*s] and is locally
compact whenever r ∈ [2, 2*s).

Lemma 2.2. [40] If {un} is bounded in Hs(R3) and for some R > 0 we have

lim
n→∞

sup
y∈R3

∫
BR(y)

|un|2dx = 0,

then un → 0 in Lr(R3) for any 2 < r < 2*s.

Lemma 2.3. [37] Let u ∈ Ds,2(R3), φ ∈ C∞0 (R3) and for each r > 0, φr(x) = φ( xr ). Then

uφr → 0 inDs,2(R3) as r → 0.

If, in addition, φ ≡ 1 in a neighbourhood of the origin, then

uφr → u inDs,2(R3) as r → +∞.

2.2 Preliminary lemmas

Set G(u) = |u|2
*
µ,s + F(u), g(u) = dG(u)

du . In the sequel, set r0 = 6
6−µ , then 2 < r0q1 ≤ r0q2 < 2*s. So for any

u ∈ Hs(R3), we have
|F(u)|r0 ≤ C(|u|q1

q1r0 + |u|q2
q2r0 ) (2.4)

and
|G(u)|r0 ≤ C(|u|q1

q1r0 + |u|q2
q2r0 + |u|2

*
µ,s

2*s
). (2.5)

Therefore, the Hardy-Littlewood-Sobolev inequality implies that∣∣ ∫
R3

∫
R3

G(u(y))G(u(x))
|x − y|µ dydx

∣∣ ≤ C|G(u)|2r0 ≤ C(|u|2q1
q1r0 + |u|2q2

q2r0 + |u|22*µ,s
2*s

) (2.6)

and ∣∣ ∫
R3

∫
R3

G(u(y))g(u(x))u(x)
|x − y|µ dydx

∣∣ ≤ C(|u|2q1
q1r0 + |u|2q2

q2r0 + |u|22*µ,s
2*s

). (2.7)
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It is clear that problem (2.3) is the Euler-Lagrange equations of the functional I : Hε → R de�ned by

I(u) = 1
2‖u‖

2
ε −

1
22*µ,s

∫
R3

∫
R3

G(u(y))G(u(x))
|x − y|µ dydx. (2.8)

From (2.6) we know that I(u) is well de�ned on Hε and belongs to C1, with its derivative given by

〈I′(u), v〉 =
∫
R3

(
(−∆)

s
2 u(−∆)

s
2 v + V(εx)uv

)
dx − 1

2*µ,s

∫
R3

∫
R3

G(u(y))g(u(x))v(x)
|x − y|µ dydx (2.9)

for all u, v ∈ Hε. Hence the critical points of I in Hε are weak solutions of problem (2.3). In the following, we
will consider critical points of I using variational methods.

Firstly, we give the following Lemma, whose simple proof is omit.

Lemma 2.4. If (f1) and (f2) are satis�ed, then

0 < F(u) < f (u)u, 0 < G(u) < g(u)u, ∀ u ≠ 0. (2.10)

In addition, (f2) and (2.10) imply

F(u)
u and G(u)

u are increasing on (0, +∞). (2.11)

For the derivative of the functional I we have the following Lemma.

Lemma 2.5. Let (V1) and (f1) hold, then
(i) I′ maps bounded sets in Hs(R3) into bounded sets in (Hs(R3))*.
(ii) I′ is weakly sequentially continuous. Namely, if un ⇀ u in Hs(R3), then I′(un) ⇀ I′(u) in (Hs(R3))*.

Proof. (i). Let {un}be abounded sequence inHs(R3). For any v ∈ Hs(R3), from theHardy-Littlewood-Sobolev
inequality and (2.5) it follows that

∣∣ ∫
R3

∫
R3

G(un(y))g(un(x))v(x)
|x − y|µ dydx

∣∣ ≤ C|G(un)|r0 (|un|q1−1
q1r0 |v|q1r0 + |un|q2−1

q2r0 |v|q2r0 + |un|
2*µ,s−1
2*s

|v|2*s )

≤ C‖v‖ε .

(2.12)

Then |〈I′(un), v〉| ≤ C‖v‖ε. Hence, {I′(un)} is bounded in (Hs(R3))*.
(ii). Assume that un ⇀ u in Hs(R3). For any v ∈ C∞0 (R3) with support Ω, by Lemma 2.1 we may assume

that un(x)→ u(x) a.e. in R3 and un → u in Lp(Ω), p < 2*s. We �rst check that if un ⇀ u in Hs(R3), then∫
R3

∫
R3

|un(y)|2
*
µ,s |un(x)|2

*
µ,s−2−µun(x)v(x)

|x − y|µ dydx →
∫
R3

∫
R3

|u(y)|2
*
µ,s |u(x)|2

*
µ,s−2−µu(x)v(x)

|x − y|µ dydx, (2.13)

as n →∞. By the Hardy-Littlewood-Sobolev inequality, we have

|h * |x − y|−µ| 6
µ
≤ C|h|r0 , for all h ∈ Lr0 (R3),

and it is a linear bounded operator from Lr0 (R3) to L
6
µ (R3). Choosing hn(y) := |un(y)|2

*
µ,s ∈ Lr0 (R3), we have∣∣|un(y)|2

*
µ,s * |x − y|−µ

∣∣
6
µ
≤ C|un|2*s ≤ C.

Therefore, by Hölder inequality we can prove the sequence(
|un(y)|2

*
µ,s * |x − y|−µ

)
|un(x)|2

*
µ,s−2−µun(x)
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is bounded in L
2*s

2*s−1 (R3). Then, by duality we have∫
R3

|un(y)|2
*
µ,s |un(x)|2

*
µ,s−2−µun(x)

|x − y|µ dy ⇀

∫
R3

|u(y)|2
*
µ,s |u(x)|2

*
µ,s−2−µu(x)

|x − y|µ dy, in L
2*s

2*s−1 (R3)

as n →∞. Then (2.13) follows for every v ∈ Hs(R3) ⊂ L2*s (R3).
By (f1) we have |f (u)| ≤ C(1 + |u|q2−1) for all u ∈ R+, and then f (un) → f (u) in L

q2 r
q2−1 (Ω). Then Hardy-

Littlewood-Sobolev inequality implies that∫
R3

∫
R3

G(un(y))(f (un(x)) − f (u(x)))v(x)
|x − y|µ dydx ≤ C|G(un)|r|f (un) − f (u)| q2 r

q2−1 ,Ω
|v|q2r → 0 (2.14)

Since F(un) is bounded in Lr0 (R3), we may assume that F(un) ⇀ F(u) in Lr0 (R3). Consequently,∫
R3

F(un(y))
|x − y|µ dy ⇀

∫
R3

F(u(y))
|x − y|µ dy in L

6
µ (R3).

Moreover, as (2.12) we get
∫
R3 |f (u(x))v(x)|rdx < ∞, we infer∫

R3

∫
R3

F(un(y))
|x − y|µ f (u(x))v(x)dydx →

∫
R3

F(u(y))
|x − y|µ f (u(x))v(x)dydx in L

6
µ (R3),

which combining with (2.14) we have∫
R3

∫
R3

F(un(y))
|x − y|µ f (un(x))v(x)dydx →

∫
R3

F(u(y))
|x − y|µ f (u(x))v(x)dydx in L

6
µ (R3).

Notice that∫
R3

∫
R3

G(u(y))g(u(x))v(x)
|x − y|µ dydx =

∫
R3

( ∫
R3

|u(y)|2
*
µ,s+F(u(y))

|x − y|µ dy
)(
|u(x)|2

*
µ,s−2−µu(x) + 1

2*µ,s
f (u(x))

)
v(x)dx,

from our argument above it is then easy to prove∫
R3

∫
R3

G(un(y))g(un(x))v(x)
|x − y|µ dydx →

∫
R3

G(u(y))G(u(x))v(x)
|x − y|µ dydx in L

6
µ (R3).

Hence, for any v ∈ C∞0 (R3),
〈I′(un), v〉 → 〈I′(u), v〉. (2.15)

Since {I′(un)} is bounded in (Hs(R3))* and C∞0 (R3) is dense in Hs(R3), we conclude that (2.15) holds for any
v ∈ Hs(R3), and so I′(un) ⇀ I′(u) in (Hs(R3))*.

2.3 Regularity of solutions and Pohožaev identity

The assumption (f1) is too weak for the standard bootstrap method as in [4, 15, 32]. Therefore, in order
to prove regularity of solutions of (2.3) we shall rely on a nonlocal version of the Brezis-Kato estimate. Note
that a special case of the regularity result of Brezis and Kato [10, Theorem 2.3] states that if u ∈ H1(RN) is a
solution of the linear elliptic equation

−∆u + u = Vu in RN ,

and V ∈ L∞(RN) + L N
2 (RN), then u ∈ Lp(RN) for every p ≥ 1. Similar to [33, 42], we extent this result to the

fractional Choquard equationwith critical growth. For the convenience of readers, we give here a short proof.
We �rst have the following useful inequality.
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Lemma 2.6. [33] Let p, q, r, t ∈ [1, +∞) and λ ∈ [0, 2] such that

1 + N − µ
N − 1

p −
1
t = λ

q + 2 − λ
r .

If θ ∈ (0, 2) satis�es
min (q, r)(N − µN − 1

p ) < θ < max (q, r)(1 − 1
p )

and
min (q, r)(N − µN − 1

t ) < 2 − θ < max (q, r)(1 − 1
t ),

then for every H ∈ Lp(RN), K ∈ Lt(RN) and u ∈ Lq(RN) ∩ Lr(RN),∫
RN

∫
RN

H|u(y)|θK|u(x)|2−θ
|x − y|µ dydx ≤ C(

∫
RN

|H|p)
1
p (
∫
RN

|K|t)
1
t (
∫
RN

|u|q)
λ
q (
∫
RN

|u|r)
2−λ
r .

Applying Lemma2.6,wehave the following result,which is a nonlocal counterpart of the estimate [10, Lemma
2.1]: If V ∈ L∞(RN) + L N

2 (RN), then for every ε > 0, there exists Cε such that∫
RN

V|u|2dx ≤ ε2
∫
RN

|∇u|2dx + Cε
∫
RN

|u|2dx.

Lemma 2.7. Let N ≥ 2s, µ ∈ (0, 2s) and θ ∈ (0, 2). If H, K ∈ L
2N
N−µ (RN) + L

2N
N+2s−µ (RN) and N−µ

N < θ < 2 − N−µ
N ,

then for every ε > 0, there exists Cε,θ ∈ R such that for every u ∈ Hs(RN),∫
RN

∫
RN

H|u(y)|θK|u(x)|2−θ
|x − y|µ dydx ≤ ε2

∫
RN

|(−∆)
s
2 u|2dx + Cε,θ

∫
RN

|u|2dx.

Proof. Since 0 < µ < 2s, we may assume that H = H* + H* and K = K* + K* with H*, K* ∈ L
2N
N−µ (R3) and

H*, K* ∈ L
2N

N+2s−µ (RN). Applying Lemma 2.6 with q = r = 2*s, p = t = 2N
N+2s−µ and λ = 0, we have∫

RN

∫
RN

H*|u(y)|θK*|u(x)|2−θ
|x − y|µ dydx ≤ C|H*| 2N

N+2s−µ
|K*| 2N

N+2s−µ
|u|22*s ,

where we use |θ − 1| < µ
N−2s . Taking p = t = 2N

N−µ , q = r = 2 and λ = 2, we have |θ − 1| < µ
N and∫

RN

∫
RN

H*|u(y)|θK*|u(x)|2−θ
|x − y|µ dydx ≤ C|H*| 2N

N−µ
|K*| 2N

N−µ
|u|22.

Similarly, with p = 2N
N+2s−µ , t = 2N

N−µ , q = 2, r = 2*s and λ = 1, we have∫
RN

∫
RN

H*|u(y)|θK*|u(x)|2−θ
|x − y|µ dydx ≤ C|H*| 2N

N−+2s−µ
|K*| 2N

N−µ
|u|2|u|2*s

and with p = 2N
N−µ , t = 2N

N+2s−µ , q = 2, r = 2*s and λ = 1,∫
RN

∫
RN

H*|u(y)|θK*|u(x)|2−θ
|x − y|µ dydx ≤ C|K*| 2N

N−+2s−µ
|H*| 2N

N−µ
|u|2|u|2*s .

By the Sobolev inequality, we have thus prove that for every u ∈ Hs(RN),∫
RN

∫
RN

H|u(y)|θK|u(x)|2−θ
|x − y|µ dydx ≤ C

(
(
∫
RN

|H*|
2N

N+2s−µ

∫
RN

|K*|
2N

N+2s−µ )
N+2s−µ

2N

∫
RN

|(−∆)
s
2 u|2dx

+ (
∫
RN

|H*|
2N
N−µ

∫
RN

|K*|
2N
N−µ )

N−µ
2N

∫
RN

|u|2dx
)
.
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The conclusion follows by choosing H* and K* such that

C(
∫
RN

|H*|
2N

N+2s−µ

∫
RN

|K*|
2N

N+2s−µ )
N+2s−µ

2N ≤ ε2.

Now, we have the following result, which is a nonlocal Brezis-Kato type regularity estimate.

Lemma 2.8. Let N ≥ 2s and 0 < µ < 2s. If H, K ∈ L
2N
N−µ (RN) + L

2N
N+2s−µ (RN) and u ∈ Hs(RN) solves

(−∆)su + u =
( ∫
RN

H(u(y))u(y)
|x − y|µ dy

)
K(u(x)), (2.16)

then u ∈ Lp(RN) for every p ∈ [2, N
N−µ

2N
N−2s ). Moreover, there exists a constant Cp independent of u such that

( ∫
RN

|u|pdx
) 1
p ≤ Cp

( ∫
RN

|u|2dx
) 1

2 .

Proof. By Lemma 2.7 with θ = 1, there exists λ > 0 such that for every φ ∈ Hs(RN),∫
RN

∫
RN

|Hφ||Kφ|
|x − y|µ dydx ≤ 1

2

∫
RN

|(−∆)
s
2 φ|2dx + λ

2

∫
RN

|φ|2dx.

Choose sequences {Hk}k∈N and {Kk}k∈N in L
2N
N−µ (RN) such that |Hk| ≤ |H|, |Kk| ≤ |K|, andHk → H and Kk → K

almost everywhere inRN . For each k ∈ N, for φ, ψ ∈ Hs(RN), the form ak : Hs(RN) ×Hs(RN)→ R de�ned by

ak(φ, ψ) =
∫
RN

(−∆)
s
2 φ(−∆)

s
2 ψ + λφψ −

∫
RN

∫
RN

HkφKkψ
|x − y|µ dydx

is bilinear and coercive. Therefore, applying the Lax-Milgram theorem [9, Corollary 5.8], there exists a unique
solution uk ∈ Hs(RN) satis�es

(−∆)suk + λuk =
∫
RN

( Hkuk
|x − y|µ dy

)
Kkuk + (λ − 1)u, (2.17)

where u ∈ Hs(RN) is the given solution of (2.16). Moreover, we can prove that the sequences {uk}k∈N con-
verges weakly to u in Hs(RN) as k →∞.

For µ > 0, we de�ne the truncation uk,µ by

uk,µ(x) =


−µ if uk(x) ≤ −µ,
uk(x) if − µ < uk(x) < µ
µ if uk(x) ≥ µ.

For p ≥ 2, we have |uk,µ|p−2uk,µ ∈ Hs(RN), so we can take it as a test function in (2.17), we have

4(p − 1)
p2

∫
RN

(
|(−∆)

s
2 (uk,µ)

p
2 |2 + λ||uk,µ|

p
2 |2
)
≤
∫
RN

∫
RN

(Hkuk)(Kk|uk,µ|p−2uk,µ)
|x − y|µ dydx + (λ − 1)u|uk.µ|p−2uk,µ .

By Lemma 2.7 with θ = 1, there exists C > 0 such that∫
RN

∫
RN

|Hk||uk,µ||Kk||uk,µ|p−2|uk,µ|
|x − y|µ dydx ≤ 2(p − 1)

p2

∫
RN

|(−∆)
s
2 (uk,µ)

p
2 |2dx + C

∫
RN

||uk,µ|
p
2 |2dx.
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We have thus

2(p − 1)
p2

∫
RN

|(−∆)
s
2 (uk,µ)

p
2 |2dx ≤ C1

∫
RN

(|uk|2 + |u|2)dx +
∫
Ak,µ

( |Hkuk|
|x − y|µ dy

)
|Kkuk|,

where
Ak,µ = {x ∈ R3 : |uk(x)| > µ}.

Since p < 2N
N−µ , by the Hardy-Littlewood-Sobolev inequality with 1

r = 2N−µ
2N + 1 − 1

p and 1
t = 2N−µ

2N + 1
p ,∫

Ak,µ

( 1
|x|µ * |Kk||uk|

p−1dy
)
|Hkuk| ≤ C(

∫
RN

||Kk||uk|p−1|rdx)
1
r (
∫
Ak,µ

|Hkuk|tdx)
1
t .

By Hölder inequality, if uk ∈ Lp(RN), then |Kk||uk|p−1 ∈ Lr(RN), |Hk||uk| ∈ Lt(RN), thus by Lebesgue’s
dominated convergence theorem we have

lim
µ→∞

∫
Ak,µ

( 1
|x|µ * |Kk||uk|

p−1dy
)
|Hkuk| = 0.

In view of the Sobolev estimate, we have proved the inequality

lim sup
k→∞

(
∫
RN

|uk|2
*
sdx)

2
2*s ≤ C lim sup

k→∞

∫
RN

|uk|2dx.

By iterating over p a �nite number of times we cover the range p ∈ [2, N
N−µ

2N
N−2s ).

3 The penalized problem
In this section, wewill adapt for our case an argument explored by the penalizationmethod introduction

by del Pino and Felmer [18] to overcome the lack of compactness. Let K > 2 to be determined later, and take
a > 0 to be the unique number such that G(a)

a = V0
K where V0 is given by (V1). We de�ne

G̃(u) =
{
G(u) if u ≤ a,
V0
K u if u > a,

and
H(x, u) = χΩ(x)G(u) +

(
1 − χΩ(x)

)
G̃(u),

where χ is characteristic function of setΩ. Fromhypotheses (f1)−(f3) we get thatH is a Carathéodory function
and satis�es the following properties:
(g1)H(x, u) ≤ G(u) ≤ C(|u|q1 + |u|q2 + |u|2

*
µ,s ).

(g2)The function H(x,u)
u is increasing for u > 0.

(g3) (i)
lim

|u|→+∞

H(x, u)
|u|2*µ,s−1 = +∞ for s ∈ ( 3

4 , 1);

(ii)
lim

|u|→+∞

H(x, u)
|u|2*µ,s−

2s
3−2s (log|u|) 1

2
= +∞ for s = 3

4 ;

(iii)
lim

|u|→+∞

H(x, u)
|u|2*µ,s−

2s
3−2s

= +∞ for s ∈ (0, 3
4 ).
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Moreover, in order to �nd positive solutions, we shall henceforth consider H(x, u) = 0 for all u ≤ 0. It is easy
to check that if u is a positive solution of the equationε

2s(−∆)su + V(x)u = εµ−3 1
2*µ,s

(
∫
R3

H(εx,u)
|x−y|µ dy)h(εx, u) in R3

u ∈ C0,α
loc (R3) ∩ Hs(R3),

such that u(x) ≤ a for all x ∈ R3\Ω, then H(x, u) = G(u) and therefore u is also a solution of problem (1.8).
In view of this argument above, we shall deal with in the following with the penalized problem

(−∆)su + V(εx)u = 1
2*µ,s

(
∫
R3

H(εx, u)
|x − y|µ dy)h(εx, u) in R3, (3.1)

and we will look for solutions uε of problem (3.1) verifying

uε(x) ≤ a for all x ∈ R3\Ωε ,

where Ωε = {x ∈ R3 : εx ∈ Ω}.
The energy functional associated with (3.1) is

Jε(u) = 1
2‖u‖

2
ε −

1
22*µ,s

∫
R3

∫
R3

H(εx, u(y))H(εx, u(x))
|x − y|µ dydx.

which is of C1 class and whose derivative is given by

〈J′ε(u), v〉 =
∫
R3

(
(−∆)

s
2 u(−∆)

s
2 v + V(εx)uv

)
dx − 1

2*µ,s

∫
R3

∫
R3

H(εx, u(y))h(εx, u(x))v(x)
|x − y|µ dydx

for all u, v ∈ Hε. Hence the critical points of Jε in Hε are weak solutions of problem (3.1).
Now, we denote the Nehari manifold associated to Jε by

Nε = {u ∈ Hε\{0} : 〈J′ε(u), u〉 = 0}.

Obviously,Nε contains all nontrivial critical points of Iε. But we do not knowwhetherNε is of class C1 under
our assumptions and therefore we cannot use minimax theorems directly onNε. To overcome this di�culty,
we will adopt a technique developed in [45, 46] to show that Nε is still a topological manifold, naturally
homeomorphic to the unit sphere of Hε, and then we can consider a new minimax characterization of the
corresponding critical value for Iε.

For this we denote by H+
ε the subset of Hε given by

H+
ε = {u ∈ Hε : |supp(u+) ∩ Ωε| > 0}

and S+
ε = Sε ∩ H+

ε , where Sε is the unit sphere of Hε.

Lemma 3.1. The set H+
ε is open in Hε.

Proof. Suppose by contradiction there are a sequence {un} ⊂ Hε\H+
ε and u ∈ H+

ε such that un → u in Hε.
Hence |supp(u+

n) ∩ Ωε| = 0 for all n ∈ N and u+
n(x)→ u+(x) a.e. in x ∈ Ωε. So,

u+(x) = lim
n→∞

u+
n(x) = 0, a.e. in x ∈ Ωε .

But, this contradicts the fact that u ∈ H+
ε . Therefore H+

ε is open.

From de�nition of S+
ε and Lemma 3.1 it follows that S+

ε is a incomplete C1,1-manifold of codimension 1, mod-
eled on Hε and contained in the open H+

ε . Hence, Hε = TuS+
ε ⊕ Ru for each u ∈ S+

ε , where TuS+
ε = {v ∈ Hε :

(u, v)ε = 0}.
In the rest of this section, we show some Lemmas related to the function Jε and the set H+

ε . First, we show
the functional Jε satisfying the Mountain Pass geometry.
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Lemma 3.2. The functional Jε satis�es the following conditions:
(i) There exist α, ρ > 0 such that Jε(u) ≥ α with ‖u‖ε = ρ;
(ii) There exists e ∈ Hε satisfying ‖e‖ε > ρ such that Jε(e) < 0.

Proof. (i). For any u ∈ Hε\{0}, it follows from (g1) and the Hardy-Littlewood-Sobolev inequality that

∣∣ ∫
R3

∫
R3

H(εx, u(y))H(εx, u(x))
|x − y|µ dydx

∣∣ ≤ C(|u|2q1
q1r0 + |u|2q2

q2r0 + |u|22*µ,s
2*s

) (3.2)

Hence,

Jε(u) = 1
2

∫
R3

(
|(−∆)

s
2 u|2 + V(εx)u2)dx − 1

22*µ,s

∫
R3

∫
R3

H(εx, u(y))H(εx, u(x))
|x − y|µ dydx.

≥ 1
2‖u‖

2
ε − C1‖u‖2q1 − C2‖u‖2q2 − C3‖u‖22*µ,s .

Therefore, we can choose positive constants α, ρ such that

Jε(u) ≥ α with ‖u‖ε = ρ.

(ii). Fix a positive function u0 ∈ H+
ε with supp(u0) ⊂ Ωε, and we set

ψ(t) := Σε(
tu0
‖u0‖ε

) > 0,

where
Σε(u) = 1

22*µ,s

∫
R3

∫
R3

H(εx, u(y))H(εx, u(x))
|x − y|µ dydx.

Since H(εx, u0) = F(u0) and by using Lemma 2.4, we deduce that

ψ′(t) = Σ′ε(
tu0
‖u0‖ε

) u0
‖u0‖ε

=
∫
R3

∫
R3

(F( tu0
‖u0‖ε )f ( tu0

‖u0‖ε ) u0
‖u0‖ε

|x − y|µ
)
dxdy

=
22*µ,s
t

∫
R3

∫
R3

1
22*µ,s

(F( tu0
‖u0‖ε )f ( tu0

‖u0‖ε ) tu0
‖u0‖ε

|x − y|µ
)
dxdy

≥
22*µ,s
t ψ(t).

(3.3)

Integrating (3.3) on [1, t‖u0‖ε] with t > 1
‖u0‖ε , we have

Σε(tu0) ≥ Σε(
u0
‖u0‖ε

)‖u0‖
22*µ,s
ε t22*µ,s

Therefore, we have

Jε(tu0) = t2
2 ‖u‖

2
ε − Σε(tu0) ≤ C1t2 − C2t22*µ,s for t > 1

‖u0‖ε
.

Taking e = tu0 with t su�ciently large, we can see (ii) holds.

Since f is only continuous, the next two results are very important because they allow us to overcome the
non-di�erentiability ofNε and the incompleteness of S+

ε .

Lemma 3.3. Assume that the potential V satis�es (V1) − (V2) and the functional f satis�es (f1) − (f3). Then the
following properties hold:
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(A1)For each u ∈ H+
ε , let φu : R+ → R be given by φu(τ) = Jε(τu). Then there exists a unique τu > 0 such that

φ′
u(τ) > 0 in (0, τu) and φ′

u(τ) < 0 in (τu , ∞).
(A2)There is a σ > 0 independent on u such that τu > σ for all u ∈ S+

ε . Moreover, for each compact setW ⊂ S+
ε

there is CW > 0 such that τu ≤ CW for all u ∈W.
(A3)Themap m̂ε : H+

ε → Nε given by m̂ε(u) = τuu is continuous and mε := m̂ε|S+
ε
is a homeomorphism between

S+
ε andNε. Moreover, m−1

ε (u) = u
‖u‖ε .

Proof. (A1) From Lemma 3.2, it is su�cient to note that, φu(0) = 0, φu(τ) > 0 when τ > 0 is small and
φu(τ) < 0 when τ > 0 is large. Since φu ∈ C1(R+,R), there is τu > 0 global maximum point of φu and
φ′
u(τu) = 0. Thus, J′ε(τuu)(τuu) = 0 and τuu ∈ Nε. We see that τu > 0 is the unique positive number such that

φ′
u(τu) = 0. Indeed, suppose by contradiction that there are τ1 > τ2 > 0 with φ′

u(τ1) = φ′
u(τ2) = 0. Then, for

i = 1, 2 we have that

0 =
∫
R3

∫
R3

1
|x − y|µ

(
H(εx, τ1u(u))

τ1
h(εx, τ1u(x))u(x) − H(εx, τ2u(u))

τ2
h(εx, τ2u(x))u(x)

)
dydx. (3.4)

By Lemma 2.4 and (h2) we know that h(εx, τu(x))u(x) and H(εx,τu(x))
τ are positive and increasing in τ. Then

(3.4) in impossible and (A1) is proved.
(A2) Suppose u ∈ S+

ε , then as (2.5) we have

τu ≤
∫
R3

∫
R3

H(εx, u(y))h(εx, u(x))u(x)
|x − y|µ dydx ≤ C(‖τu‖2q1 + ‖τu‖2q2 + ‖τu‖22*µ,s ).

From previous inequality we obtain σ > 0 independent on u, such that τu > σ.
Finally, if W ⊂ S+

ε is compact, and suppose by contradiction that there is {un} ⊂ W such that τn :=
τun →∞. SinceW is compact, there is u ∈W such that un → u in Hε. Then u ∈W ⊂ S+

ε . By (h2) we obtain

0 ≤ Jε(τnun)
τ2
n

= 1
2 −

1
22*µ,s

∫
R3

∫
R3

H(εx, τnun(y))
|x − y|µτn

H(εx, τnun(x))
τn

dydx → −∞,

which yields a contradiction. Therefore (A2) is true.
(A3) First of all we observe that m̂ε, mε and m−1

ε are well de�ned. In fact, by (A1), for each u ∈ H+
ε , there

exists a unique τu > 0 such that τuu ∈ Nε, hence there is a unique m̂ε(u) = τuu ∈ Nε. On the other hand, if
u ∈ Nε then u ∈ H+

ε . Therefore, m−1
ε (u) = u

‖u‖ε ∈ S
+
ε , is well de�ned and it is a continuous function. Since

m−1
ε (mε(u)) = m−1

ε (tuu) = τuu
τu‖u‖ε

= u, ∀ u ∈ S+
ε ,

we conclude that mε is a bijection.
To prove m̂ε : H+

ε → Nε is continuous, let {un} ⊂ H+
ε and u ∈ H+

ε be such that un → u in Hε. By (A2),
there is a τ0 > 0 up to a subsequence such that τn := τun → τ0. Since τnun ∈ Nε we obtain

τ2
n‖un‖2

ε = 1
2*µ,s

∫
R3

∫
R3

H(εx, τnun(y))h(εx, τnu(x))τnun(x)
|x − y|µ dydx, ∀ n ∈ N.

By Lemma 2.5 and passing to the limit as n →∞, it follows that

τ2
0‖u‖2

ε = 1
2*µ,s

∫
R3

∫
R3

H(εx, τ0un(y))h(εx, τ0u(x))τ0un(x)
|x − y|µ dydx,

which means that τ0u ∈ Nε and τu = τ0. This proves m̂ε(un) → m̂ε(u) in H+
ε . So, m̂ε, mε are continuous

functions and (A3) is proved.

Now we de�ne the functions
Ψ̂ε : H+

ε → R and Ψε : S+
ε → R,

by Ψ̂ε(u) = Iε(m̂ε(u)) and Ψε := Ψ̂ε|S+
ε
. The next result is a direct consequence of Lemma 3.3. The details can

be seen in the relevant material from [46]. For the convenience of the reader, here we do a sketch of the proof.
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Lemma 3.4. Assume that (V1) − (V2) and (f1) − (f3) are satis�ed. Then :
(B1)Ψ̂ε ∈ C1(H+

ε ,R) and
Ψ̂ ′
ε(u)v = ‖m̂ε(u)‖ε

‖u‖ε
J′ε(m̂ε(u))v, ∀u ∈ H+

ε and ∀ v ∈ Hε .

(B2)Ψε ∈ C1(S+
ε ,R) and

Ψ ′
ε(u)v = ‖mε(u)‖εJ′ε(mε(u))v, ∀v ∈ TuS+

ε .

(B3)If {un} is a (PS)c sequence of Ψε, then {mε(un)} is a (PS)c sequence of Jε. If {un} ⊂ Nε is a bounded (PS)c
sequence for Jε, then {m−1

ε (un)} is a (PS)c sequence of Ψε.
(B4)u is a critical point of Ψε if and only if, mε(u) is a critical point of Jε. Moreover, corresponding critical values

coincide and
inf
S+
ε
Ψε = inf

Nε
Iε .

Proof. (B1) Let u ∈ H+
ε and v ∈ Hε. From de�nition of Ψ̂ε and tu and the mean value theorem, we obtain

Ψ̂ε(u + hv) − Ψ̂ε(u) = Jε
(
τu+hv(u + hv)

)
− Jε(τuu)

≤ Jε
(
τu+hv(u + hv)

)
− Jε(τu+hvu)

= J′ε
(
τu+hv(u + θhv)

)
τu+hvhv,

where |h| is small enough and θ ∈ (0, 1). Similarly,

Ψ̂ε(u + hv) − Ψ̂ε(u) ≥ Jε(τu(u + hv)) − Jε(τuu) = J′ε(τu(u + ςhv))τuhv,

where ς ∈ (0, 1). Since the mapping u 7→ τu is continuous according to Lemma 3.3, we see combining these
two inequalities that

lim
h→0

Ψ̂ε(u + hv) − Ψ̂ε(u)
h = τuJ′ε(τuu)v = ‖m̂ε(u)‖ε

‖u‖ε
J′ε(m̂ε(u))v.

Since Jε ∈ C1, it follows that the Gâteaux derivative of Ψ̂ε is bounded linear in v and continuous on u. From
[50] we know that Ψ̂ε ∈ C1(H+

ε ,R) and

Ψ̂ ′
ε(u)v = ‖m̂ε(u)‖ε

‖u‖ε
J′ε(m̂ε(u))v, ∀u ∈ H+

ε and ∀ v ∈ Hε .

The item (B1) is proved.
(B2) The item (B2) is a direct consequence of the item (B1).
(B3) We �rst note that Hε = TuS+

ε ⊕ Ru for every u ∈ S+
ε and the linear projection P : Hε → TuS+

ε de�ned
by P(v + τu) = v is continuous, namely, there is C > 0 such that

‖v‖ε ≤ C‖v + τu‖ε , ∀ u ∈ S+
ε , v ∈ TuS+

ε and τ ∈ R. (3.5)

Moreover, by (B1) we have

‖Ψ ′
ε‖ = sup

v∈TuS+
ε ,‖v‖ε=1

Ψ ′
ε(u)v = ‖w‖ε sup

v∈TuS+
ε ,‖v‖ε=1

J′ε(w)v, (3.6)

where w = mε(u). Since w ∈ Nε, we conclude that

J′ε(w)u = J′ε(w) w
‖w‖ε

= 0. (3.7)

Hence, from (3.5) and (3.7) we have

‖Ψ ′
ε(u)‖ ≤ ‖w‖ε‖J′ε(w)‖ ≤ C‖w‖ε sup

v∈TuS+
ε\{0}

J′ε(w)v
‖v‖ε

= C‖Ψ ′
ε(u)‖,

which showing that
‖Ψ ′

ε(u)‖ ≤ ‖w‖ε‖J′ε(w)‖ ≤ C‖Ψ ′
ε(u)‖, ∀ u ∈ S+

ε . (3.8)
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Since w ∈ Nε, we have ‖w‖ ≥ γ > 0. Therefore, the inequality in (3.8) together with Jε(w) = Ψε(u) imply the
item (B3).

(B4) It follow from (3.8) that Ψ ′
ε(u) = 0 if and only if J′ε(w) = 0. The remainder follows from de�nition of

Ψε.

As in [46], using the mountain pass theorem without the (PS) condition, we get the existence of a (PS)cε
sequence {un} ⊂ Hε with

cε = inf
u∈Nε

Iε(u) = inf
u∈H+

ε
max
τ>0

Iε(τu) = inf
u∈S+

ε
max
τ>0

Iε(τu) > 0.

Lemma 3.5. Suppose that (f1) − (f3) hold. Assume that {un} ⊂ Nε is a (PS)c-sequence with

0 < cε ≤ c <
2*µ,s − 1

22*µ,s
S

2*µ,s
2*µ,s−1

H,L .

Then {un} is bounded in Hε. Moreover, {un} cannot be vanishing, namely there exist r, δ > 0 and a sequence
{yn} ⊂ R3 such that

lim inf
n→∞

∫
Br(yn)

|un|2dx ≥ δ.

Proof. We �rst prove the boundedness of {un}. Argue by contradiction we suppose that {un} is unbounded
in Hε. Without loss of generality, assume that ‖un‖ε → ∞. Let vn := un

‖un‖ε , up to a subsequence, then there
exists v ∈ Hε such that

un ⇀ u in Hε ,
un → u in Lrloc(R

3), 2 ≤ r < 2*s ,
un(x)→ u(x) a.e. in R3.

If vn is vanishing, i.e.
lim
n→∞

sup
y∈R3

∫
Br(y)

v2
n(x)dx = 0,

then Lemma 2.2 implies that vn → 0 in Lr0q1 (R3) and Lr0q2 (R3). By (2.4) and (2.5) we get∫
R3

∫
R3

F(τvn(x))F(τvn(y))
|x − y|µ dxdy → 0,

∫
R3

∫
R3

F(τvn(y))
|x − y|µ |τvn(x)|2

*
µ,sdxdy → 0. (3.9)

Then for su�ciently large n we have

cε + on(1) = Iε(un) ≥ sup
τ≥0

Iε(τvn)

≥ sup
τ≥0

( τ2

2 − τ
22*µ,s

22*µ,s
S−2*µ,s
H,L

)
+ on(1)

=
2*µ,s − 1

22*µ,s
S

2*µ,s
2*µ,s−1

H,L + on(1),

which is a contradiction. Therefore, {vn} is non-vanishing, namely there exists yn ∈ R3 and δ > 0 such that∫
Br(yn)

v2
n(x)dx > δ. (3.10)

Denote ṽn(·) = vn(· + yn), then we can assume that

ṽn ⇀ ṽ in Hε ,
ṽn → ṽ in Lrloc(R

3), 2 ≤ r < 2*s ,
ṽn(x)→ ṽ(x) a.e. in R3.
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With the use of (3.10), we have ṽ ̸≡ 0. Then there exists a measure set Λ such that ṽ(x) ≠ 0 for x ∈ Λ. Let
|ūn| := |ṽn|‖un‖ε. Then |ūn(x)| → +∞ for x ∈ Λ. By Lemma 2.4, we have∫

Λ

∫
Λ

1
|x − y|µ

F(ūn(y))
|ūn(y)| |ṽn(y)|F(ūn(x))

|ūn(x)| |ṽn(x)|dydx → +∞.

Therefor, Lemma 2.4 and Fatou Lemma imply that

lim
n→∞

∫
R3

∫
R3

1
|x − y|µ

F(ūn(y))
|ūn(y)| |ṽn(y)|F(ūn(x))

|ūn(x)| |ṽn(x)|dydx = +∞.

Namely
lim
n→∞

∫
R3

∫
R3

1
|x − y|µ

F(un(y))
‖un‖ε

F(un(x))
‖un‖ε

dydx = +∞.

Then,
cε
‖un‖ε

+ on(1) = Iε(un)
‖un‖ε

→ −∞,

which is a contradiction. Therefore, {un} is bounded in Hs(R3).
Next we show the second conclusion.We argue by contradiction, if {un} is vanishing, then similar to (3.9)

we have

cε + on(1) = Iε(un) = 1
2‖un‖

2
ε −

1
22*µ,s

∫
R3

∫
R3

|un(y)|2
*
µ,s |un(x)|2

*
µ,s

|x − y|µ dydx + on(1), (3.11)

and

0 = ‖un‖2
ε −
∫
R3

∫
R3

|un(y)|2
*
µ,s |un(x)|2

*
µ,s

|x − y|µ dydx + on(1). (3.12)

If ‖un‖ε → 0, then it follows from (3.11) and (3.12) that cε = 0, which is impossible. Then ‖un‖ε 9 0 and by
virtue of (3.12) we get

‖un‖2
ε ≤ S

2*µ,s
H,L‖un‖

22*µ,s
ε + on(1).

Hence,

lim inf
n→∞

‖un‖2
ε ≥ S

2*µ,s
2*µ,s−1

H,L .

From (3.11) and (3.12) we deduce that

cε + on(1) = Iε(un) ≥
2*µ,s − 1

22*µ,s
S

2*µ,s
2*µ,s−1

H,L , (3.13)

which is a contradiction. Therefore, {un} is non-vanishing.

Lemma 3.6. Assume (V1) − (V2) and (f1) − (f3) hold, let {un} be a (PS)c sequence for Jε with c ∈

[cε ,
2*µ,s−1
22*µ,s

S
2*µ,s

2*µ,s−1

H,L ). Then, for each η > 0 there exists R = R(η) > 0 such that

lim sup
n→∞

∫
R3\BR

|(−∆)
s
2 u|2 + V(εx)u2

ndx < η.

Proof. By Lemma 3.5, we can have {un} is bounded in Hε. Therefore, we may assume that un ⇀ u in Hε and
un → u in Lrloc(R

3) for any r ∈ [2, 2*s). Fix R > 0 and let ψR ∈ C∞(R3) be such that ψR = 0 in B R
2

(0), ψR = 1
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in BcR, ψR ∈ [0, 1] and |∇ψR| ≤ C
R , where C is a constant independent of R. Since {unψR} is bounded we can

see that∫
R3

(
(−∆)

s
2 un(−∆)

s
2 (unψR) + V(εx)ψRu2

n
)
dx = 〈J′ε(un), unψR〉

+ 1
2*µ,s

∫
R3

( 1
|x|µ * H(εx, un)

)
h(εx, un)unψRdx

= on(1) + 1
2*µ,s

∫
R3

( 1
|x|µ * H(εx, un)

)
h(εx, un)unψRdx.

By Lemma 2.8, taking

H(u) := |u|
2*µ,s + F(u)
u , K(u) := |u|2

*
µ,s−2−µ + 1

2*µ,s
f (u) ∈ L

2
3−µ (R3) + L

6
3+2s−µ (R3),

we have∫
R3

( 1
|x|µ * H(εx, un)

)
h(εx, un)undx ≤

∫
R3

( 1
|x|µ * H(un)un

)
K(un)undx ≤ ε2

∫
RN

|(−∆)
s
2 u|2dx + Cε

∫
RN

|u|2dx.

For n ≥ n0 and ε > 0 �xed, take R > 0 big enough such that Ωε ⊂ BR/2. Then we have∫
R3\BR/2

(
|(−∆)

s
2 un|2 + V(εx)u2

n
)
dx ≤ 1

2*µ,s

∫
R3\BR/2

( 1
|x|µ * H(εx, un)

)
h(εx, un)undx + on(1)

−
∫
R3

∫
R3

(un(x) − un(y))(ψR(x) − ψR(y))
|x − y|3+2s un(y)dxdy.

which means

1
2

∫
R3\BR/2

(
|(−∆)

s
2 un|2 + V(εx)u2

n
)
dx ≤ on(1) −

∫
R3

∫
R3

(un(x) − un(y))(ψR(x) − ψR(y))
|x − y|3+2s un(y)dxdy

Now, we note that the Hölder inequality and the boundedness of {un} imply that∣∣∣∣ ∫
R3

∫
R3

(un(x) − un(y))(ψR(x) − ψR(y))
|x − y|3+2s un(y)dxdy

∣∣∣∣
≤
( ∫
R3

∫
R3

|un(x) − un(y)|2
|x − y|3+2s dxdy

) 1
2
( ∫
R3

∫
R3

|ψR(x) − ψR(y)|2
|x − y|3+2s u2

n(y)dxdy
) 1

2

≤ C
( ∫
R3

∫
R3

|ψR(x) − ψR(y)|2
|x − y|3+2s u2

n(y)dxdy
) 1

2 .

Therefore, it is enough to prove that

lim
R→∞

lim sup
n→∞

∫
R3

∫
R3

|ψR(x) − ψR(y)|2
|x − y|3+2s u2

n(y)dxdy = 0

to conclude our result.
Let us note that R3 ×R3 can be written as

R3 ×R3 =
(

(R3\B2R) × (R3\B2R)
)
∪
(

(R3\B2R) × B2R
)
∪
(
B2R ×R3) := X1 ∪ X1 ∪ X3.
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Then ∫ ∫
R3×R3

|ψR(x) − ψR(y)|2
|x − y|3+2s u2

n(x)dxdy =
∫ ∫

X1

|ψR(x) − ψR(y)|2
|x − y|3+2s u2

n(x)dxdy

+
∫ ∫

X2

|ψR(x) − ψR(y)|2
|x − y|3+2s u2

n(x)dxdy +
∫ ∫

X3

|ψR(x) − ψR(y)|2
|x − y|3+2s u2

n(x)dxdy.
(3.14)

Now, we estimate each integral in (3.14). Since ψR = 1 in R3\B2R, we have∫ ∫
X1

|ψR(x) − ψR(y)|2
|x − y|3+2s u2

n(x)dxdy = 0. (3.15)

Let k > 4, we have
X2 = (R3\B2R) × B2R = (R3\BkR) × B2R ∪ (BkR\B2R) × B2R .

Let us note that, if (x, y) ∈ (R3\BkR) × B2R, then

|x − y| ≥ |x| − |y| ≥ |x| − 2R > |x|2 .

Therefore, taking into account 0 ≤ ψR ≤ 1, |∇ψR| ≤ C
R and applying Hölder inequality, we can see∫ ∫

X2

|ψR(x) − ψR(y)|2
|x − y|3+2s u2

n(x)dxdy

=
∫

R3\BkR

∫
B2R

|ψR(x) − ψR(y)|2
|x − y|3+2s u2

n(x)dxdy +
∫

BkR\B2R

∫
B2R

|ψR(x) − ψR(y)|2
|x − y|3+2s u2

n(x)dxdy

≤ 25+2s
∫

R3\BkR

∫
B2R

|un(x)|2
|x|3+2s dxdy + C

R2

∫
BkR\B2R

∫
B2R

|un(x)|2

|x − y|3+2(s−1) dxdy

≤ CR3
∫

R3\BkR

|un(x)|2
|x|3+2s dxdy + C

R2 (kR)2(1−s)
∫

BkR\B2R

u2
n(x)dxdy

≤ CR3(
∫

R3\BkR

|un(x)|2
*
sdx)

2
2*s (

∫
R3\BkR

1
|x| 9

2s +3
)

2s
3 + Ck2(1−s)

R2s

∫
BkR\B2R

u2
n(x)dx

≤ C
k3 (

∫
R3\BkR

|un(x)|2
*
sdx)

2
2*s + Ck2(1−s)

R2s

∫
BkR\B2R

u2
n(x)dx

≤ C
k3 + Ck2(1−s)

R2s

∫
BkR\B2R

u2
n(x)dx.

(3.16)

Now, �x ε ∈ (0, 1
2 ), and we note that∫ ∫

X3

|ψR(x) − ψR(y)|2
|x − y|3+2s u2

n(x)dxdy

≤
∫

B2R\BεR

∫
R3

|ψR(x) − ψR(y)|2
|x − y|3+2s u2

n(x)dxdy +
∫
BεR

∫
R3

|ψR(x) − ψR(y)|2
|x − y|3+2s u2

n(x)dxdy.
(3.17)

Let us estimate the �rst integral in (3.17). First, we have∫
B2R\BεR

∫
R3∩{y:|x−y|<R}

|ψR(x) − ψR(y)|2
|x − y|3+2s u2

n(x)dxdy ≤ C
R2s

∫
B2R\BεR

u2
n(x)dx
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and ∫
B2R\BεR

∫
R3∩{y:|x−y|≥R}

|ψR(x) − ψR(y)|2
|x − y|3+2s u2

n(x)dxdy ≤ C
R2s

∫
B2R\BεR

u2
n(x)dx.

Then ∫
B2R\BεR

∫
R3

|ψR(x) − ψR(y)|2
|x − y|3+2s u2

n(x)dxdy ≤ C
R2s

∫
B2R\BεR

u2
n(x)dx. (3.18)

By using the de�nition of ψR , ε ∈ (0, 1) and ψR ≤ 1, we have∫
BεR

∫
R3

|ψR(x) − ψR(y)|2
|x − y|3+2s u2

n(x)dxdy =
∫
BεR

∫
R3\BR

|ψR(x) − ψR(y)|2
|x − y|3+2s u2

n(x)dxdy

≤ 4
∫
BεR

∫
R3\BR

u2
n(x)

|x − y|3+2s dxdy

≤ C
∫
BεR

u2
n(x)dx

∞∫
( 1

2−ε)R

1
r2+2s dr

= C
(( 1

2 − ε)R)2s

∫
BεR

u2
n(x)dx

(3.19)

where we use the fact that if (x, y) ∈ BεR × (R3\BR), then |x − y| > ( 1
2 − ε)R.

Taking into account (3.17)-(3.19) we deduce∫ ∫
X3

u2
n(x)|ψR(x) − ψR(y)|2

|x − y|µ dxdy ≤ C
R2s

∫
B2R\BϵR

|un(x)|2dx + C
((1 − ϵ)R)2s

∫
BϵR

u2
n(x)dx. (3.20)

Putting together (3.14),(3.15),(3.16) and (3.20), we can infer∫ ∫
R3×R3

u2
n(x)|ψR(x) − ψR(y)|2

|x − y|µ dxdy

≤ C
k3 + Ck2(1−s)

R2s

∫
BkR\B2R

u2
n(x)dx + C

R2s

∫
B2R\BεR

u2
n(x)dx + C

((1 − ϵ)R)2s

∫
BϵR

u2
n(x)dx.

(3.21)

Since {un} is bounded in Hε, we may assume that un → u in L2
loc(R

3) for some u ∈ Hε. Then, taking the
limit as n →∞ in (3.21), we have

lim sup
n→∞

∫ ∫
R3×R3

u2
n(x)|ψR(x) − ψR(y)|2

|x − y|µ dxdy

≤ C
k3 + Ck2(1−s)

R2s

∫
BkR\B2R

u2(x)dx + C
R2s

∫
B2R\BεR

u2(x)dx + C
((1 − ϵ)R)2s

∫
BϵR

u2(x)dx

≤ C
k3 + Ck2(

∫
BkR\B2R

|u|2
*
s (x)dx)

2
2*s + C(

∫
B2R\BεR

|u|2
*
s (x)dx)

2
2*s + C( ε

1 − ε )2s(
∫
BεR

|u(x)|2
*
s )

2
2*s ,

where in the last passage we use Hölder inequality.
Since u ∈ L2*s (R3), k > 4 and ε ∈ (0, 1

2 ), we obtain

lim sup
R→∞

∫
BkR\B2R

|u(x)|2
*
sdx = lim sup

R→∞

∫
B2R\BεR

|u(x)|2
*
sdx = 0.
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Choosing ε = 1
k , we get

lim sup
R→∞

lim sup
n→∞

∫ ∫
R3×R3

u2
n(x)|ψR(x) − ψR(y)|2

|x − y|µ dxdy

≤ lim
k→∞

lim sup
R→∞

(
C
k3 + Ck2(

∫
BkR\B2R

|u(x)|2
*
sdx)

2
2*s + C(

∫
B2R\B R

k

|u(x)|2
*
sdx)

2
2*s + C( 1

k − 1 )2s(
∫
B R
k

|u(x)|2
*
sdx)

2
2*s

)

≤ lim
k→∞

C
k3 + C( 1

k − 1 )2s(
∫
B R
k

|u(x)|2
*
sdx)

2
2*s

= 0,

which complete our proof.

Lemma 3.7. Under the conditions of Lemma 3.6, the functional Jε satis�es the (PS)c condition for all c ∈

[cε ,
2*µ,s−1
22*µ,s

S
2*µ,s

2*µ,s−1

H,L ).

Proof. Since {un} is bounded in Hε, we may assume

un ⇀ u in Hε ,
un → u in Lrloc(R

3), 2 ≤ r < 2*s ,
un(x)→ u(x) a.e. in R3.

Let us prove that un → u in Hε as n →∞. Setting ωn = ‖un − u‖2
ε , we have

ωn = 〈J′ε(un), un〉 − 〈J′ε(un), u〉 + 1
2*µ,s

∫
R3

( 1
|x|µ * H(εx, un))h(εx, un)(un − u)dx + on(1). (3.22)

Note that 〈J′ε(un), un〉 = 〈J′ε(un), u〉 = on(1), so we only need to show that∫
R3

( 1
|x|µ * H(εx, un))h(εx, un)(un − u)dx = on(1). (3.23)

Similar the proof in Lemma 2.7, we can see that
1
|x|µ H(εx, un) ⇀ 1

|x|µ H(εx, u) in L
6
µ (R3). (3.24)

By using Lemma 2.1, we have

lim
n→∞

∫
BR

1
|x|µ H(εx, un)h(εx, un)(un − u)dx = 0. (3.25)

By Lemma 2.1 and 3.6, for any η > 0 there exists R = R(η) > 0 such that

lim sup
n→∞

∫
R3\BR

| 1
|x|µ H(εx, un)h(εx, un)un|dx ≤ C1η

and
lim sup
n→∞

∫
R3\BR

| 1
|x|µ H(εx, un)h(εx, un)u|dx ≤ C2η

Taking into account the above limits we can deduce that

lim
n→∞

∫
R3

( 1
|x|µ * H(εx, un))h(εx, un)(un − u)dx = 0.
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Lemma 3.8. The functional Ψε veri�es the (PS)c condition in S+
ε for all c ∈ [cε ,

2*µ,s−1
22*µ,s

S
2*µ,s

2*µ,s−1

H,L ).

Proof. Let {un} ⊂ S+
ε be a (PS)c sequence forΨε. Thus,Ψε(un)→ c and ‖Ψ ′

ε‖* → 0, where ‖ ·‖* is the norm in
the dual space (TunS+

ε )′. It follows from Lemma 3.4-(B3) that {mε(un)} is a (PS)c sequence for Iε in Hε. From
Lemma 3.7 we see that there is a u ∈ S+

ε such that mε(un) → mε(u) in Hε. From Lemma 3.3-(A3), it follows
that un → u in S+

ε .

4 The autonomous problem
Since we are interestd in giving amultiplicity result for themodi�ed problem, we start by considering the

limit problem associated to (1.8), namely, the problem

(−∆)su + V0u = (
∫
R3

|u(y)|2
*
µ,s + F(u(y))
|x − y|µ dy)(|u|2

*
µ,s−2u + 1

2*µ,s
f (u)) in R3. (4.1)

Set G(u) = |u|2
*
µ,s + F(u), g(u) = dG(u)

du , then the equation (4.1) changes into

(−∆)su + V0u = 1
2*µ,s

(
∫
R3

G(u(y))
|x − y|µ dy)g(u) in R3. (4.2)

which has the following associated functional

I0(u) = 1
2

∫
R3

(|(−∆)
s
2 u|2 + V0u2)dx − 1

22*µ,s

∫
R3

∫
R3

G(u(y))G(u(x))
|x − y|µ dydx.

The functional I0 is well de�ned on the Hilbert space H0 = Hs(R3) with the inner product

(u, v)0 =
∫
R3

(−∆)
s
2 u(−∆)

s
2 vdx +

∫
R3

V0uvdx,

and the norm
‖u‖2

0 =
∫
R3

|(−∆)
s
2 u|2dx +

∫
R3

V0u2dx.

We denote the Nehari manifold associated to I0 by

N0 = {u ∈ H0\{0} : 〈I′0(u), u〉 = 0},

and by H+
0 the open subset of H0 given by

H+
0 = {u ∈ H0 : |supp(u+)| > 0},

and S+
0 = S0 ∩ H+

0, where S0 is the unit sphere of H0.
As in section 3, S+

0 is a incomplete C1,1-manifold of codimension 1, modeled on H0 and contained in the
open H+

0. Thus, H0 = TuS+
0 ⊕Ru for each u ∈ S+

0, where TuS+
0 = {v ∈ H0 : (u, v)0 = 0}.

Next we have the following Lemmas and the proofs follow from a similar argument used in the proofs of
Lemma 3.3 and Lemma 3.4.

Lemma 4.1. Let V0 be given in (V1) and the functional f satis�es (f1)− (f3). Then the following properties hold:
(a1)For each u ∈ H+

0 , let ϕu : R+ → R be given by ϕu(τ) = I0(τu). Then there exists a unique τu > 0 such that
ϕ′
u(τ) > 0 in (0, τu) and ϕ′

u(τ) < 0 in (τu , ∞).
(a2)There is a σ > 0 independent on u such that τu > σ for all u ∈ S+

0. Moreover, for each compact setW ⊂ S+
0

there is CW > 0 such that τu ≤ CW for all u ∈W.
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(a3)The map m̂ : H+
0 → N0 given by m̂(u) = τuu is continuous and m := m̂|S+

0
is a homeomorphism between S+

0
andN0. Moreover, m−1(u) = u

‖u‖0
.

We de�ne the applications
Ψ̂0 : H+

0 → R and Ψ0 : S+
0 → R,

by Ψ̂0(u) = I0(m̂(u)) and Ψ0 := Ψ̂0|S+
0
.

Lemma 4.2. Let V0 be given in (V1) and (f1) − (f3) are satis�ed. Then :
(b1)Ψ̂0 ∈ C1(H+

0 ,R) and

Ψ̂ ′
0(u)v = ‖m̂(u)‖0

‖u‖0
I′0(m̂(u))v, ∀u ∈ H+

0 and ∀ v ∈ H0.

(b2)Ψ0 ∈ C1(S+
0,R) and

Ψ ′
0(u)v = ‖m(u)‖0I′0(m(u))v, ∀v ∈ TuS+

0 .

(b3)If {un} is a (PS)c sequence of Ψ0, then {m(un)} is a (PS)c sequence of I0. If {un} ⊂ N0 is a bounded (PS)c
sequence for I0, then {m−1(un)} is a (PS)c sequence of Ψ0.

(b4)u is a critical point of Ψ0 if and only if, m(u) is a critical point of I0. Moreover, corresponding critical values
coincide and

inf
S+

0

Ψ0 = inf
N0
I0.

As in the previous section, we have the following variational characterization of the in�mum of I0 overN0:

cV0 = inf
u∈N0

I0(u) = inf
u∈H+

0

max
τ>0

I0(τu) = inf
u∈S+

0

max
τ>0

I0(τu) > 0.

The next Lemma allows us to assume that the weak limit of a (PS)c sequence is non-trivial.

Lemma 4.3. Let {un} ⊂ H0 be a (PS)c sequence with c ∈ [cV0 ,
2*µ,s−1
22*µ,s

S
2*µ,s

2*µ,s−1

H,L ) for I0. Then, only one of the
following conclusions holds.
(i) un → 0 in H0, or
(ii) There exist a sequence {yn} ⊂ R3 and constants R, β > 0 such that

lim inf
n→+∞

∫
BR(yn)

u2
ndx ≥ β > 0.

Proof. Suppose (ii) does not occur. Then, for any R > 0, we have

lim
n→+∞

sup
y∈R3

∫
BR(y)

u2
ndx = 0.

Similarly to Lemma 3.5, we have {un} is bounded in H0, then by Lemma 2.2, we have

un → 0 in Lr(R3) for r ∈ (2, 2*s).

Thus, by (f1) we have ∫
R3

∫
R3

G(u(y))g(u(x))u(x)
|x − y|µ dydx = on(1).

Recalling that I′0(un)un → 0, we get
‖un‖2

0 = on(1).

Therefore the conclusion follows.
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From Lemma 4.3 we can see that, if u is the weak limit of a (PS)cV0
sequence {un} for the functional I0, then

we can assume u ≠ 0. Otherwise we would have un ⇀ 0 and once it doesn’t occur un → 0, we conclude from
Lemma 4.3 that there exist {yn} ⊂ R3 and R, β > 0 such that

lim inf
n→+∞

∫
BR(yn)

u2
ndx ≥ β > 0.

Then set vn(x) = un(x + yn), making a change of variable, we can prove that {vn} ia also a (PS)cV0
sequence

for the functional I0, it is bounded in H0 and there is v ∈ H0 such that vn → v in H0 with v ≠ 0.
Next we devote to estimating the least energy cV0 . Recall that the best Sobolev constant Ss of the embed-

dingDs,2(R3) ↪→ L2*s (R3) is de�ned by

Ss := inf
u∈Ds,2(R3)

‖u‖2
Ds,2(R3)
|u|22*s

In particular, we consider the following family of functions Uε de�ned as

Uε(x) = ε
2s−3

2 ū( xε S
1

2s
s ), ū = un(x)

|u0|2*s
,

for ε > 0 and x ∈ R3, the minimizer of Ss (see,[41]), which satis�es

(−∆)su = |u|2
*
s−2u, x ∈ R3.

Then, by a simple calculation, we know

Ũ(x) = S
(3−µ)(2s−3)
4(2+2s−µ)
s C(µ)

2s−3
2(3+2s−µ) Uε(x)

is the unique minimizer for SH,L that satis�es

(−∆)su =
( ∫
R3

|u(y)|2
*
µ,s

|x − y|µ
)
|u|2

*
µ,su, in R3.

Moreover, ∫
R3

|(−∆)
s
2 Ũ|2dx =

∫
R3

∫
R3

|Ũ(x)|2
*
µ,s |Ũ(y)|2

*
µ,s

|x − y|µ dxdy = S
6−µ

3−µ+2s
H,L .

Let φ ∈ C∞0 (R3, [0, 1]) and small δ > 0 be such that φ ≡ 1 in Bδ(0) and ϕ ≡ 0 in R3\B2δ(0). For any
ε > 0, de�ne the best function by uε = φUε.

Similar to [22, Lemma 1.2], we can easily draw the following conclusion.

Lemma 4.4. The constant SH,L de�ned in (2.2) is achieved if and only if

u = C
( b
b2 + |x − a|2

) 3−2s
2 ,

where C > 0 is a �xed constant, a ∈ R3 and b > 0 are parameters. Furthermore,

SH,L = Ss

C(µ)
1

2*µ,s

.

Proof. We sketch the proof for the completeness of this paper. By the Hardy-Littlewood-Sobolev inequality,
we have

SH,L ≥
1

C(µ)
1

2*µ,s

∫
u∈Ds,2(R3)\{0}

∫
R3 |(−∆) s2 u|2dx

|u|22*s
= Ss

C(µ)
1

2*µ,s

.
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On the other hand, the equality in the Hardy-Littlewood-Sobolev (1.6) holds if and only if

f (x) = h(x) = C
( b
b2 + |x − a|2

) 6−µ
2 ,

where C > 0 is a �xed constant, a ∈ R3 and b > 0 are parameters. Thus

( ∫
R3

∫
R3

|u(x)|2
*
µ,s |u(y)|2

*
µ,s

|x − y|µ dxdy
) 1

2*µ,s = C(µ)
1

2*µ,s |u|22*s ,

if and only if
u = C

( b
b2 + |x − a|2

) 3−2s
2 .

Then, by the de�nition of SH,L, we get

SH,L ≤
∫
R3 |(−∆) s2 u|dx

(
∫
R3

∫
R3

|u(y)|2*µ,s |u(x)|2*µ,s

|x−y|µ dydx)
1

2*µ,s

= 1

C(µ)
1

2*µ,s

∫
R3 |(−∆) s2 u|2dx

|u|22*s
(4.3)

an thus we have
SH,L ≤

Ss

C(µ)
1

2*µ,s

.

From the arguments above, we know that SH,L is achieved if and only if u = C( b
b2+|x−a|2 ) 3−2s

2 and

SH,L = Ss

C(µ)
1

2*µ,s

.

Next. repeat theproof in [22, Lemma 1.3],wehave the following important information about thebest constant
SH,L.

Lemma 4.5. For every open subset Ω ⊂ R3, we have

SH,L(Ω) := inf
u∈Ds,2

0 (Ω)\{0}

∫
Ω |(−∆) s2 u|2dx

(
∫
Ω
∫
Ω

|u(y)|2*µ,s |u(x)|2*µ,s

|x−y|µ dydx)
1

2*µ,s

= SH,L (4.4)

where SH,L(Ω) is never achieved except when Ω = R3.

Proof. It is clear that SH,L ≤ SH,L(Ω) by Ds,2
0 (Ω) ⊂ Ds,2(R3). Let {un} ⊂ C∞0 (R3) be a minimizing sequence

for SH,L. We make translations and dilations for {un} by choosing yn ∈ R3 and τn > 0 such that

vn := τ
3−2s

2
n un(τnx + yn) ∈ C∞0 (Ω),

which satis�es ∫
R3

|(−∆)
s
2 vn|2dx =

∫
R3

|(−∆)
s
2 un|2dx

and ∫
Ω

∫
Ω

|vn(y)|2
*
µ,s |vn(x)|2

*
µ,s

|x − y|µ dxdy =
∫
R3

∫
R3

|un(y)|2
*
µ,s |un(x)|2

*
µ,s

|x − y|µ dxdy.

Hence SH,L(Ω) ≤ SH,L. Moreover, since Ũ(x) is the only class of functions such that the equality holds in the
Hardy-Littlewood-Sobolev inequality, we know that SH,L(Ω) is never achieved except for Ω = R3.
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Lemma 4.6. ∫
R3

∫
R3

|uε(x) − uε(y)|2
|x − y|3+2s dxdy ≤ S

3
2s
s + O(ε3−2s), (4.5)

|uε|22 =


Cε2s + O(ε3−2s) if 4s < 3,
Cε2s log( 1

ε ) + O(ε2s) if 4s = 3,
Cε3−2s + O(ε2s) if 4s > 3,

(4.6)

∫
R3

∫
R3

|uε(x)|2
*
µ,s |uε(y)|2

*
µ,s

|x − y|µ dxdy ≥ C(µ)
3

2s S
6−µ
2s
H,L − O(ε

6−µ
2 ), (4.7)

In addition, if q < 2*µ,s, then there holds∫
Bδ

∫
Bδ

|Uε(x)|q|Uε(y)|q
|x − y|µ dxdy = O(ε6−µ−q(3−2s)). (4.8)

Proof. For the proof of (4.5) and (4.6), we can see that in [41]. So we only need to estimate (4.7) and (4.8).
Concerning (4.7), similar to [2, Lemma 7.1], we have∫

R3

∫
R3

|uε(x)|2
*
µ,s |uε(y)|2

*
µ,s

|x − y|µ dxdy ≥
∫
Bδ

∫
Bδ

|uε(x)|2
*
µ,s |uε(y)|2

*
µ,s

|x − y|µ dxdy

=
∫
R3

∫
R3

|Uε(x)|2
*
µ,s |Uε(y)|2

*
µ,s

|x − y|µ dxdy − 2
∫

R3\Bδ

∫
Bδ

|Uε(x)|2
*
µ,s |Uε(y)|2

*
µ,s

|x − y|µ dxdy

−
∫

R3\Bδ

∫
R3\Bδ

|Uε(x)|2
*
µ,s |Uε(y)|2

*
µ,s

|x − y|µ dxdy := C(µ)
3

2s S
6−µ
2s
H,L − 2A − B,

(4.9)

where

A =
∫

R3\Bδ

∫
Bδ

|Uε(x)|2
*
µ,s |Uε(y)|2

*
µ,s

|x − y|µ dxdy,

B =
∫

R3\Bδ

∫
R3\Bδ

|Uε(x)|2
*
µ,s |Uε(y)|2

*
µ,s

|x − y|µ dxdy.

By direct computation, we have

A =
∫

R3\Bδ

∫
Bδ

|Uε(x)|2
*
µ,s |Uε(y)|2

*
µ,s

|x − y|µ dxdy,

= Cε6−µ
∫

R3\Bδ

∫
Bδ

1

(ε2b2 + x2S
1
s
s )

6−µ
2

1
|x − y|µ

1

(ε2b2 + y2S
1
s
s )

6−µ
2

dxdy

≤ Cε6−µ( ∫
R3\Bδ

1

(ε2b2 + x2S
1
s
s )3

dx
) 6−µ

6
( ∫
Bδ

1

(ε2b2 + y2S
1
s
s )3

dy
) 6−µ

6

≤ Cε6−µ( ∫
R3\Bδ

1

|x|6S
3
s
s

dx
) 6−µ

6
( δ∫

0

r2

(ε2b2 + r2S
1
s
s )3

dr
) 6−µ

6

= O(ε
6−µ

2 )

(4.10)
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and

B =
∫

R3\Bδ

∫
R3\Bδ

|Uε(x)|2
*
µ,s |Uε(y)|2

*
µ,s

|x − y|µ dxdy

≤ Cε6−µ
∫

R3\Bδ

∫
R3\Bδ

1

(ε2b2 + x2S
1
s
s )

6−µ
2

1
|x − y|µ

1

(ε2b2 + y2S
1
s
s )

6−µ
2

dxdy

≤ Cε6−µ( ∫
R3\Bδ

1

(ε2b2 + x2S
1
s
s )3

dx
) 6−µ

6
( ∫
R3\Bδ

1

(ε2b2 + y2S
1
s
s )3

dy
) 6−µ

6

≤ Cε6−µ( ∫
R3\Bδ

1

|x|6S
3
s
s

dx
) 6−µ

6
( ∫
R3\Bδ

1

|y|6S
3
s
s

dy
) 6−µ

6

= O(ε6−µ)

(4.11)

It follows from (4.9) to (4.11) that∫
R3

∫
R3

|uε(x)|2
*
µ,s |uε(y)|2

*
µ,s

|x − y|µ dxdy ≥ C(µ)
3

2s S
6−µ
2s
H,L − O(ε

6−µ
2 ) − O(ε6−µ)

= C(µ)
3

2s S
6−µ
2s
H,L − O(ε

6−µ
2 ).

Then (4.7) follows. Now we prove (4.8). If q < 2*µ,s, we have∫
Bδ

∫
Bδ

|Uε(x)|q|Uε(y)|q
|x − y|µ dxdy = O(ε6−µ−q(3−2s))

= Cεq(3−2s)
∫
Bδ

∫
Bδ

1

(ε2b2 + x2S
1
s
s ) 3−2s

2 q

1
|x − y|µ

1

(ε2b2 + y2S
1
s
s ) 3−2s

2 q
dxdy

≤ Cεq(3−2s)( ∫
Bδ

1

(ε2b2 + x2S
1
s
s )

3−2s
2 q 6

6−µ
dx
) 6−µ

6
( 1

(ε2b2 + y2S
1
s
s )

3−2s
2 q 6

6−µ
dy
) 6−µ

6

≤ Cεq(3−2s)( ε∫
0

r2

(ε2b2 + r2S
3−2s

2 q 6
6−µ

s

dr
) 6−µ

3

= O(ε6−µ−q(3−2s)

Lemma 4.7. Suppose that (f1) − (f3) hold. Then the number cV0 satis�es that

0 < cV0 <
2*µ,s − 1

22*µ,s
S

2*µ,s
2*µ,s−1

H,L .

Proof. By the de�nition of cV0 , it su�ces to prove that there exists v ∈ N0 such that

I0(v) <
2*µ,s − 1

22*µ,s
S

2*µ,s
2*µ,s−1

H,L . (4.12)

By Lemma 4.1, there exists τε > 0 such that τεuε ∈ N0. We claim that for ε > 0 small enough, there exist A1
and A2 independent of ε such that

0 < A1 ≤ τε ≤ A2 < ∞. (4.13)
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Indeed, note thatN0 is bounded away from 0, we have that τε ≥ A1 > 0 using (4.5) and (4.6). Moreover, since
〈I′0(τεuε), τεuε〉 = 0, from (4.7) we have that

τ22*µ,s
ε ≤ C(τ2

ε‖uε‖2
0 + τ2q1

ε ‖uε‖2q1
0 + τ2q2

ε ‖uε‖2q2
0

+ τq1+2*µ,s
ε ‖uε‖

q1+2*µ,s
0 + τq2+2*µ,s

ε ‖uε‖
q2+2*µ,s
0 ).

Using (4.5) and (4.6) again, there exists A2 > 0 such that τε ≤ A2. Then (4.13) holds true.
Now we estimate I0(τεuε). Note that

I0(τεuε) ≤
(
τ2
ε

2

∫
R3

|(−∆)
s
2 uε(x)|2dx − τ

22*µ,s
ε

22*µ,s

∫
R3

∫
R3

|uε(y)|2
*
µ,s |uε(x)|2

*
µ,s

|x − y|µ dydx
)

+
(
τ2
ε

2

∫
R3

V0u2
εdx −

1
22*µ,s

∫
R3

∫
R3

F(τεuε(y))F(τεuε(x))
|x − y|µ dydx

)
:= I1 + I2.

(4.14)

For I1, we set

A :=
∫
R3

|(−∆)
s
2 uε(x)|2dx,

B =
∫
R3

∫
R3

|uε(y)|2
*
µ,s |uε(x)|2

*
µ,s

|x − y|µ dydx,

and consider the function θ : [0,∞)→ R de�ned by

θ(τ) = 1
2Aτ

2 − τ
22*µ,s
ε

22*µ,s
B,

we have that τ0 = ( AB )
1

22*µ,s−2 is a maximum point of θ and

θ(τ0) =
2*µ,s − 1

22*µ,s
A

2*µ,s
2*µ,s−1 B

1
1−2*µ,s .

Combining with Lemma 4.3, (4.5) and (4.7) we have

I1 ≤
2*µ,s − 1

22*µ,s
S

2*µ,s−1

2*µ,s
H,L + O(ε3−2s) + O(ε

6−µ
2 ). (4.15)

For I2, given A0 > 0, we invoke (f3) to obtain R = R(A0) > 0 such that, for x ∈ R3, t ≥ R,

F(x, t) ≥


A0t2

*
µ,s−1 if 3 < 4s,

A0t2
*
µ,s− 2s

3−2s (logt) 1
2 if 3 = 4s,

A0t2
*
µ,s− 2s

3−2s if 3 > 4s.

(4.16)

By (4.6) and (4.16), we need to estimate I2 in three cases. Since the argument is similar, we only consider the
case that 3 < 4s. For |x| < ε < δ, noting that φ ≡ 1 in Bδ(0), by the de�nition of uε and (4.13), we get a
constant β > 0 such that

τεuε(x) ≥ A1Uε(x) ≥ βε
2s−3

2 .

Then we can choose ε1 > 0 such that τεuε ≥ R, for |x| < ε, 0 < ε < ε1. It follows from (4.16) that

F(x, τεuε(x)) ≥ A0τ
2*µ,s−1
ε u2*µ,s−1

ε ,
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for |x| < ε, 0 < ε < ε1. Then for any 0 < ε < ε1, by (4.8) we get∫
Bε

∫
Bε

F(τεuε(x))F(τεuε(y))
|x − y|µ dydx ≥ A2

0

∫
Bε

∫
Bε

|τεuε(y)|2
*
µ,s−1|τεuε(x)|2

*
µ,s−1

|x − y|µ dydx

≥ CA2
0

∫
Bε

∫
Bε

|Uε(y)|2
*
µ,s−1|Uε(x)|2

*
µ,s−1

|x − y|µ dydx

= A2
0O(ε3−2s).

Note that F(u) ≥ 0, (4.6) and (4.13), we have

I2 ≤ C|uε|22 −
1

22*µ,s

∫
Bε

∫
Bε

F(τεuε(x))F(τεuε(y))
|x − y|µ dydx ≤ (C − C1A2

0)ε3−2s . (4.17)

Inserting (4.15) and (4.17) into (4.14), we get

I0(τεuε) ≤
2*µ,s − 1

22*µ,s
S

2*µ,s−1

2*µ,s
H,L + (C2 + C − C1A2

0)ε3−2s + O(ε
6−µ

2 ). (4.18)

Observe that 6−µ
2 > 3 − 2s for 3 < 4s, and A0 > 0 is arbitrary, we choose large enough A0 such that C + C2 −

C1A2
0 < 0. Then for small ε > 0 we have v := τεuε satis�es (4.12).

Theorem 4.1. Assume that (f1)−(f3) hold. Then autonomous problem (4.1) has a positive ground state solution
u with I0(u) = cV0 .

Proof. By Lemma 3.2 with V(x) = V0 and the Mountain Pass Theorem without (PS) condition (cf. [50]), there
exists a (PS)cV0

-sequence {un} ⊂ H0 of I0 with

cV0 <
2*µ,s − 1

22*µ,s
S

2*µ,s−1

2*µ,s
H,L .

By Lemma 3.5 and 4.3, {un} is bounded in Hs(R3) and non-vanishing, namely there exist r, δ > 0 and a
sequence {yn} ⊂ R3 such that

lim inf
n→∞

∫
Br(yn)

|un|2dx ≥ δ.

Up to s subsequence, there exists u ∈ Hs(R3) such that

un ⇀ u in Hs(R3),
un → u in Lrloc(R

3), 2 ≤ r < 2*s ,
un(x)→ u(x) a.e. in R3.

As Lemma 2.5, we have I′0(u) = 0. Since I0 and I′0 are both invariant by translation, without lost of generality,
we can assume that {yn} is bounded. Note that un → u in L2

loc(R
3). Then u ̸≡ 0. So u ∈ N0. Then

cV0 ≤ I0(u) = I0(u) − 1
2 〈I

′
0(u), u〉

= 1
22*µ,s

∫
R3

∫
R3

G(u(y))
|x − y|µ

(
g(u(x))u(x) − G(u(x))

)
dydx

≤ 1
22*µ,s

lim inf
n→∞

∫
R3

∫
R3

G(un(y))
|x − y|µ

(
g(un(x))un(x) − G(un(x))

)
dydx

= lim inf
n→∞

(I0(un) − 1
2 〈I

′
0(un), un〉)

= cV0 ,
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where we used Fatou Lemma and Lemma 2.4. Therefore, I0(u) = cV0 , which means that u is a ground state
solution for (4.1).

Next we prove that the solution u is positive, using u− = max{−u, 0} as a test function in (4.1) we obtain∫
R3

(−∆)
s
2 u(−∆)

s
2 u−dx +

∫
R3

V0|u−|2dx = 0. (4.19)

On the other hand, ∫
R3

(−∆)
s
2 u(−∆)

s
2 u−dx = 1

2C(s)
∫∫

R3×R3

(u(x) − u(y))(u−(x) − u−(y))
|x − y|3+2s dxdy

≥ 1
2C(s)

∫
{u>0}×{u<0}

(u(x) − u(y))(−u−(y))
|x − y|3+2s dxdy

+ 1
2C(s)

∫
{u<0}×{u<0}

(u−(x) − u−(y))2

|x − y|3+2s dxdy

+ 1
2C(s)

∫
{u<0}×{u>0}

(u(x) − u(y))u−(x)
|x − y|3+2s dxdy

≥ 0.

Thus, it follows from (4.19) that u− = 0 and u ≥ 0. Rewriting the equation (4.1) in the form of

(−∆)su + V0u =
( ∫
R3

H(u(y))u(y)
|x − y|µ dy

)
K(u) in R3,

where

H(u) := |u|
2*µ,s + F(u)
u , K(u) := |u|2

*
µ,s−2−µ + 1

2*µ,s
f (u) ∈ L

2
3−µ (R3) + L

6
3+2s−µ (R3).

By Lemma 2.8, we know u ∈ Lp(R3) for all p ∈ [2, 18
(3−µ)(3−2s) ). Using the growth assumption (f1) and the

higher integrability of u, for some C > 0 we have

∣∣ ∫
R3

G(u(y))
|x − y|µ

∣∣
∞ ≤ C

∣∣|u|2*µ,s + |u|q1 + |u|q2
∣∣

3
3−µ
≤ C
(
|u|2

*
µ,s

3(6−µ)
3−µ

+ |u|q1
3q1
3−µ

+ |u|q2
321
3−µ

)
, (4.20)

which is �nite since the various exponents live within the range [2, 18
(3−µ)(3−2s) ). Thus,

(−∆)su + V0u ≤ C(|u|2
*
µ,s−2−µu + 1

2*µ,s
f (u)) in R3.

By the Moser iteration, similar arguments developed in Lemma 6.1 below, we can get u ∈ L∞(R3) and
lim

|x|→+∞
u(x) = 0 uniformly in n. Then, by regularity theory [43], there exists α ∈ (0, 1) such that u ∈ C0,α

loc (R3).

Therefore, if u(x0) = 0 for some x0 ∈ R3, we have that (−∆)su(x0) = 0 and by [19, Lemma 3.2], we have

(−∆)su(x0) = −C(s)
2

∫
R3

u(x0 + y) + u(x0 − y) − 2u(x0)
|y|3+2s dy,

therefore, ∫
R3

u(x0 + y) + u(x0 − y)
|y|3+2s dy = 0,

yielding u ≡ 0, a contradiction. Therefore, u is a positive solution of the equation (4.1) and the proof is
completed.
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The next result is a compactness result on autonomous problem which we will use later.

Lemma 4.8. Let {un} ⊂ N0 be a sequence such that I0(un) → cV0 . Then {un} has a convergent subsequence
in H0.

Proof. Since {un} ⊂ N0, it follows from Lemma 4.1-(a3), Lemma 4.2-(b4) and the de�nition of cV0 that

vn = m−1(un) = un
‖un‖0

∈ S+
0, ∀ n ∈ N,

and
Ψ0(vn) = I0(un)→ cV0 = inf

S+
0

Ψ0.

Although S+
0 is incomplete, due to Lemma 4.1, we can still apply the Ekeland’s variational principle [21] to the

functional Θ0 : H → R ∪ {∞}, de�ned by Θ0(u) = Ψ0(u) if u ∈ S+
0 and Θ0(u) = ∞ if u ∈ ∂S+

0, where H = S+
0 is

the complete metric space equipped with the metric d(u, v) := ‖u − v‖0. In fact, take ε = 1
k2 in Theorem 1.1 of

[21], we have a subsequence {vnk} ⊂ {vn} such that

cV0 ≤ Ψ(vnk ) ≤ cV0 + 1
k2 .

From Theorem 1.1 in [21], for λ = 1
k , there exist a sequence {ṽk} ⊂ S+

0 such that

Θ0(ṽk) ≤ Θ0(vnk ) < cV0 + 1
k2

and
‖vnk − ṽk‖0 ≤

1
k .

In particular, for any u ∈ S+
0 we have

Ψ0(u) > Ψ0(ṽk) − 1
k ‖u − ṽk‖0.

Hence, similar the proof for Theorem 3.1 in [21], we have that there exists λk ∈ R such that

‖Ψ̂ ′
0(ṽk) − λkg′0(ṽk)‖0 ≤

1
k ,

where g0(u) = ‖u‖2
0 − 1. Which means that

λk = 1
‖g′0(ṽk)‖2

0
〈Ψ̂ ′

0(ṽk), g′0(ṽk)〉 + ok(1), g′0(ṽk) = ṽk .

From Lemma 4.2-(b1),

λk = 〈Ψ̂ ′
0(ṽk), ṽk〉 + ok(1) = τṽk 〈I

′
0(tṽk ṽk), ṽk〉 + ok(1) = ok(1).

Therefore, we can conclude there is a sequence {ṽn} ⊂ S+
0 such that {ṽn} is a (PS)cV0

sequence for Ψ0 on S+
0

and
‖un − ṽn‖0 = on(1).

Now the remainder of the proof follows from Lemma 4.2, Theorem 4.1 and arguing as in the proof of Lemma
3.8.

5 Solutions for the penalized problem
In this section,we shall prove the existence andmultiplicity of solutions.We begin showing the existence

of the positive ground-state solution for the penalized problem (3.1).
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Theorem 5.1. Suppose that the nonlinearity f satis�es (f1) − (f3) and that the potential function V satis�es
assumptions (V1) − (V2). Then, for any ε > 0, problem (3.1) has a positive ground-state solution uε.

Proof. Similar to Lemma 3.2, we can prove that Jε also satis�es the Mountain Pass geometry. Let

cε := inf
u∈Hε\{0}

max
τ≥0

Jε(τu) = inf
u∈Nε

Jε(u).

Then, we know that there exists a (PS) sequence at cε, i.e.

J′ε(un)→ 0 and Jε(un)→ cε .

Therefore, by Lemma 3.7, the existence of ground state solution uε is guaranteed. Moreover, similarly to the
proof in Theorem 4.1, we know that uε(x) > 0 in R3.

Next, we will relate the number of positive solutions of (3.1) to the topology of the setM. For this, we consider
δ > 0 such that Mδ ⊂ Ω and by Theorem 4.1, we can choose w ∈ N0 with I0(w) = cV0 . Let η be a smooth
nonincreasing cut-o� function de�ned in [0, +∞) such that η(t) = 1 if 0 ≤ t ≤ δ

2 and η(t) = 0 if t ≥ δ. For each
y ∈M, let

Ψε,y(x) = η(|εx − y|)w( εx − yε ).

Then for small ε > 0, one has Ψε,y ∈ Hε\{0} for all y ∈M. In fact, using the change of variable z = x − y
ε , one

has ∫
R3

V(εx)Ψ2
ε,y(x)dx =

∫
R3

V(εx)η2(|εx − y|)w2( εx − yε )dx =
∫
R3

V(εz + y)η2(|εz|)w2(z)dz

≤ C
∫
R3

w2(z)dz < +∞.

Moreover, using the change of variable x′ = x − y
ε , z

′ = z − y
ε , we have

|(−∆)
s
2 Ψε,y|22 = 1

2C(s)
∫∫

R3×R3

∣∣η(|εx − y|)w( εx−yε ) − η(|εz − y|)w( εz−yε )
∣∣2

|x − z|3+2s dxdz

= 1
2C(s)

∫∫
R3×R3

∣∣η(|εx′|)w(x′) − η(|εz′|)w(z′)
∣∣2

|x′ − z′|3+2s dx′dz′

= |(−∆)
s
2 η(|εx|)w(x)|22 = |(−∆)

s
2 ηεw|22,

where ηε(x) = η(|εx|). By Lemma 2.3, we see that ηεw ∈ Ds,2(R3) as ε → 0, and hence Ψε,y ∈ Ds,2(R3) for
ε > 0 small. Hence Ψε,y ∈ Hε. Now we proof Ψε,y ≠ 0. In fact,∫

R3

Ψ2
ε,y(x)dx =

∫
R3

η2(|εx − y|)w2( εx − yε )dx =
∫

|εx−y|<δ

η2(|εx − y|)w2( εx − yε )dx

≥
∫

|z|≤ δ
2ε

η2(|εz|)w2(z)dz ≥
∫

B0( δ
2ε )

w2(z)dz →
∫
R3

w2(z)dz > 0

as ε → 0. Then Ψε,y ≠ 0 for small ε > 0. Therefore, there exists unique τε > 0 such that

max
τ≥0

Iε(τΨε,y) = Iε(τεΨε,y) and τεΨε,y ∈ Nε .

We introduce the map Φε : M→ Nε by setting

Φε(y) = τεΨε,y .

By construction, Φε(y) has a compact support for any y ∈M and Φε is a continuous map.
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Lemma 5.1. The functional Φε(y) has the following property:

lim
ε→0

Jε(Φε(y)) = cV0 uniformly in y ∈M.

Proof. Suppose that the result is false. Then, there exist some δ0 > 0, {yn} ⊂M and εn → 0 such that

|Jεn (Φεn (yn)) − cV0 | ≥ δ0. (5.1)

By the de�nition of τεn we have

0 < τ2
εn

∫
R3

|(−∆)
s
2 Ψεn ,yn |2dx + τ2

εn

∫
R3

V(εnx)Ψ2
εn ,yndx

= 1
2*µ,s

∫
R3

∫
R3

H(εnx, τεnΨεn ,yn )h(εnx, τεnΨεn ,yn )τεnΨεn ,yn
|x − y|µ dydx

(5.2)

It follows from (5.2) that τεn ̸→ 0, then τεn ≥ τ0 > 0 for some τ0 > 0. If τεn → +∞, by (f2) and the boundedness
of Ψεn ,yn , we get ( ∫

R3

|(−∆)
s
2 Ψεn ,yn |2dx +

∫
R3

V(εnx)Ψ2
εn ,yndx

)
= 1

2*µ,s

∫
R3

∫
R3

H(εnx, τεnΨεn ,yn )h(εnx, τεnΨεn ,yn )Ψεn ,yn
|x − y|µτεn

dydx → +∞
(5.3)

as n → +∞. But the left side of the above inequality is boundedness, which is impossible. Hence, 0 < τ0 ≤
τεn ≤ C. Without loss of generality, we may assume that τεn → T > 0.

Next we claim that T = 1. By Lemma 2.3 and Lebesgue’s theorem we have

lim
n→+∞

‖Ψεn ,yn‖2
εn = ‖w‖2

0,

lim
n→+∞

Σε(Ψεn ,yn ) = Σ0(w)
(5.4)

Moreover, from

τ2
εn‖Ψεn ,yn‖

2
εn = 1

2*µ,s

∫
R3

∫
R3

H(εnx, τεnΨεn ,yn )h(εnx, τεnΨεn ,yn )τεnΨεn ,yn
|x − y|µ dydx (5.5)

we can deduce that

‖w‖2
0 = lim

n→∞
1

2*µ,s

∫
R3

∫
R3

H(εnx, τεnΨεn ,yn )h(εnx, τεnΨεn ,yn )τεnΨεn ,yn
|x − y|µ dydx (5.6)

Taking into account that w is a ground state solution to (4.1) and using (f2), we deduce that T = 1. It follows
from (5.4), we have

lim
n→+∞

Jεn (Φεn (yn)) = J0(w) = cV0 , (5.7)

which is a contradiction with (5.1). This completes the proof.

Let ρ = ρ(δ) > 0 be such that Mδ ⊂ Bρ(0). Consider χ : R3 → R3 be de�ned as χ(x) = x for |x| ≤ ρ and
χ(x) = ρx

|x| for |x| ≥ ρ. Finally, let us consider the barycenter map βε : Nε → R3 given by

βε(u) =
∫
R3 χ(εx)u2(x)dx∫

R3 u2(x)dx
∈ R3.

Lemma 5.2. The functional βε satis�es

lim
ε→0

βε(Φε(y)) = y uniformly in y ∈M.
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Proof. Suppose by contradiction that there exist δ0 > 0, {yn} ⊂M and εn → 0 such that

|βεn (Φεn (yn)) − yn| ≥ δ0. (5.8)

Using the change of variables z = εnx−yn
εn and the de�nition of βε, we have

βεn (Φεn (yn)) = yn +
∫
R3 (χ(εnz + y) − yn)|η(|εnz|)w(z)|2dx∫

R3 |η(|εnz|)w(z)|2dx
.

Since {yn} ⊂M ⊂ Bρ(0) and χ
∣∣
Bρ
≡ id, we conclude that

|βεn (Φεn (yn)) − yn| = on(1),

which contradicts (5.8) and the desired conclusion holds.

Lemma 5.3. Let εn → 0 and {un} ⊂ Nεn be such that Jεn (un)→ cV0 . Then, there exists a sequence {ỹn} ⊂ R3

such that vn(x) = un(x + ỹn) has a convergent subsequence in H0. Moreover, passing to a subsequence, yn :=
εn ỹn → y0 ∈M.

Proof. By Lemma 3.5, {un} is bounded in H0. Note that cV0 > 0, and since ‖un‖εn → 0 would imply Jεn (un)→
0, we can argue as in the proof of Lemma 4.3 to obtain a sequence {ỹn} ⊂ R3 and constants R, β > 0 such
that

lim inf
n→+∞

∫
BR(ỹn)

u2
ndx ≥ β > 0.

De�ne vn(x) := un(x + ỹn), then {vn} is also bounded in H0 and up to a subsequence, we have

vn ⇀ v ≠ 0 in H0.

Let τn > 0 be such that ṽn := τnvn ∈ N0 and set yn = εn ỹn. By {un} ⊂ Nεn , we have

cV0 ≤ J0(ṽn) = J0(τnun) ≤ Jεn (τnun) ≤ Jεn (un) = cV0 + on(1).

Which implies that lim
n→+∞

J0(ṽn) = cV0 . In virtue of ṽn ∈ N0, we obtain {ṽn} is bounded in H0. It follows
from the boundedness of {vn} in H0 that {τn} is bounded, without loss of generality, we may assume that
τn → τ0 ≥ 0. If τ0 = 0, in view of the boundedness of {vn} in H0, we have ṽn = τnvn → 0 in H0. Hence
J0(ṽn)→ 0, which contradicts cV0 > 0. Thus, τ0 > 0 and the weak limit of {ṽn} is di�erent from zero. Hence,
up to a subsequence, we have ṽn ⇀ τ0v := ṽ ≠ 0 in H0 by the uniqueness of the weak limit. From Lemma 4.8,
we know that ṽn → ṽ in H0. Moreover, ṽ ∈ N0.

Now, we will show that {yn} is bounded inR3. Suppose that after passing to a subsequence, |yn| → +∞.
Choosing R > 0 such that Ω ⊂ BR(0). Without loss of generality we may assume that |yn| > 2R. Then, for all
z ∈ BR/εn (o),

|εnz + yn| ≥ |yn| − |εnz| > R. (5.9)

By the change of variable x 7→ z + tildeyn, using the fact that V0 ≤ V(εx) and (5.9), we have

‖vn‖2
0 ≤ C

∫
R3

H(εz + yn , vn)vndx ≤ C
∫

BR/εn

G̃(vn)vndz + C
∫

R3\BR/εn

G(vn)vndz. (5.10)

Since G̃(u) ≤ V0
K u and vn → v in H0, we can see that (5.10) implies that

‖vn‖2
0 = on(1),

that is vn → 0 in H0, which is a contradiction. Therefore, up to s subsequence, we may assume that yn →
y0 ∈ R3. It remains to check that y0 ∈M. Clearly, if y0 ∉= Ω, then we can argue as before and we deduce that
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un → 0 in H0, which is impossible. Hence we only need to show that V(y0) = V0. Arguing by contradiction
again, we suppose that V(y0) > V0. Then, by using ṽn → ṽ in H0 and Fatou’s Lemma, we have

cV0 = J0(ṽ)

< lim inf
n→∞

(1
2

∫
R3

|(−∆)
s
2 ṽ|2dx + 1

2

∫
R3

V(y0)ṽ2dx − Σ0(ṽ)
)

≤ lim inf
n→∞

(1
2

∫
R3

|(−∆)
s
2 ṽn|2dx + 1

2

∫
R3

V(εnx + yn)ṽ2
ndx − Σ0(ṽn)

)
≤ lim inf

n→∞
Jεn (τnun)

≤ lim inf
n→∞

Jεn (un)

= cV0 ,

which yields a contradiction. So, y0 ∈M and the proof is completed.

Let h : R+ → R+ be any positive function satisfying h(ε)→ 0+ as ε → 0+. De�ne the set

Ñε = {u ∈ Nε : Jε(u) ≤ cV0 + h(ε)}.

Given y ∈M, we conclude from Lemma 5.1 that h(ε) = sup
y∈M

|Iε(Φε(y)) − cV0 | → 0 as ε → 0+. Thus,Φε(y) ∈ Ñε

and Ñε ≠ ∅ for ε > 0. Moreover, we have the following Lemma.

Lemma 5.4. For any δ > 0, there holds that

lim
ε→0

sup
u∈Ñε

inf
y∈Mδ

|βε(u) − y| = 0.

Proof. Let {εn} ⊂ R+ be such that εn → 0. By de�nition, there exists {un} ⊂ Ñεn such that

inf
y∈Mδ

|βεn (un) − y| = sup
u∈Ñεn

inf
y∈Mδ

|βεn (u) − y| + on(1).

So, it su�ces to �nd a sequence {yn} ⊂Mδ satisfying

lim
n→+∞

|βεn (un) − yn| = 0. (5.11)

Since un ∈ Ñεn ⊂ Nεn , we get
cV0 ≤ cεn ≤ Jεn (un) ≤ cV0 + h(εn).

It follows that Jεn (un) → cV0 . Thus, we can invoke Lemma 5.3 to obtain a sequence {ỹn} ⊂ R3 such that
yn = εn ỹn ∈Mδ for n large enough. Then

βεn (un) = yn +
∫
R3 (χ(εnx + yn) − yn)|un(x + ỹn)|2dx∫

R3 |un(x + ỹn)|2dx
.

For ∀x ∈ R3 �xed, since εnx + yn → y ∈ Mδ, we have that the sequence {yn} satis�es (5.11). This completes
the proof.

Next we prove our multiplicity result by presenting a relation between the topology ofM the number of solu-
tions of the modi�ed problem (3.1), we will apply the Ljusternik-Schnirelmann abstract result in [44, 46].

Theorem 5.2. Assume that conditions (V1) − (V2) and (f1) − (f3) hold. Then, given δ > 0 there is ε̂δ > 0 such
that for any ε ∈ (0, ε̂δ), problem (3.1) has at least catMδ (M) positive solutions.
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Proof. For y ∈M, set γε(y) = m−1
ε (Φε(y)). It follows from Lemma 3.4 and Lemma 5.1 that

lim
ε→0

Ψε(γε(y)) = lim
ε→0

Iε(Φε(y)) = cV0 , (5.12)

uniformly in y ∈M. Let
S̃+
ε = {w ∈ S+

ε : Ψε(w) ≤ cV0 + h(ε)},

where h is given in the de�nition of Ñε. From (5.12), we know that there is a number ε̂ such that S̃+
ε ≠ ∅ for

ε ∈ (0, ε̂).
For a �xed δ > 0, by Lemmas 3.3, 5.1-5.2 and 5.4, we know that there exists a ε̂ = ε̂δ > 0 such that for any

ε ∈ (0, ε̂δ), the diagram

M
Φε−→ Ñε

m−1
ε−→ S̃+

ε
mε−→ Ñε

βε−→Mδ

is well de�ned. From Lemma 5.2, there is a function λ(ε, y) with |λ(ε, y)| < δ
2 uniformly in y ∈ M, for all

ε ∈ (0, ε̂),such that βε(Φε(y)) := y + λ(ε, y) for all y ∈ M. De�ne H(t, y) = y + (1 − t)λ(ε, y). Then, H :
[0, 1] ×M → Mδ is continuous. Obviously, H(0, y) = βε(Φε(y)), H(1, y) = y for all y ∈ M. That is, H(t, y) is
homotopy between βε ◦ Φε and the inclusion map id : M→Mδ. This fact and Lemma 4.3 in [7] implies that

catS̃+
ε
γε(M) ≥ catMδ (M).

On the other hand, using the de�nition of Ñε and choosing ε̂δ small if necessary, we see that Iε satis�es the
(PS) condition in Ñε recalling Lemma 3.7. By Lemma 3.4 and 3.8, we obtain thatΨε satis�es the (PS) condition
in S̃+

ε . Therefore, the standard Ljusternik-Schnirelmann theory provides at least catS̃+
ε
γε(M) critical points of

Ψε restricted to S̃+
ε . Using Lemma 3.7 again, we infer that Iε has at least catMδ (M) critical points. Using the

same arguments contained in the proof Theorem 4.1, we see that the equation (3.1) has at least catMδ (M)
positive solutions.

6 Proof of Theorem 1.1
In this section we will prove our main result. The idea is to show that the solutions obtained in Theorem

5.2 verify the following estimate uε(x) ≤ a, ∀x ∈ Ωcε for ε small enough. This fact implies that these solutions
are in fact solutions of the original problem (2.3). The key ingredient is the following result, whose proof uses
an adaptation of the arguments found in [20], which are related to the Moser iteration method [35].

Lemma 6.1. Let εn → 0+ and un ∈ Ñεn be a solution of (3.1). Then up to a subsequence, vn = un(x+ ỹn) satis�es
that vn ∈ L∞(R3) and there exists C > 0 such that

‖vn‖L∞(R3) ≤ C, ∀ n ∈ N,

where {ỹn} is given in Lemma 5.3. Furthermore,

lim
|x|→∞

vn(x) = 0 uniformly in n ∈ N.

Proof. Rewriting the equation (3.1) in the form of

(−∆)su + V(εx)u =
( ∫
R3

H(u(y))u(y)
|x − y|µ dy

)
K(u) in R3,

where

H(u) := |u|
2*µ,s + F(u)
u , K(u) := |u|2

*
µ,s−2−µ + 1

2*µ,s
f (u) ∈ L

2
3−µ (R3) + L

6
3+2s−µ (R3).
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By Lemma 2.8, we know u ∈ Lp(R3) for all p ∈ [2, 18
(3−µ)(3−2s) ). Using the growth assumption (f1) and the

higher integrability of u, for some C > 0 we have

∣∣ ∫
R3

G(u(y))
|x − y|µ

∣∣
∞ ≤ C

∣∣|u|2*µ,s + |u|q1 + |u|q2
∣∣

3
3−µ
≤ C
(
|u|2

*
µ,s

3(6−µ)
3−µ

+ |u|q1
3q1
3−µ

+ |u|q2
321
3−µ

)
,

which is �nite since the various exponents live within the range [2, 18
(3−µ)(3−2s) ). Therefore, we have

|h(εx, vn)| :=
( ∫
R3

H(εnx + εn ỹn , vn)
|x − y|µ dy

)
h(εnx + εn ỹn , vn) − V(εnx + εn ỹn)vn ≤ C(1 + |vn|2

*
s−1) (6.1)

for n large enough.
Let T > 0, we de�ne

H(t) =


0, if t ≤ 0,
tβ , if 0 < t < T,
βTβ−1(t − T) + Tβ , if t ≥ T,

with β > 1 to be determined later. Since H is Lipschitz with constant L0 = βTβ−1, we have

[H(vn)]Ds,2 =
( ∫∫
R3×R3

|H(vn(x)) − H(vn(y))|2
|x − y|3+2s dxdy

) 1
2

≤
( ∫∫
R3×R3

L2
0|vn(x) − vn(y)|2
|x − y|3+2s dxdy

) 1
2

= L0[vn]Ds,2 .

Therefore, H(vn) ∈ Ds,2(R3). Moreover, by the de�nition of H, we know that H is a convex function, then we
have

(−∆)sH(vn) ≤ H′(vn)(−∆)svn (6.2)

in the weak sense. Thus, from H(vn) ∈ Ds,2(R3) and (6.1)-(6.2), we have

‖H(vn)‖2
2*s ≤ C

∫
R3

|(−∆)
s
2 H(vn)|2dx = C

∫
R3

H(vn)(−∆)sH(vn)dx

≤ C
∫
R3

H(vn)H′(vn)(−∆)svndx = C
∫
R3

H(vn)H′(vn)h(εnx, vn)dx

≤ C
∫
R3

H(vn)H′(vn)dx + C
∫
R3

H(vn)H′(vn)v2*s−1
n dx.

Using the fact that H(vn)H′(vn) ≤ βv2β−1
n and vnH′(vn) ≤ βH(vn), we have(∫

R3

(
H(vn)

)2*sdx
) 2

2*s = Cβ
(∫
R3

v2β−1
n dx +

∫
R3

(
H(vn)

)2v2*s−2
n dx

)
, (6.3)

where C is a positive constant that does not depend on β. Notice that the last integral is well de�ned for T in
the de�nition of H. Indeed∫

R3

(
H(vn)

)2v2*s−2
n dx =

∫
vn≤T

(
H(vn)

)2v2*s−2
n dx +

∫
vn>T

(
H(vn)

)2v2*s−2
n dx

≤ T2β−2
∫
R3

v2*s
n dx + C

∫
R3

v2*s
n dx < ∞.
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We choose now β in (6.3) such that 2β − 1 = 2*s, and we name it β1, that is

β1 := 2*s + 1
2 . (6.4)

Let R̂ > 0 to be �xed later. Attending to the last integral in (6.3) and applying the Holder’s inequality with
exponents γ := 2*s

2 and γ′ := 2*s
2*s−2 ,∫

R3

(
H(vn)

)2v2*s−2
n dx =

∫
vn≤R̂

(
H(vn)

)2v2*s−2
n dx +

∫
vn>R̂

(
H(vn)

)2v2*s−2
n dx

≤
∫
vn≤R̂

(
H(vn)

)2

vn
R̂2*s−1dx +

(∫
R3

(
H(vn)

)2*sdx
) 2

2*s
( ∫
vn>R̂

v2*s
n dx

) 2*s−2
2*s .

(6.5)

By Lemma 4.8, we know that {vn} has a convergent subsequence in H0, therefore we can choose R̂ large
enough so that ( ∫

vn>R̂

v2*s
n dx

) 2*s−2
2*s ≤ 1

2Cβ1
,

where C is the constant appearing in (6.3). Therefore, we can absorb the last term in (6.5) by the left hand side
of (6.3) to get (∫

R3

(
H(vn)

)2*sdx
) 2

2*s ≤ 2Cβ1

(∫
R3

v2*s
n dx + R̂2*s−1

∫
R3

(
H(vn)

)2

vn
dx
)
,

Now we use the fact that H(vn) ≤ vβ1
n and we take T →∞, we obtain(∫

R3

v2*sβ1
n dx

) 2
2*s ≤ 2Cβ1

(∫
R3

v2*s
n dx + R̂2*s−1

∫
R3

v2*s
n dx

)
.

and therefore
vn ∈ L2*sβ1 (R3). (6.6)

Let us suppose now β > β1. Thus, using that H(vn) ≤ vβn in the right hand side of (6.3) and letting T →∞
we get (∫

R3

v2*sβ
n dx

) 2
2*s ≤ Cβ

(∫
R3

v2β−1
n dx + R̂2*s−1

∫
R3

v2β+2*s−2
n dx

)
. (6.7)

Set c0 := 2*s(2*s−1)
2(β−1) and c1 := 2β − 1 − c0. Notice that, since β > β1, then 0 < c0 < 2*s , c1 > 0. Hence, applying

Young’s inequality with exponents γ := 2*s/c0 and γ′ := 2*s/2*s − c0, we have∫
R3

v2β−1
n dx ≤ c0

2*s

∫
R3

v2*s
n dx + 2*s

2*s − c0

∫
R3

v
2*s c1

2*s−c0
n dx

≤
∫
R3

v2*s
n dx +

∫
R3

v2β+2*s−2
n dx

≤ C
(

1 +
∫
R3

v2β+2*s−2
n dx

)
,

with C > 0 independent of β. Plugging into (6.7),(∫
R3

v2*sβ
n dx

) 2
2*s ≤ Cβ

(
1 +
∫
R3

v2β+2*s−2
n dx

)
,
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with C changing from line to line, but remaining independent of β. Therefore(
1 +
∫
R3

v2*sβ
n dx

) 1
2*s (β−1)

≤
(
Cβ
) 1

2(β−1)

(
1 +
∫
R3

v2β+2*s−2
n dx

) 1
2(β−1)

. (6.8)

Repeating this argument we will de�ne a sequence βm ,m ≥ 1 such that

2βm+1 + 2*s − 2 = 2*sβm .

Thus,

βm+1 − 1 =
(2*s

2
)m(β1 − 1).

Replacing it in (6.8) one has(
1 +
∫
R3

v2*sβm+1
n dx

) 1
2*s (βm+1−1)

≤
(
Cβm+1

) 1
2(βm+1−1)

(
1 +
∫
R3

v2*sβm
n dx

) 1
2*s (βm−1)

.

De�ning Cm+1 := Cβm+1 and

Am :=
(

1 +
∫
R3

v2*sβm
n dx

) 1
2*s (βm−1)

,

we conclude that there exists a constant C0 > 0 independent of m, such that

Am ≤
m∏
k=1

C
1

2(βk−1)
k A1 ≤ C0A1.

Thus,
‖vn‖∞ ≤ C0A1 < ∞, (6.9)

uniformly in n ∈ N, thanks to (6.6). Now argue as in the proof of [3, Lemma 2.6], we conclude that

un(x)→ 0 as |x| →∞,

uniformly in n ∈ N. This �nishes the proof of Lemma 6.1.

We are now ready to prove the main result of the paper.
Proof of Theorem 1.1. We �x a small δ > 0 such that Mδ ⊂ Ω. We �rst claim that there exists some ε̃δ > 0
such that for any ε ∈ (0, ε̃δ) and any solution uε ∈ Ñε of the problem (3.1), there holds

‖uε‖L∞(R3\Ωε) < a. (6.10)

In order to prove the claim we argue by contradiction. So, suppose that for some sequence εn → 0+ we can
obtain un ∈ Ñεn such that I′εn (un) = 0 and

‖un‖L∞(R3\Ωε) ≥ a. (6.11)

As in the proof of Lemma 5.3, we have that Jεn (un)→ cV0 and we can obtain a sequence {ỹn} ∈ R3 such that
εn ỹn → y0 ∈M.

If we take r > 0 such that Br(y0) ⊂ B2r(y0) ⊂ Ω we have that

B r
εn

( y0
εn

) = 1
εn
Br(y0) ⊂ Ωεn .

Moreover, for any z ∈ B r
εn

(ỹn), there holds

|z − y0
εn
| ≤ ||z − ỹn| + |ỹn −

y0
εn
| < 1

εn
(r + on(1)) < 2r

εn
,
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for n large. For these values of n we have that B r
εn

(ỹn) ⊂ Ωεn , that is, R3\Ωεn ⊂ R3\B r
εn

(ỹn). On the other
hand, it follows from Lemma 6.1 that there is R > 0 such that

un(x) < a for |x| ≥ R and ∀ n ∈ N,

from where it follows that
vn(x − ỹn) < a for x ∈ BcR(ỹn) and n ∈ N.

Thus, there exists n0 ∈ N such that for any n ≥ n0 and r
εn > R, there holds

R3\Ωεn ⊂ R3\B r
εn

(ỹn) ⊂ R3\BR(ỹn).

Then, there holds
un(x) < a ∀ x ∈ R3\Ωεn ,

which contradicts to (6.11) and the claim holds true.
Let ε̂δ given by Theorem 5.2 and let εδ := min{ε̂δ , ε̃δ}. We will prove the theorem for this choice of εδ. Let

ε ∈ (0, εδ) be �xed. By using Theorem 5.2 we get catMδ (M) nontrivial solutions of problem (3.1). If u ∈ Hε is
one of these solutions, we have that u ∈ Ñε, and we can use (6.10) and the de�nition of g to conclude that
H(·, u) = G(u). Hence, u is also a solution of the problem (2.1). An easy calculation shows that ω(x) = u( xε ) is
a solution of the original problem (1.8). Then, (1.8) has at least catMδ (M) positive solutions.

Now we consider εn → 0+ and take a sequence un ∈ Hεn of positive solutions of the problem (3.1) as
above. In order to study the behavior of the maximum points of un, we �rst notice that, by the de�nition of H
and (h1), (h2), there exists 0 < γ < a such that

H(εnx, u)u ≤ V0
K u2, for all x ∈ R3, u ≤ γ. (6.12)

Using a similar discussion above, we obtain R > 0 and {ỹn} ⊂ R3 such that

‖un‖L∞(BcR(ỹn)) < γ. (6.13)

Up to a subsequence, we may assume that

‖un‖L∞(BR(ỹn)) ≥ γ. (6.14)

Indeed, if this is not the case, we have ‖un‖L∞ < γ, and therefore it follows from J′εn (un) = 0 and (6.12) that

‖un‖2
εn ≤

V0
K

∫
R3

u2
ndx. (6.15)

The above expression implies that ‖un‖εn → 0 as n →∞, which leads to a contradiction. Thus, (6.14) holds.
By using (6.13) and (6.14) we conclude that the maximum points pn ∈ R3 of un belongs to BR(ỹn). Hence,

pn = ỹn + qn for some qn ∈ BR(0). Recalling that the associated solution of (1.8) is of the form ωn(x) = un( xε ),
we conclude that the maximum point ηε of vn is ηε := εn ỹn + εnqn. Since {qn} ⊂ BR(0) is bounded and
εn ỹn → y0 ∈M, we obtain

lim
n→∞

V(ηε) = V(y0) = V0.

Thus, the proof of Theorem 1.1 is completed.
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