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Abstract: In this paper, we study the singularly perturbed fractional Choquard equation

250 pys g [P+ Fuy) oo 1 3
£2(-A)u + V(x)u = " (R/ oy ) i,

where € > 0 is a small parameter, (-A)° denotes the fractional Laplacian of order s € (0,1), 0 < u < 3,
2;,5 = % is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality and fractional Laplace
operator. F is the primitive of f which is a continuous subcritical term. Under a local condition imposed on
the potential V, we investigate the relation between the number of positive solutions and the topology of the
set where the potential attains its minimum values. In the proofs we apply variational methods, penalization
techniques and Ljusternik-Schnirelmann theory.
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1 Introduction and the main results

In the present paper we are interested in the existence, multiplicity and concentration behavior of the
semi-classical solutions of the singularly perturbed nonlocal elliptic equation

£25(<A)u + V(u = e / g((f(yﬁz dy)g(w) inRY, (1.1)
R3 Y

where € > 0 is a small parameter, 0 < u < N, V, g = G’ are real continuous functions on RY and the fractional

Laplacian (-A)® is defined by

¥(x) - ¥(y)

Xy dy, ¥ e 8®RY),

(~A) ¥(x) = Cy sP.V.

RN

P.V. stands for the Cauchy principal value, Cy s is a normalized constant, 8(RN) is the Schwartz space of
rapidly decaying functions, s € (0, 1). As € goes to zero in (1.1), the existence and asymptotic behavior of the
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solutions of the singularly perturbed equation (1.1) is known as the semi-classical problem. It was used to
describe the transition between Quantum Mechanics and Classical Mechanics.
Our motivation to study (1.1) mainly comes from the fact that solutions u(x) of (1.1) correspond to standing

wave solutions ¥(x, t) = e F/£y(x) of the following time-dependent fractional Schrédinger equation
is%—lf = e5(=AP ¥ + (V(X) + E)¥ - (K(X) * |G(P))g(¥) (x,t) e RN xR (1.2)

where i is the imaginary unit, € is related to the Planck constant. Equations of the type (1.2) was introduced
by Laskin (see [25, 26]) and come from an expansion of the Feynman path integral from Brownian-like to
Lévy-like quantum mechanical paths. It also appeared in several areas such as optimization, finance, phase
transitions, stratified materials, crystal dislocation, flame propagation, conservation laws, materials science
and water waves (see [11]).

When s = 1, the equation (1.1) turns out to be the Choquard equation

Gu(y)

xypr Ve in R", (1.3)

—&*Au+ V(x)u = e"*N(/
RN

The existence, multiplicity and concentration of solutions for (1.3) has been widely investigated. On one hand,
some people have studied the classical problem, namely € = 1 in (1.3). When V = 1 and G(u) = %, (1.3)
covers in particular the Choquard-Pekar equation

-Au+u= (/ ﬁ * Ju|9dy)|u|??u in RN, (1.4)
RN

Thecase N = 3, g = 2 and u = 1 came from Pekar [38] in 1954 to describe the quantum mechanics of
a polaron at rest. In 1976 Choquard used (1.4) to describe an electron trapped in its own hole, in a certain
approximation to Hartree-Fock theory of one component plasma [27]. In this context (1.4) is also known as
the nonlinear Schrédinger-Newton equation. By using critical point theory, Lions [29] obtained the existence
of infinitely many radialy symmetric solutions in H*(RY) and Ackermann [1] prove the existence of infinitely
many geometrically distinct weak solutions for a general case. For the properties of the ground state solutions,
Ma and Zhao [30] proved that every positive solution is radially symmetric and monotone decreasing about
some point for the generalized Choquard equation (1.4) with g > 2. Later, Moroz and Van Schaftingen [32, 33]
eliminated this restriction and showed the regularity, positivity and radial symmetry of the ground states for
the optimal range of parameters, and also derived that these solutions decay asymptotically at infinity.

On the other hand, some people have focused on the semiclassical problem, namely, € — 0 in (1.3). The
question of the existence of semiclassical solutions for the non-local problem (1.3) has been posed in [5]. Note
that if v is a solution of (1.3) for xo € R, then u = v(ex + xo) verifies

G(u(y))
[x-y*

—Au+ V(ex + xo)u = (/ dy)g(u) in RY, (1.5)
RN

which means some convergence of the family of solutions to a solution ug of the limit problem

G(u(y))
[x —y*

“Au+ Vixo)u = ( / dy)g(u) in R, (16)
RN

For this case when N = 3, 4 = 1 and G(u) = |u|2, Wei and Winter [49] constructed families of solutions by a

Lyapunov-Schmidt-type reduction when ian V > 0. This method of construction depends on the existence,
xeR

uniqueness and non-degeneracy up to translations of the positive solution of the limiting equation (1.6),
which is a difficult problem that has only been fully solved in the case when N = 3, u = 1 and G(u) = |u|?. Mo-
roz and Van Schaftingen [34] used variational methods to develop a novel non-local penalization technique
to show that equation (1.3) with G(u) = |u|? has a family of solutions concentrated at the local minimum of
V, with V satisfying some additional assumptions at infinity. In addition, Alves and Yang [4] investigated
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the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the pe-
nalization method. Very recently, in an interesting paper, Alves et al. [2] study (1.3) with a critical growth,
they consider the critical problem with both linear potential and nonlinear potential, and showed the exis-
tence, multiplicity and concentration behavior of solutions when the linear potential has a global minimum
or maximum.

On the contrary, the results about fractional Choquard equation (1.1) are relatively few. Recently, d’Avenia,
Siciliano and Squassina [17] studied the existence, regularity and asymptotic of the solutions for the following
fractional Choquard equation

q

-A’u+wu = / u®)| dy)|u|??u inRY, 1.7

(-2) (f =yl (.7
RN

where w > 0, ZNT"‘ <q< iﬁ —E. Shen, Gao and Yang [42] obtain the existence of ground states for (1.7) with

general nonlinearities by using variational methods. Chen and Liu [14] studied (1.7) with nonconstant linear
potential and proved the existence of ground states without any symmetry property. For critical problem,
Wang and Xiang [47] obtain the existence of infinitely many nontrivial solutions and the Brezis-Nirenberg
type results can be founded in [36]. For the critical Choquard equations in the sense of Hardy-Littlewood-
Sobolev, Cassani and Zhang [12] developed a robust method to get the existence of ground states and qualita-
tive properties of solutions, where they do not require the nonlinearity to enjoy monotonicity nor Ambrosetti-
Rabinowitz-type conditions. For other existence results we refer to [6, 8, 23, 24, 31, 48, 52] and the references
therein.

It seems that the only works concerning the concentration behavior of solutions are due to [13, 51]. As-
suming the global condition on V:

0 < inf V(x) < liminf V(x) = Ve,
XERN |x|—oo

which was firstly introduced by Rabinowitz [39] in the study of the nonlinear Schrédinger equations. By using
the method of Nehari manifold developed by Szulkin and Weth [46], authors in [13, 51] obtained the multi-
plicity and concentration of positive solutions for the following fractional Choquard equation

25(_qs sy [ O+ Fuy) oo o1 3
e (AP u+ V(x)u = ¥ (RZ =y dy)(Ju|"ms™ u + 2;,Sf(u)) inR”, (1.8)

where € > 0, 0 < u < 3, F is the primitive function of f.

Different to [13, 51], in this paper, we are devote to establishing the existence and concentration of positive
solutions for the fractional Choquard equation (1.8) when the potential function satisfies the following local
conditions [18]:

(V1)V € C(R*,R) and O < inf V(x).
XER3

(V,)There is a bounded open domain Q such that

Vo := inf V(x) < min V(x).
Q EYo)

Without loss of generality, we may assume that M = {x € Q : V(x) = V} # 0 and V(0) = m}}g V(x) = V.
xe
To go on studying the problem (1.8), the following Hardy-Littlewood-Sobolev inequality [28] is the starting
point.

Lemma 1.1. Lett,r > 1and 0 < u < 3 with

+ - =2,

~|=

1
— 4+
t

W=

f e L'(R?) and h € L"(R3). There exists a sharp constant C(t, u, r), independent of f, h such that

fOOR®Y) .
R[R; -y dydx < C(t, u, 1)If|¢[h]r. 19)
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Inparticular, ift =r = &, then

3
2 IG5 -5)

re-5%)

ro3
()

Wi

-1

C(f,ll,r)= C(Il)=ﬂ ( )

In this case there is equality in (1.9) if and only if f = Ch and
A

hoy- ——A4
(a2 + [x~ b))%

forsome A € C,a € R\{0} and b € R>.

Notice that, by the Hardy-Littlewood-Sobolev inequality, the integral

u 7 uy)|?
————dydx
| [
R® R3
ie well defined if u? € L'(R?) satisfies 2 + 4 = 2. Therefore, for u € H*(R?) we will require that ¢ - g € [2, 2],
where 25 = % is fractional critical Sobolev exponent for dimension 3. Then we have

Thus, 6%” is called the lower critical exponent and 2;, s = 36:—2"5 is the upper critical exponent in the sense of
Hardy-Littlewood-Sobolev inequality and the fractional Laplace operator.

For the nonlinearity term, we assume that the continuous function f vanishes in (oo, 0) and satisfies:
(f1) If ()| < c(ju|91 + |u|%271) for some ¢ > 0 and 6%‘ <q1<qr< 2.
(f>) The function u +— f(u) is increasing in (0, o).

f3) ()
[u|—+o0 |uI|:2(fZ)1 = toofors € (%’ s
(i1) -
[ —+o0 |u|2;,s‘335180g|u|)% = toofors = %;
(iii)

F(u) 3
— = +oo fors € (0, 7).

[u|—+oo |u\2;,s‘m 4

Note that there is no (AR) type assumption on f. Then it is difficult to show that the functional satisfies the
(PS) condition even for the autonomous case, which is necessary to use Ljusternik-Schnirelmann category
theory. We shall investigate the (PS) sequence carefully and restore the compactness for (PS) sequence via
some compactness Lemmas.

In order to describe the multiplicity, we first recall that, if Y is a closed subset of a topological space X,
the Ljusternik-Schnirelmann category catyY is the least number of closed and contractible sets in X which
cover Y. Then we state our main result as follows.

Theorem 1.1. IfO < u < 2s, assume that V satisfies (V1) and (V,) and the function f satisfies (f1) — (f3). Then
for any 6 > O such that
Mg = {x € R? : dist(x, M) < 6} C Q,

there exists 5 > O such that the problem (1.8) has at least caty,(M) positive solutions for any € < (0, €g).
Moreover, if ur denotes one of these positive solutions and 1. € R its global maximum, then

lim V() = V.
£—0
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Remark 1.1. Here, we make a few observations about the restriction on the parameter 0 < p < 2s. In order
to adapt the penalization method introduged by del Pino and Felmer in [18], we will proposed some control
conditions on the non-local term (ﬁ(|u|2u-s + F(u))) , which need some regularity (see Lemma 2.7 and 2.8),
where we introduce the assumption 0 < u < 2s.

We shall use the method of Nehari manifold, concentration compactness principle and category theory to
prove the main results. There are some difficulties in proving our theorems. The first difficulty is that the non-
linearity f is only continuous, we can not use standard arguments on the Nehari manifold. To overcome the
nondifferentiability of the Nehari manifold, we shall use some variants of critical point theorems from Szulkin
and Weth [46]. The second one is the lack of compactness of the embedding of H¥(R?) into the space L% R3).
We shall borrow the idea in [2, 12] to deal with the difficulties brought by the critical exponent. However, we
require some new estimates, which are complicated because of the appearance of fractional Laplacian and
the convolution-type nonlinearity. Moreover, the potential V satisfies (V1) and (V) instead of the global con-
dition. Since we have no information on the potential V at infinity, we adapt the truncation trick explored in
[18]. It consists in making a suitable modification on the nonlinearity, solving a modified problem and then
check that, for € small enough, the solutions of the modified problem are indeed solutions of the original
one. It is worthwhile to remark that in the arguments developed in [18], one of the key points is the existence
of estimates involving the L*°-norm of the modified problem. But for the critical nonlocal problem (1.8), this
kind of estimates are more delicate.

This paper is organized as follows. In section 2, besides describing the functional setting to study problem
(1.8), we give some preliminary Lemmas which will be used later. In section 3, influenced by the work [18]
and [45], we introduce a modified functional and show it satisfies the Palais-Smale condition. In section 4,
we study the autonomous problem associated. This study allows us to show that the modified problem has
multiple solutions. Finally, we show the critical point of the modified functional which satisfies the original
problem, and investigate its concentration behavior, which completes the proof Theorem 1.1.

2 Variational settings and preliminary results

Throughout this paper, we denote | - |, the usual norm of the space L'(R3), 1 < r < oo, Br(x) denotes the
open ball with center at x and radius r, C or C;(i = 1, 2, - - - ) denote some positive constants may change from
line to line. — and — mean the weak and strong convergence. Let E be a Hilbert space, the Fréchet derivative
of a functional @ at u, @' (u), is an element of the dual space E* and we shall denote @'(u) evaluated at v € E
by (@'(u), v).

2.1 The functional space setting
Firstly, fractional Sobolev spaces are the convenient setting for our problem, so we will give some skrtchs
of the fractional order Sobolev spaces and the complete introduction can be found in [19]. We recall that, for
any s € (0, 1), the fractional Sobolev space H*(R?) = W*2(R3) is defined as follows:
H®) = {u ¢ L*(R%) : / (€215 + |5) 2) dE < oo},
R3
whose norm is defined as

)2y = / (€2 |F @) + | Fw)|?)dE,

R3
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where F denotes the Fourier transform. We also define the homogeneous fractional Sobolev space D2 (R>)
as the completion of €5’ (R>) with respect to the norm

1
u(x) - u(y)|* :
\|u||Ds,z(R3): (//‘ |X y|3+);s| dXdy = [u]HS(R3)-

The embedding D52(R3) — L%(R3) is continuous and for any s € (0, 1), there exists a best constant
Ss > 0 such that )
lullps2gs)

Ss = >
ueDS2R3Y) Ul
S

According to [16], Ss is attained by

b 328

u()(x) = C(m) 2 , X€E R3, (2.1)

where C € R, b > 0 and a € R? are fixed parameters. We use S 1,1 to denote the best constant defined by

-A):ul*d
SH,L: inf fRa ‘( )Zu| X

Ds2(R3)\ {0 20 [y (o) |Phs P
ue \{ }(f fR %dydx)zw

(2.2)

The fractional Laplacian, (-A)*u, of a smooth function u : R> — R, is defined by

FAPWE) = [§7°FE), &R,

Also (-A)°u can be equivalently represented [19] as

(aut) = -5 0(s) [ M UEEN T2 gy gy e

|y|3+2$

where

C(s) = ( / el ﬂi‘jff”ds) £ (6, 6).

Also, by the Plancherel formular in Fourier analysis, we have
2 2 s 9
[l sy = @\(—A)Z ul3.
For convenience, we will omit the normalization constant in the following. As a consequence, the norms on

H5(R3) defined below
u(x) - uy)|? 3
u+— (/|u|2dx+/ [ubd —u(y)|” IE()_YPEQ‘ dxdy) ;
R3 3

R3xR

2s 2 2 %
us ( R/ (€25 5P + |5 )ds) :

. 3
U (/|u|2dx+|(—A)7u|%) .
R3
are equivalent.

Making the change of variable x — &x, we can rewrite the equation (1.8) as the following equivalent form

L fw) nR?, 2.3)
U,

(-8)°u + Viexu = ( / '“(”“; SO ay)uhe
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If u is a solution of the equation (2.3), then v(x) := u(%) is a solution of the equation (1.8). Thus, to study the
equation (1.8), it suffices to study the equation (2.3). In view of the presence of potential V(x), we introduce
the subspace

He = {u c H(R?) : / V(ex)u?dx < +oo},
R3
which is a Hilbert space equipped with the inner product

(W, Vg, = /( A)Zu( A)2 vdx+/V(ex)uvdx

R3
and the norm
|u|\Hs / |(=A)> u|?dx + / V(ex)u?dx.
R3
We denote || - ||, by || - || in the sequel for convenience.
For the reader’s convenience, we review some useful result for this class of fractional Sobolev spaces:

Lemma 2.1. [19] Let O < s < 1, then there exists a constant C = C(s) > 0, such that
|u|§; < Clulses)

forevery u € H%(R3). Moreover, the embedding H(R?) — L'(R3) is continuous for any r € [2, 23] and is locally
compact whenever r € [2, 23).

Lemma 2.2. [40] If {un} is bounded in H*(R>) and for some R > O we have

lim sup / lun|?dx = 0,

n—oo yE]R3

then un — 0in L"(R>) forany 2 < r < 2;.

Lemma2.3. [37] Letu € D>*(R%), ¢ € C3(R?) and for eachr > 0, r(x) = (%). Then
upr — 0in DS?(R*) asr — 0.

If, in addition, ¢ = 1 in a neighbourhood of the origin, then

upr — uin D¥*(R>) asr — +oo.

2.2 Preliminary lemmas

Set G(u) = |u|2;-s +F(u), gu) = dG(“) . In the sequel, set rg = 6i then 2 < roq1 < roq> < 25. So for any
u € H%(R3), we have

[F@)lro < C(Julgir, + [ulgir,) (2.4)
and )
\G(U)|r0 C(|u|q1,0 + |u|qzr0 + ‘u‘zg,s). 25)
Therefore, the Hardy-Littlewood-Sobolev inequality implies that
G(u(y))G(u(x 2"
|// ( |()J(’) y(‘y X)) dydx| < CIGW)Z, < C(|u|§‘f}0 + \u|éf§0 + |u‘2;w ) 26)
R3 R3
. Gu(y))gub))u) .
u u())u(x 2,
| / / y|xg_ g x| = CAulgh, + lulgh, + luly;™)- (2.7)

R3 R3
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It is clear that problem (2.3) is the Euler-Lagrange equations of the functional I : H: — R defined by

160 - 31l - 55 | / CUOIGUR) gy g, 28)
U,s

|x - y|H

From (2.6) we know that I(u) is well defined on H. and belongs to C!, with its derivative given by

(I'(w),v) = /(( “A)iu(-A)iv+ V(ex)uv)dx - // Gu(y)g(x))v(x) dydx (2.9)
)1 s

Ix-y#

R3
for all u, v € H,. Hence the critical points of I in He are weak solutions of problem (2.3). In the following, we

will consider critical points of I using variational methods.
Firstly, we give the following Lemma, whose simple proof is omit.

Lemma 2.4. If (f,) and (f>) are satisfied, then
0<Fu)<fwu, 0<G)<guu, Yu#o. (2.10)

In addition, (f,) and (2.10) imply

G(u)

@ and ——% areincreasing on (0, +oo). (2.11)

For the derivative of the functional I we have the following Lemma.

Lemma 2.5. Let (V) and (f;) hold, then
(i) I maps bounded sets in H*(R>) into bounded sets in (H*(R>))".
(i) I is weakly sequentially continuous. Namely, if un, — u in H*(R?), then I'(un) — I'(u) in (H*(R3))".

Proof. (i).Let {un} beabounded sequence in H(R?). Forany v € H*(R?), from the Hardy-Littlewood-Sobolev
inequality and (2.5) it follows that

| / G(un(y))g(un(x)v(x)

X~y dydx| < CIGn)lro (un|d 7o VIgiro + [Un|&r [Vigars + |un|2 \V\zg)
P 212)

< Clvlle-

Then |(I'(un), v)| < C||v||e. Hence, {I'(un)} is bounded in (H*(R>))".
(ii). Assume that u, — u in H3(R?). For any v € C3’(R>) with support Q, by Lemma 2.1 we may assume
that un(x) — u(x) a.e. in R> and un — u in LP(Q), p < 25. We first check that if un, — u in H¥(R?), then

[un ()25 [un ()22 Mun(v(x) () 2o [0 2es 2 M u(x)v(x)
// Ix =yl X"// Xy dydx, (2.13)
R3 R3 R3 R3

as n — oo, By the Hardy-Littlewood-Sobolev inequality, we have
|h* |x—y\”‘|§ < C|h|y,, forallh € L"(R3),
and it is a linear bounded operator from L™ (R?) to L#(R3). Choosing ha(y) := |un(y)|2;vs € L(R3?), we have
[lun) * x =y ™[5 < Clunly; < C.
Therefore, by Hélder inequality we can prove the sequence

(Jun @)1 * [x = Y1) [un (0252 Fun ()
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2
is bounded in L% (R?). Then, by duality we have

()] [un () Pios™2 MU (X) /lu()’)l“u(x)lz S2HY(x) LA
dy — dy, in L%t (R
/ TETE y X yTF y )

as n — oo. Then (2.13) follows for every v € HS(R3) ¢ L%(R3).
qor
By (f1) we have |f(u)| < C(1 + |u|927!) for all u € R*, and then f(un) — f(u) in LT{l(Q). Then Hardy-
Littlewood-Sobolev inequality implies that

// G(un(y))(f(un(x)) _f(u(X)))V(X) dde < C|G(Un)‘r‘f(un) _f(u)|L_'l’Q‘V‘qzr 0 (214)

Ix-y#

R3 R3
Since F(up) is bounded in L (RR?), we may assume that F(u,) — F(u) in L (R?). Consequently,

F(un(y)) dv F(u(y))
[x—y# |x - y|H
R3 R3

dy inLg(]R3).

Moreover, as (2.12) we get [o; |f(u(x))v(x)|"dx < oo, we infer

x =yl Ix=y[¥

//F(un()’)) w))v(x)dydx — .F(u(y))f(u(x))v(x)dydx in L (R3),
R3 R3 R3

which combining with (2.14) we have

//F(un(y f(Un(X))V(X)dyd *)/F(u(y f(u(x))V(X)dde 1nL#(R3)

R3 R?
Notice that
' Gu)gUE)V() / u(y)| 2T 2 2
dydx = Lk~ £ B —— u(x H v(x)dx,
J | v [ O ) (ueor v
R3 R3 R3 R3
from our argument above it is then easy to prove
/ / G(un(y))g(un(x))v(x) dydx — / Gu(y))Gu())v(x) dydx in L (R3).
|x - y[¥ [x - y¥
R3 R3 R3
Hence, for any v € C5’(R?),
(I'(un), v) — (I'(w), v). (2.15)
Since {I'(un)} is bounded in (H*(R?))" and C3’(R?) is dense in H*(R?), we conclude that (2.15) holds for any
v € H5(R?), and so I'(un) — I'(u) in (H3(R3))". O

2.3 Regularity of solutions and PohoZaev identity

The assumption (f;) is too weak for the standard bootstrap method as in [4, 15, 32]. Therefore, in order
to prove regularity of solutions of (2.3) we shall rely on a nonlocal version of the Brezis-Kato estimate. Note
that a special case of the regularity result of Brezis and Kato [10, Theorem 2.3] states that if u € H'(RY) is a
solution of the linear elliptic equation

-Au+u="Vu inRN,

and V € L=(R") + L7 (RY), then u € LP(RY) for every p > 1. Similar to [33, 42], we extent this result to the
fractional Choquard equation with critical growth. For the convenience of readers, we give here a short proof.
We first have the following useful inequality.
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Lemma 2.6. [33]Letp,q,r,t € [1,+c0) and A € [0, 2] such that

_1
N p t q r
If 8 ¢ (0, 2) satisfies

min (g, r)(NK]y - %) <@ <max(q, (- 117)

and

. N-
min (g, r)( N‘u

then for every H € LP(RN), K € L'(RY) and u € LY(RN) n L"(RY),

6 2-6 1 1 A 2-1
[ [ OO aya < o [ 13 f ikt i f .
RN RN RN RN

RN RN

- %) < 2—6<max(q,r)(1—%),

Applying Lemma 2.6, we have the following result, which is a nonlocal counterpart of the estimate [10, Lemma
21): IV € L=(RN) + L% (RY), then for every € > 0, there exists Ce such that

/V\u|2dxs62/\Vu|2dx+Cg/\u|2dx.
RN RN

RN

Lemma2.7. Let N = 2s, u € (0,2s) and 6 € (0, 2). IfH, K € L¥% (RN) + L7 (RN) and Y N <g<2- N0
then for every € > 0, there exists C, g € R such that for every u € HS(RY),

0 2-6 s
/ H|u()/)‘ K|U(X)‘ dde582/‘(—A)Eulde‘l'CE,g/‘u‘de.
RN RN

/) [x—y*
RN R

Proof. Since 0 < u < 2s, we may assume that H = H" + H« and K = K~ + K« with H', K" ¢ L% (R3) and
2N *
Hx, K+ € L7275 (RN). Applying Lemma 2.6 withq =r =25, p =t = and A = 0, we have

N+25 i
H- oK. 2-9
UOICKUOOIT 5 < Gl o (K| Juf,
|X — yly N+2s-u N+2s-u S
RN RN
where we use |0 - 1] < g55;. Takingp =t = N y, g=r=2andA=2,wehave |6-1| <k and

* [’ 2-60
/ Hug)PK ueP™? o CIH'| g0 |K'| o Jul.
M M

|x - y|H
RN RN
Similarly, with p = ﬁﬁ’_y,t 2 u,q 2,r=25and A = 1, we have
Hx|lu)|PK " |u(x)>?
RN RN

and with p = Ny,t—N+25y,q 2,r=23andA=1,

dydx < C|Kx| an |H | g [ul2ul;

/ "H [u(y)|°Ke|u()
|x —y#
RN RN

By the Sobolev inequality, we have thus prove that for every u € H(RV),

0 2-0 . .
/ Hu(y)|"K|u(x)| dydx < C((/|H*|N+221_\s]7y /‘K*‘N+221g,u)N22Nu /|(—A)Eu|2dx
N RN RN RN RN

[x—y¥
”/\H*\%/IKW%)%/Iuﬁd")'
RN RN RN
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The conclusion follows by choosing H* and K~ such that

N+2s-pu
C(/‘H*‘N+Zsy/|K*|N+Zsy W o< g2,

O
Now, we have the following result, which is a nonlocal Brezis-Kato type regularity estimate.
Lemma2.8. Let N >2sand 0 < y < 2s. IfH, K € L% (R) + L¥%% (RV) and u € H*(RY) solves
AU+ u=( wczy)x(u(x)), (216)

then u ¢ LP(RY) forevery p € [2, N SiN- 2s) Moreover, there exists a constant Cp independent of u such that

(/|u|pdx)1l’s /|u| dx) )
RN
Proof. By Lemma 2.7 with 8 = 1, there exists A > O such that for every ¢ € H® (BRM),

|Hp||Ko| L Csordes A 2
// -y dydx < 5 |(-4)2 @|“dx + > lp|“dx.
RN RN RN RN

Choose sequences { Hy } ke and {Ky bren in L% (RV) such that |Hg| < |H|, |Ky| < |K|,and Hy — Hand Ky — K
almost everywhere in RV, For each k € N, for ¢, ) € H*(RV), the form a; : H*(RN) x H¥(RY) — R defined by

alp. )= [Cartocarpeapy- [ [ B 4o
RN RN RN

|x - y*

is bilinear and coercive. Therefore, applying the Lax-Milgram theorem [9, Corollary 5.8], there exists a unique
solution u; € H*(RV) satisfies

(=AY uy + Auy = / (|ffl;"‘y dy)Kiuy + (A - Du, 2.17)

RN

where u € H5(R") is the given solution of (2.16). Moreover, we can prove that the sequences {u; }xcy con-
verges weakly to u in H¥(RN) as k — oo.
For y > 0, we define the truncation uy , by

-u ifux) < -p,
uk,y(x) = uk(x) if -—U< uk(x) <u
u if up(x) = p.

For p > 2, we have |uk,y|p‘2uk,y € H5(RM), so we can take it as a test function in (2.17), we have

1 (Hyw) (K| ug [P~ up ) .
e )/ (008 g 5+ Al £1) = [ [ SRS 0 Gy s = Dt Pt

RN RN

By Lemma 2.7 with 8 = 1, there exists C > 0 such that

-2
/ |H | [, ol K [ o P g
[x—y#

2(p -1 s P P
dydx < (1;2 )/|(—A)z(uk,y)’5|2dx+c/||uk,,,|’5|2dx.
RN RN

RN RN
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We have thus

2p-1 s P
O Y [t Paxs ey [l + x| (Lay) K,
RN RN

ko

where
Ay ={xe R>: [u ()| > u}.

~ =
N
3
=
+
-

Since p < 2N , by the Hardy-Littlewood-Sobolev inequality with 1 = ZN Sy +1-2and
1
[ G * il ) o < C(/||I<k||uk|" dn) (/ Ha|'dx)*
Ak,y Ak,)l
By Holder inequality, if u, € LP(RN), then |Ki||ug[P™ € L'(RY), [Hy||lux| € LY(RY), thus by Lebesgue’s

dominated convergence theorem we have

. 1 -1
Jim [ (i Kl dy) [Hian =

Ak,)l

In view of the Sobolev estimate, we have proved the inequality

* 2
limsup( [ |ug|>dx)% < 11msup/|uk| dx.
k—oo
By iterating over p a finite number of times we cover the range p € [2 2N O

’NuNZs

3 The penalized problem

In this section, we will adapt for our case an argument explored by the penalization method introduction
by del Pino and Felmer [18] to overcome the lack of compactness. Let K > 2 to be determined later, and take
a > 0 to be the unique number such that @ = % where V is given by (V;). We define

G = {G(u) ifusa,

VO 2
2u ifu>a,

and
H(x, u) = xo()GW) + (1 - xo(x)) G(u),

where y is characteristic function of set Q. From hypotheses (f1)-(f3) we get that H is a Carathéodory function
and satisfies the following properties: )

(@) H(x, u) < G(u) < C(lu|? + [u|?2 + [u] ).

(g2) The function M is increasing for u > 0.

(g3)()
H(X,’ u) =+oofors e (E, 1);
|u\~>+ao |u|2y,5_ 4
(i1)
lim H(X u) = +oo fors = 3;
|u|—+o0 |u| )15 3 Zs (IOqu')z 4
(ii1)

L"z)s = +oofors € (0, E).
‘u‘—)+°° |u‘ ns~ 3-2s 4
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Moreover, in order to find positive solutions, we shall henceforth consider H(x, u) = 0 for all u < 0. It is easy
to check that if u is a positive solution of the equation

e85 (=AY u+ V(u = 473 ([, HED dy)h(ex, u) inR>
U,S

[x=y[*
u € Cp2(R3) N HS(R3),

loc

such that u(x) < a for all x € R3\Q, then H(x, u) = G(u) and therefore u is also a solution of problem (1.8).
In view of this argument above, we shall deal with in the following with the penalized problem

1 H(ex, u)

—(
2 x—yl#
ws [x -y

(~A)’u + V(ex)u = dy)h(ex, u) inR>, (3.1)

and we will look for solutions u¢ of problem (3.1) verifying
us(x) < a forall x € R\ Q,,

where Q¢ = {x ¢ R> : ex € Q}.
The energy functional associated with (3.1) is

1 / H(ex, u(y))H(ex, u(x)) dydx.

22} [x -yl
R3 R

Je(w) = 3 Jull? -

which is of C! class and whose derivative is given by

dydx

Je(), v) = / ((—A)%u(—A)%v + V(ex)uv)dx -
Zy,s
R3 R3 R3

1 / H(ex, u(y))h(ex, u(x))v(x)

|x = y|H

for all u, v € He. Hence the critical points of . in H, are weak solutions of problem (3.1).
Now, we denote the Nehari manifold associated to J¢ by

Ne = {u € He\{0} : (Je(u), u) = 0}.

Obviously, Ne contains all nontrivial critical points of Ic. But we do not know whether N is of class C! under
our assumptions and therefore we cannot use minimax theorems directly on N¢. To overcome this difficulty,
we will adopt a technique developed in [45, 46] to show that N, is still a topological manifold, naturally
homeomorphic to the unit sphere of He, and then we can consider a new minimax characterization of the
corresponding critical value for I;.

For this we denote by H; the subset of H, given by

H; = {u € He : |supp(u™) N Q¢| > 0}

and S = S: N Hf, where S; is the unit sphere of H.
Lemma 3.1. The set H; is open in Hg.

Proof. Suppose by contradiction there are a sequence {un} C H¢\H¢ and u € H{ such that up — uin He.
Hence [supp(uy) N Q¢| =0 forall n € Nand uj(x) — u*(x) a.e. in x € Q. So,

ut(x) = lim uj(x) =0, a.e.inx € Q.
n—oo

But, this contradicts the fact that u € H;. Therefore H; is open. O

From definition of S} and Lemma 3.1 it follows that S} is a incomplete C!'*-manifold of codimension 1, mod-
eled on H; and contained in the open H{. Hence, He = Ty,S? @ Ru for each u € S§, where T,Sf = {v € H; :
(u, v)e = 0}.

In the rest of this section, we show some Lemmas related to the function J. and the set H;. First, we show
the functional J¢ satisfying the Mountain Pass geometry.



DE GRUYTER Z.Yang, F. Zhao, Multiplicity and concentration behaviour of solutions for a fractional Choquard =— 745

Lemma 3.2. The functional ] satisfies the following conditions:
(i) There exist a, p > O such that J(u) = a with ||ule = p;
(ii) There exists e € He satisfying ||e|| > p such that J¢(e) < O.

Proof. (i). For any u € H¢\{0}, it follows from (g;) and the Hardy-Littlewood-Sobolev inequality that

" [ H(ex, u(y))H(ex, u(x ) 2"
}/ ( |(i/)_) y|(y () dde| < C(\u@?ro + |u‘(21;1r20 + |u|2;u, ) (.2)
R3 R3

Hence,

dydx.

1 / H(ex, u(y))H(ex, u(x))

R T 2) gx -
]8(”)_ 2/('( A) u| +V(€X)u )dx 22;,5 |X_y|}1

R3 R3 R3

1,2 2 2 22
2 Slulle - Callull ™ = Cal[ul|™® — Csflu| "
Therefore, we can choose positive constants a, p such that
Je(u) = awith |lu|ls =p

(i1). Fix a positive function uy € Hf with supp(ug) C Q¢, and we set

t
P(t) = Se(0-) > 0,
l[uolle
where
Sow) = L / H(ex, u(y))H(ex, u(x)) dydx.
Zzy,s ‘X - )/|y
R3? R?
Since H(ex, ug) = F(uo) and by using Lemma 2.4, we deduce that
’ tug Ug
(t) = Z¢( )
VO = 2o Tuoll
F( )f (ko) L
_ H”0H£ H“0H€ HMOHs dxd
R[ R/ oy B
(3.3)
_ 22#5 // F(uuoue)f(nuons)nuons \dxdy
22, s |x - y¥
R3 R3
22,
> B30,
t
Integrating (3.3) on [1, t||ug||e] with ¢ > Hu TeTz We have
Seltuo) > Ze( 0 Jug 274 2%
lluolle
Therefore, we have
2 .
]g(fllo) = t—Hqu _Zg(tuo) < Cltz - Cztzzy's for t > .
2 lluolle
Taking e = tug with ¢ sufficiently large, we can see (ii) holds. O

Since f is only continuous, the next two results are very important because they allow us to overcome the
non-differentiability of N and the incompleteness of S;.

Lemma 3.3. Assume that the potential V satisfies (V1) — (V) and the functional f satisfies (f1) - (f3). Then the
following properties hold:
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(Aq)For each u ¢ Hg, let ¢, : R* — R be given by ¢,(1) = Je¢(tu). Then there exists a unique T, > O such that
(1) > 0in (0, Ty) and @}, (1) < 0 in (Ty, oo).

(Ay)Thereis a o > 0 independent on u such that T, > o for all u € S§. Moreover, for each compact set W C Sg
thereis Cvy > O such that Ty < Cyy forallu € 'W.

(A3)The map s : Hy — N given by fe(u) = Tyu is continuous and me := fie|s: is a homeomorphism between

St and Ne. Moreover, mz'(u) = HlilH )
€

Proof. (A1) From Lemma 3.2, it is sufficient to note that, ¢,(0) = 0, gu(7) > 0 when 7 > 0 is small and
@u(t) < 0 when 7 > 0 is large. Since ¢, € C!(R*,R), there is 7, > 0 global maximum point of ¢, and
@3 (Tu) = 0. Thus, Jo(tyu)(Tyu) = 0 and T, u € Ne. We see that 7, > 0 is the unique positive number such that
@3 (Ty) = 0. Indeed, suppose by contradiction that there are 7 > T, > 0 with ¢y, (11) = ¢3,(12) = 0. Then, for
i =1, 2 we have that

_ 1 H(ex, T1u(u)) H(ex, Tou(u))
0= // T < 1 h(ex, Tiu())ulx) - —= "2 p(ex, Tzu(x))u(x)) dydx. (3.4)

T1 T2
R3 R3

By Lemma 2.4 and (h;) we know that h(ex, Tu(x))u(x) and M

(3.4) in impossible and (A1) is proved.
(A,) Suppose u € S¢, then as (2.5) we have

e [ [ PO LOPHE KON gy g cjrues + w2 + fruf ),

are positive and increasing in 7. Then

R3 R3
From previous inequality we obtain ¢ > 0 independent on u, such that 7, > 0.
Finally, if W c S is compact, and suppose by contradiction that there is {un} C W such that 7, :=
Ty, — oo. Since W is compact, there is u € W such that up — u in He. Then u € W C S;. By (h;) we obtain

Je(tun) 11 / H(ex, Tnun(y)) H(ex, Tnun(x))

0 i
|x = y[HTn Tn

dydx — —oo,
2 2 2 y =

s R3 R3
which yields a contradiction. Therefore (4,) is true.

(A3) First of all we observe that e, me and m;! are well defined. In fact, by (4,), for each u € H{, there
exists a unique 7, > O such that T,u € N, hence there is a unique m¢(u) = Tyu € N¢. On the other hand, if

u € Ne then u € H;. Therefore, mz*(u) = W € Sz, is well defined and it is a continuous function. Since

TylU

—= -y, Yues;
Tullulle ’ g’

mg*(me(w)) = mz ' (tuu) =

we conclude that m; is a bijection.
To prove e : Hf — Ng is continuous, let {un} C H; and u € H{ be such that un — u in He. By (45),
there is a 7o > O up to a subsequence such that 7, := Ty, — To. Since Thun € N we obtain

2 un)? = -2 HEX, Tt YDRES Tt Tatn() 44y
2 |x - y|#
s Y]

R3 R3

By Lemma 2.5 and passing to the limit as n — oo, it follows that

22 ull? = 1 / H(sx,Toun(y))h(ex,Tou(X))roun(X)dde’
2]1,3 \X—)’I"

R3 R3
which means that Tou € N and 174, = 7. This proves m(un) — me(u) in Hf. So, M, m, are continuous
functions and (43) is proved. O
Now we define the functions

W, :H; >R and ¥::S; >R,

by Pe(u) = (e () and ¥, := ¥| s:- The next result is a direct consequence of Lemma 3.3. The details can
be seen in the relevant material from [46]. For the convenience of the reader, here we do a sketch of the proof.
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Lemma 3.4. Assume that (V1) - (V,) and (f1) - (f3) are satisfied. Then :
(B1)¥. € C'(H{,R) and
(u) — ||m€(u)H€

T e 2NE 1l (e (w))v, Yu € Hf and Vv € He.

(B2)¥: € CY(SE,R) and
YL (u)v = [|me(w)||eJe(me(W)v, Vv € TyS:.

(B3)If {un} is a (PS)c sequence of We, then {m¢(un)} is a (PS)¢ sequence of J¢. If {un} C Ne is a bounded (PS).
sequence for Je, then {mz"(un)} is a (PS). sequence of We.
(B4)u is a critical point of V¢ if and only if, m¢(u) is a critical point of J.. Moreover, corresponding critical values
coincide and
inf W¢ = inf I;.
St N

Proof. (B1) Letu € H{ and v € H,. From definition of ¥, and t, and the mean value theorem, we obtain
We(u + hv) = We(u) = Je (Tyenyu + hv)) = Je(tuu)
< ]S (Tu+hv(u + hV)) - ]S(Tu+hvu)
=Je (Tu+hv(u + ehv)) Tyusnvhv,

where |h| is small enough and 0 € (0, 1). Similarly,
Pe(u + hv) - Pe(u) 2 Je(tu(u + hv)) - Je(tuw) = Je(tu(u + ¢hv))Tyhv,

where ¢ € (0, 1). Since the mapping u — T, is continuous according to Lemma 3.3, we see combining these
two inequalities that

lim Ye(u+hv) - ¥Pe(u)
h—0 h

- LTy = H”{'g(ﬁ)nglg(me(u))v

Since J¢ € C1, it follows that the Gateaux derivative of ¥, is bounded linear in v and continuous on u. From
[50] we know that ¥, € C'(H}, R) and

I (w)]|e

Petwv =0

Ji(ime(w))v, Yu € Hf andVv € He.
The item (B) is proved.

(B>) The item (B5) is a direct consequence of the item (B1).

(B3) We first note that He = Ty S¢ & Ru for every u € S; and the linear projection P : He — Ty, S defined
by P(v + Tu) = v is continuous, namely, there is C > 0 such that

Ivlle < Cllv+Tulle, YueSi,veTuSeandt € R. (3.5)
Moreover, by (B;) we have
|¥ell=  sup  Wev=|wle sup J:W)v, (3.6)
VETLSE,Iv]|e=1 VETLSE ||v]le=1

where w = m¢(u). Since w € N¢, we conclude that

JewW)u = Je(w) —— le\g =0. (3.7)

Hence, from (3.5) and (3.7) we have

!
1P| < |[wlellJe(W)|| < C|lw|e sup Je(w)v

= C|| Y=,
ver,si\foy IVlle

which showing that
[P:@)|| < [[wlle|lJeW)|| = C[Pe@)], Vu € S;. (3.8)
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Since w € N, we have ||w|| = y > 0. Therefore, the inequality in (3.8) together with Je(w) = We(u) imply the

item (B3).

(B4) It follow from (3.8) that ¥;(u) = 0 if and only if J,(w) = 0. The remainder follows from definition of

Y.

O

As in [46], using the mountain pass theorem without the (PS) condition, we get the existence of a (PS).,

sequence {un} C He with

ce = inf I.(u) = inf mang(Tu) = 1nf max I.(tu) > 0.
UEN, ueH; 1>0 >0

Lemma 3.5. Suppose that (f1) - (f3) hold. Assume that {un} C N¢ is a (PS)¢-sequence with

* )JS

2
0<cesce P8 Zghust
22 H,L
u,s

Then {un} is bounded in He. Moreover, {un} cannot be vanishing, namely there exist r, § > 0 and a sequence

{yn} C R? such that
lim inf / lun|?dx = 6.

n—oo
By (yn)

Proof. We first prove the boundedness of {un}. Argue by contradiction we suppose that {u,} is unbounded
in He. Without loss of generality, assume that ||un|le — oo. Let vy := Hﬁﬁ’ up to a subsequence, then there

exists v € He such that
un — uin He,
un — uin L}, (R?),2 < r < 23,
un(x) = u(x) a.e. in R>.
If vy is vanishing, i.e.
nli_>n:° ys;}g / vi(x)dx =0,
B,(y)
then Lemma 2.2 implies that v, — 0 in L% (R?) and L"%(R3). By (2.4) and (2.5) we get

//F(TVn(X) F(TVn(y))dxdyH 0, // F(TV"(y |7vn(0) 2 dxdy — 0.

) Ix-y#
R3 R

Then for sufficiently large n we have

Ce + 0n(1) = Ie(un) 2 sup Ie(7vn)

720
2 220 .
TS TR 227
> sup - =Sy ") +on(1)
50 ( 2 22’1,5 s )
* 2;1,5
_2pus -1 5

22§ 1+ on(),
22, ML

(3.9

which is a contradiction. Therefore, {v,} is non-vanishing, namely there exists y, € R3 and 6 > 0 such that

/ v2(x)dx > 6.
By (yn)
Denote Vi(:) = va(- + yn), then we can assume that
Vn — Vin He,
Vn — Vin L]y (R?), 2 < r < 2,

Vn(x) = ¥(x) a.e. inR>,

(3.10)
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With the use of (3.10), we have ¥/= 0. Then there exists a measure set A such that ¥#(x) # O for x € A. Let
[tn| := [Vn|||tn|le. Then |tn(x)| — +oo for x € A. By Lemma 2.4, we have

1 F(un(y), . Fun(x), - N
A/A/|x—yy )| V()| MO0 [Va(x)|dydx — +oo.

Therefor, Lemma 2.4 and Fatou Lemma imply that

n—oo

i 1 F@n®), .,y Fin()), . o
A R/R/ IX=yIF un)| Va(y)l (O] [V (X)|dydx = +oo.

Namely
lim// 1 Fun®) Fn©0) g g oo,
n—es X =y llunlle [lunlle
R3 R
Then,
Ce Is(un)
+0 (1)= - s
[lunlle " lunlle

which is a contradiction. Therefore, {u,} is bounded in H5(R>).
Next we show the second conclusion. We argue by contradiction, if {uy} is vanishing, then similar to (3.9)
we have

1 1 2,5 2,
Ce +0n(1) = Ie(un) = §\|un\|§ - 22;’5 / ‘un(y):xﬂ_‘;lr;(x)‘ ! dydx + on(1), (3.11)
R® B3
and . .
2 2
0 = [Junl - / Junly )}X“];"’;(")' " dydx + on(1). (312)

R3 R3
If |un||e — O, then it follows from (3.11) and (3.12) that c¢ = 0, which is impossible. Then ||un|¢ - 0 and by
virtue of (3.12) we get
2 22]
lunl12 < Sps lunlls ™ + on(2).
Hence, .
s

. . 2 2*’ B
liminf |[un||7 = Sy; "

From (3.11) and (3.12) we deduce that

”
2s—1 7o
ce+on(1) = Ie(un) > 22— (3.13)
U,S
which is a contradiction. Therefore, {u,} is non-vanishing. O

Lemma3.6. Assume (V1) - (V,) and (f1) — (f3) hold, let {un} be a (PS)c sequence for J: with ¢ €

s

[ce, %S ;"fl ). Then, for each n > O there exists R = R(n) > O such that
] ’

lim sup / \(—A)%u|2 + V(ex)uzdx < n.
n—oo RE\BR

Proof. By Lemma 3.5, we can have {u,} is bounded in H,. Therefore, we may assume that u, — u in He and
un — uin L! (R3)foranyr € [2, 25). Fix R > 0 and let ) € C(R?) be such that g = 0in Bz (0), hg = 1
2

loc
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in Bg, g € [0, 1] and |[Vipg| < %, where C is a constant independent of R. Since {unyg} is bounded we can
see that

/ ((-0)F un(-2)% (untpg) + V(ex)Pgud) dx = (Joun), unihz)

R3

N *i/(i*H(ex, un)) h(ex, un)unrdx
2us ) X
R

=0n(1)+—*1 /( * H(ex, un))h(ex, un)unprdx.
25 s |x[#
By Lemma 2.8, taking

L fw) e L ®3) + L7 (®2),
U,s

H(u) :=

M K@) := |u|2;,s-2—ﬂ +

we have
/(ﬁ * H(ex, un)) h(ex, un)undx < / (ﬁ * H(un)un) K(un)undx < 82/\(—A)%u|2dx+ Cg/|u|2dx.
R3 R3 RN RY

For n = ng and ¢ > O fixed, take R > 0 big enough such that Qr C Bg/,. Then we have

/ (\(—A)%un|2 + V(ex)uf,)dx < 1 / (i * H(ex, un)) h(ex, un)undx + on(1)

2,5 |x|H
R3 \BR/Z ]R3\BR/Z
. / (un(x) - uT)((y_))}(/l‘/;fz(:() “ WO 0)dxdy.
R3 R3

which means

1 / (|(—A)%un\2 + V(EX)M%)dX < On(l) _ / (un(x) - un(}’))(lliR(X) - lI)R()’)) Lln(y)dXdy

2 |X_y‘3+25

R3\Bpg/, R3 R3

Now, we note that the Holder inequality and the boundedness of {u,} imply that

’/ / (un(x) - un(y))(lpR(X)—¢R(y))un(y)dxdy ’

|X_y|3+25
R3 R3
2 1 2 1
/ [ e axay) / / o)’
R} R?
B |lPR(X) lPR(y)| )

Therefore, it is enough to prove that

lim 11msup//|l/)R(X) eI 2 uz(y)dxdy = 0

R—o0 n_seo |X y‘3+25

to conclude our result.
Let us note that R3 x R3 can be written as

R’ xR’ = ((R*\B,g) x (R>\B,r)) U ((R*\Bg) x Bog) U (Bor xR?) :=X" UX' UX.
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Then
5 B 2
R3xR3 X!
o %ug(xmxdw [ [ I axay.
X2 ’

Now, we estimate each integral in (3.14). Since 1 = 1 in R?\B,z, we have

/ [WRO) = YRWII® 2y 4y — 0.

|X — y|3+ZS

Let k > 4, we have
X? = (R*\Byg) x Bag = (R*\Byg) x Bag U (Big\B2r) x Bag.

Let us note that, if (x, y) € (R>\Byg) x Bag, then
=yl -yl 2 x| - 2R > .

Therefore, taking into account O < g < 1, |[Vihg| < % and applying H6lder inequality, we can see

/ /|¢R )= 0r 0 2 axdy

‘X y|3+2$
[Yr() - YrO)1* > [Yr() - YrO)* >
/ = yps up(x)dxdy + =y un(x)dxdy
R3\Big Bar Bir\Bar Bar
5+2 lun(x)|? \un(x)\
< 9o+ / TR dxdy+ T y|3+2(s 5 dxdy
R3\Byg Bar Big \BZR Bar
< CR? un@® 4y s € (kRry2a-s 2(x)dxd
< e @( ) uy (x)dxdy
R3\Byg Bir\Bar
s 2(1-s)
<R[ eoant( [ ¥ eS| uieoax
X|2s
R3\BkR RB\BkR | | BkR\BZR
C . 2 k2 (1-s)
< k—3( / |un(x)|25dx)25 + I / ufl(x)dx
R3\ Byg Bir\Bar
c . cKs)
< PR v T / ul(x)dx.
Bir\Bar

Now, fix € € (0, }), and we note that

//‘I;DR(X) lpR(Y)'Zun(x)dxdy

‘X y|3+25
[Yr() - YrO)* > //IIIJR(X) vrO)* 2
/ / TS uz(x)dxdy + =[5 u2(x)dxdy.
Bar\Ber R3 Ber R3

Let us estimate the first integral in (3.17). First, we have

- 2 C
W0 YO wandy < 5 [ udwax

Bor\Ber R3N{y:[x-y|<R} Bor\Ber

— 751

(3.14)

(3.15)

(3.16)

B.1)
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and 2
/ / %un(x)dxdy<£ / uZ(x)dx.
Bar\Ber B3N {y:x-y|R} Bar\Ber
Then
/ %un(xmxd RCZS / up(x)dx. (3.18)
Bar'\Bog R Bar\Ben

By using the definition of Yy, € € (0, 1) and )z < 1, we have

/ [$R0) = Yr W2 o 1vay - / / [$R0) = YR 21 a0

|X y|3+25 |X y|3+23
Ber R3 Ber R3\ By

uz(x)
<4/ / |x nyP*ZSd dy

B:g R3 \BR

1
sC/un(x)dx / mdr

Ber (3-¢)R

C
- G op® / u2(x)dx

Ber

(3.19)

where we use the fact that if (x, y) € Bgg x (R*\Bg), then [x - y| > (3 - &)R.
Taking into account (3.17)-(3.19) we deduce

200 r(¥) - Pr()2 C ¢
// u(x Ikblz)e(ifywl/JR y)| dxdy < 25 / lun(20) |2 dx + A=on= / uz(x)dx. (3.20)
X3

B)r\Ber Ber

Putting together (3.14),(3.15),(3.16) and (3.20), we can infer

[/ WECRC) - YR g

|x - y»
R3xR3 (3 21)
c  CK09 C 2 C ) '
< e + “RI / u2(x)dx + R3S / un(x)dx + @-oR> / un(x)dx.
Byr\B2r Byr\Ber Ber

Since {un} is bounded in H, we may assume that un — u in L} .(R?) for some u € H. Then, taking the
limit as n — oo in (3.21), we have

limsup / / u%(X)|l/)R(X)—l/)R()/)|2dxdy

n—oco |X_J/|“
R3xR3
Cc Ck¥1-9 2 c ) C )
< e + I / (x)dx + RS / u”(x)dx + @A-oR> /u (x)dx
Bir\Bar Bor\Ber Ber
< Cvor( / 2 00d0) + C( / 00d0 % + () / G,
Bir\Bar Bor\Ber

where in the last passage we use Holder inequality.
Since u € L*(R%), k> 4and ¢ € (0, 1), we obtain

lim sup / |u(x)\2;dx=limsup / |u(x)\2;dx=0.

R—oo R—oc0
Byr\B2r Bor\Ber



DE GRUYTER Z.Yang, F. Zhao, Multiplicity and concentration behaviour of solutions for a fractional Choquard = 753

Choosing € = ¢, we get

limsuplimsup/ / u%(X)WR(X)_lpR(y)lzdxdy

R—oo n—oo |x —y¥

R3xR3

I3

< lim limsup (£ + Ck2( / \u(x)| dx)zs +C( / |u(x)| dx)zs + C( )25(/ [u(x)| de)zs>

k—oo R—oco
Byr\Bar BZR\B§

»\x

hm F + C(—)zs(/ lu(x)|? dx)2

><-\>a

=0,

which complete our proof.

O

Lemma 3.7. Under the conditions of Lemma 3.6, the functional ], satisfies the (PS). condition for all ¢ €

ys

2
[ce, 3 ST SH"E ).

Proof. Since {uy} is bounded in H., we may assume

un — uian,
. *
Un — uin LI’OC(]R3), 2<r<2;,

un(x) — u(x) a.e. in R>,

Let us prove that un, — uin He asn — oo. Setting wn = ||un - ul|Z, we have

wn = (Je(un), un) - (Je(un), u) /(—*H(ex un))h(ex, un)(un — udx + on(1).

Note that (Jz(un), un) = (Je(un), u) = on(1), so we only need to show that

/ (= * Hex, un)h(ex, un)(un - w)dx = on(1).

Similar the proof in Lemma 2.7, we can see that
1 1 . 6 3
WH(.ex, Un) WH(&‘X, u) in L*(R>).

By using Lemma 2.1, we have

n—roo

lim / ﬁH(sx, un)h(ex, un)(un — w)dx = 0.

By Lemma 2.1 and 3.6, for any 1 > O there exists R = R(n) > 0 such that

lim sup / \| |HH(ex un)h(ex, un)un|dx < C1n

n—oo
R3\BR

and
lim sup / || |HH(£X un)h(ex, un)u|dx < Can

n—oo
R3\Bg

Taking into account the above limits we can deduce that

lim (—*H(ex un))h(ex, un)(un — u)dx = 0.

n—soo |x|#
R3

(3.22)

(3.23)

(3.24)

(3.25)



754 =— 7Z.Yang,F. Zhao, Multiplicity and concentration behaviour of solutions for a fractional Choquard DE GRUYTER

ys
25 -1

Lemma 3.8. The functional ¥ verifies the (PS). condition in S§ for all c € [Cg, 22 S H;‘ 7o)

Proof. Let {un} C St bea (PS)c sequence for ¥,. Thus, ¥e(un) — cand ||¥%|« — 0, where || - ||» is the norm in
the dual space (Ty,St)’. It follows from Lemma 3.4-(B3) that {m¢(un)} is a (PS). sequence for I in H. From
Lemma 3.7 we see that there is a u € S} such that m¢(un) — me(u) in He. From Lemma 3.3-(43), it follows
that up — uin S;. O

4 The autonomous problem

Since we are interestd in giving a multiplicity result for the modified problem, we start by considering the
limit problem associated to (1.8), namely, the problem

(-0 + Vou - / Q)+ FOO) 4y 7,02 ) in R, (41)
|x - y[¥ 1
Set G(u) = \u\zlys + F(u), g(u) = dg—fj‘), then the equation (4.1) changes into
(-A)°u + Vou = (/ Glu y)) dy)g(u) inR>. (4.2)
y s

which has the following associated functional

1 50 2 1 G(u(y))G(u(x))
Io(wW) = = [ ((-8)2u|” + Vou“)dx - — dydx.
2
ﬂé[ 225 Z /

Ix-y#

The functional I, is well defined on the Hilbert space Hy = H*(R?) with the inner product

(u,v)o = /( ~A)2u(-A)2vdx + / Vouvdx,
R3
and the norm
Il - [1Caiupaxs [ Voutdx.
R3 R3
We denote the Nehari manifold associated to Iy by

No = {u € Hp\{0} : (I5(u), u) = 0},
and by H{ the open subset of Hy given by
Hj = {u € Ho : |[supp(u”)| > 0},

and S§ = So N Hg;, where Sy is the unit sphere of Hy.

As in section 3, S is a incomplete C**!-manifold of codimension 1, modeled on H, and contained in the
open H{. Thus, Hy = T,S§ @ Ru for each u € S§, where Ty S = {v € Hp : (u, v)o = 0}.

Next we have the following Lemmas and the proofs follow from a similar argument used in the proofs of
Lemma 3.3 and Lemma 3.4.

Lemma 4.1. Let Vy be given in (V1) and the functional f satisfies (f1) — (f3). Then the following properties hold:

(ay)For each u € Hf, let ¢y : R* — R be given by ¢u(t) = Io(Tu). Then there exists a unique Ty > O such that
¢u(1) > 0in (0, Ty) and ¢y,(1) < 0 in (Ty, =0).

(ax)Thereis a 0 > 0 independent on u such that T, > o for all u € S{. Moreover, for each compact set W C S
there is Cyy > O such that Ty < Cyy forallu € 'W.
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(a3)The map i : H§ — No given by m(u) = T,u is continuous and m := 1| s: Is a homeomorphism between S§
and No. Moreover, m™(u) = o
We define the applications
Yy :Hy > R and ¥ : S§ — R,

by l1?/0(11) = I()(ﬁl(u)) and l1”0 = l;i’()|ss.

Lemma 4.2. Let V be given in (V1) and (f,) - (f3) are satisfied. Then :
(b1)¥, € CY(H}, R) and
W)y = W%(ﬁl(u))m vu € Hj and¥ v € Ho.
0
(bz)lyo € C1(5+, R) and
Yo(u)v = |m@)|joIlo(m@))v, Vv e TyuS§.

(b3)If {un} is a (PS). sequence of Wy, then {m(un)} is a (PS)c sequence of Iy. If {un} C Ny is a bounded (PS).
sequence for Io, then {m ' (un)} is a (PS). sequence of V.

(bg)u is a critical point of ¥, if and only if, m(u) is a critical point of Iy. Moreover, corresponding critical values
coincide and

inf ¥y = inf I,.

lg{ 0 ly{rlo 0

0

As in the previous section, we have the following variational characterization of the infimum of Iy over Ny:

cy. = inf Ip(u) = inf maxIo(tu) = i
Vo o(u) Jnf, nax o(tu)

nf max Ip(tu) > 0.
ueNy €S ™0

u

The next Lemma allows us to assume that the weak limit of a (PS). sequence is non-trivial.

*
2)4,5

Lemma 4.3. Let {un} C Ho be a (PS)c sequence with ¢ € [cy,, 22"%18;}‘2 ") for I,. Then, only one of the
Wss ’

following conclusions holds.
(i) un — OinHy, or
(ii) There exist a sequence {yn} C R3 and constants R, B > 0 such that

liminf uzdx = p > 0.
BR(Yn)

Proof. Suppose (ii) does not occur. Then, for any R > 0, we have

lim sup / udx = 0.

n—+oo yeR3
Br(y)

Similarly to Lemma 3.5, we have {un} is bounded in Hy, then by Lemma 2.2, we have
un — 0in L'(R3) for r € (2, 2%).

Thus, by (f1) we have

G(u(y))gux)u(x) B
R[R[ e dydx = on(1).

Recalling that I},(un)un — 0, we get
[unl[§ = 0n(1).

Therefore the conclusion follows. O
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From Lemma 4.3 we can see that, if u is the weak limit of a (PS)C,,O sequence {un} for the functional Iy, then
we can assume u # 0. Otherwise we would have u, — 0 and once it doesn’t occur u, — 0, we conclude from
Lemma 4.3 that there exist {y,} ¢ R?> and R, 8 > 0 such that

liminf uzdx = > 0.

Then set vn(x) = un(x + yn), making a change of variable, we can prove that {vr} ia also a (PS)c,, sequence
for the functional Iy, it is bounded in Hy and there is v € Hp such that v, — v in Hy with v # 0.

Next we devote to estimating the least energy cy,. Recall that the best Sobolev constant Ss of the embed-
ding DS2(R3) s L%(R3) is defined by

2
[ullDs.2(r3)
Ss = 2
ueDs2(R3) |u|2,
S

In particular, we consider the following family of functions U, defined as

un(x)

1
S¥), u=
°7 |u0|2;’

Ue(x) = 7 ua(

23 _ X
[

for € > 0 and x € R, the minimizer of Ss (see,[41]), which satisfies
(-A)u = |u[*2u, xeR>.

Then, by a simple calculation, we know

(B3-p)(2s-3)

f](X) _ SSA(zqw) C(}l)m%i") Ue(x)

is the unique minimizer for Sy ; that satisfies

,

u s - .

ot [ 0,
3

Moreover,

seaa [ (1D D)2 s
/|(—A)zU| dx—// TS dxdy = Sp'™.
R3 R3 R3
Let ¢ € C3(R?,[0, 1]) and small 6§ > 0 be such that ¢ = 1 in B(0) and ¢ = 0 in R?\B,4(0). For any
€ > 0, define the best function by u, = @ Uk.

Similar to [22, Lemma 1.2], we can easily draw the following conclusion.

Lemma 4.4. The constant Sy 1 defined in (2.2) is achieved if and only if

b 325

u=Clprimae)

where C > 0 is a fixed constant, a € R® and b > 0 are parameters. Furthermore,

S
SH,L= Sl .

CQu) s

Proof. We sketch the proof for the completeness of this paper. By the Hardy-Littlewood-Sobolev inequality,
we have .
1 Jos 1) ufPdx _ sg

SH,L 2 T P -
C) ™ yemsairay {0y % Clp) s
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On the other hand, the equality in the Hardy-Littlewood-Sobolev (1.6) holds if and only if

b )T‘*
b2+|x-al2’ ’

£00 = h(x) = ¢(

where C > 0 s a fixed constant, a € R> and b > 0 are parameters. Thus

2 27 1 1
ulx slu S w %
(/ |u( )|‘X"_|y‘(3/)| ’dedy) s = C(p) s |u|§;,
R3 R3

if and only if
_e( by
u= (b2+|x—a|2)

Then, by the definition of Sy 1, we get

S < Jio |(=4)% ujdx _ 1 e lCAiuPdx 4.3)
H,L = - * 1 1 2 .
@) u(o s ; i |ul3:
(o fro OO Gy g T €)% 2
an thus we have
Ss
SH,L < -
CQp)ms
From the arguments above, we know that Sy ; is achieved if and only ifu = C (m)ﬁ and
Su,L = Ss% .
Clp) *ws
O

Next. repeat the proofin [22, Lemma 1.3], we have the following important information about the best constant
S H,L-

Lemma 4.5. For every open subset Q C R3, we have

Sp.(Q) := inf Jo |(=4)3 u|?dx

DG @\O) (1 W g g 7

=Su1 (4.4)

where Sy 1 (Q) is never achieved except when Q = R>.

Proof. 1t is clear that S 1 < Sy 1(Q) by D5*(Q) € DS*(R3). Let {un} C CF(R?) be a minimizing sequence
for Sy ;. We make translations and dilations for {un} by choosing y» € R> and 7, > 0 such that

3-25
Vn =Ty’ un(Tnx +Yn) € Cy(Q),

/|(—A)%vn|2dx=/|(—A)%un|2dx
R3 R3

//‘vn(y” us|vn ; dxdy //|un()’)|2;.s|un(x)2;,s dxdy_

|x —y* Ix-y#

which satisfies

and

Hence Sy 1 (Q) < Sy 1. Moreovet, since U(x) is the only class of functions such that the equality holds in the
Hardy-Littlewood-Sobolev inequality, we know that Sy ; (Q) is never achieved except for Q = R3. O
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Lemma 4.6.

// |Ug(X) uS(y)l dXdySSs% +O(£3_25),

|X y‘3+25

ngs + 0(83—25)
ugl3 = Ce*log(1) + 0(e*)
Ce3725 1+ 0(e%)

//WmVMwmﬁﬁ
|x —y[H

R3 R3

In addition, if q < 2;, s, then there holds

if4s < 3,
if4s =3
if4s > 3,

3 6p 6-u
dxdy = C(u)ESHZfL -0(g2),

// |Ug(X)|q|Ue(y)\qudy _ Qe #-96-29)y

|x - y#
Bs Bs

DE GRUYTER

(4.5)

(4.6)

(4.7)

(4.8)

Proof. For the proof of (4.5) and (4.6), we can see that in [41]. So we only need to estimate (4.7) and (4.8).

Concerning (4.7), similar to [2, Lemma 7.1], we have

e ()2 e () 2o

27 27
/ |us(X)‘ [ Iua()/)| He dXdyE/

|x—y#
R3 R3 Bs Bs

|x - y|H

—dxdy

[ [ U TP |Ue () % | Ue(y) s
—// Xy dxdy -2 Xy dxdy
y y
R3 R3 R3\Bs Bs
| U ()2 | U (y) 20 25
- / / £ T y‘i dxdy C)=Sg -2A-B,
R3\B;s R3\B;
where
|Ue() % | Ue(y))
" dxd ,
/ / |x - y# Y
R3\Bj; Bs
2'(S 2*.5
B= / |UE(X)| w |UE()/)| 5 dxdy
. |x - y[¥
R3\Bs R3\Bj
By direct computation, we have
|Ue () 2| Uey) s
| [P .
R3\B; Bs
—Ce(”‘// 1y 1 - dxdy
BB, B 52b2+x2$ )7 s x-yl (e2b2 +y25¢) 7
6—,
1 dy)TM

< CeSH( / %dx)%(/
(e2b? + x255)3 3,

R3\Bs

6
.
e [ ([
|x|6Ss o (€2b2+1255)3

R3\Bs

- 07

(e2b2 +y255 )3

dr)©

(4.9)

(4.10)
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and

27 20
B= / / |U£(X)| H |U€(Y)‘ " dxdy

x -yl

R3\B; R*\B;
< CebH ! ! - ! = dxdy

R, BB, (e2b2 +x23 ) L |x -yl (e2p2 +y28 )5

6- 6

< Ce*H( / : I dX)TM( / - I dy)Ty (410

EA B, (e2b2 + x25¢)3 EA B, (e2b2 +y25¢)3

6- 6

et [ —oa) V([ ™

ola, oSS viss:
= 0(e*H)

It follows from (4.9) to (4.11) that

e (0] [ue (y) 2+ 5 2o 61
R[R[ x - y[¥ “dxdy = C(u)* SHL 0(e7) - 0(5™)

3 ] 6-u
= C(y)ESb%fL -0(e).
Then (4.7) follows. Now we prove (4.8). If g < 2, 5, we have

// |U£(X)‘ |U£(,V)|qudy: 0(86—}1—‘1(3—25))

x =y
Bs Bs
=C€Q(3—Zs)// 1 — 1 1 = dxdy
& i @b sy T WOV g2 4 25y e
(3-25) 1 & 1 &
chq S(/ 32sidx)6( lﬂidy)s
(€2b2 + x257) 7955 (e2b2 +y2Sg) 2 Yo
y 2
' ou
< ng(3—2s)(/ - ——dr) >

a5
o (e2b2 472557 "o

- 0(36‘”“1(3—25)

O
Lemma 4.7. Suppose that (f1) - (f3) hold. Then the number cvy, satisfies that
,”
* _ 1 z*u'il
O0<cy, < K5 _—gims™,
[ 22)1,5 H,L
Proof. By the definition of cy,, it suffices to prove that there exists v € Ny such that
21
Io(v) < Lo —=Syf7 (4.12)
U,s

By Lemma 4.1, there exists 7¢ > O such that T.us € No. We claim that for € > 0 small enough, there exist A,

and A, independent of € such that
0<A €1 <A) < oo, (413)
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Indeed, note that Ny is bounded away from 0, we have that 7 > A; > 0 using (4.5) and (4.6). Moreover, since
(I5(Teug), Teug) = 0, from (4.7) we have that

2 y 2
" < C(rF |uelld + o7 |uellg™ + 7% Jue |57
q1+2, qi1+ g2+ qz+2
+ T, ”sHueHo “+Ts ”|| elo ™).

Using (4.5) and (4.6) again, there exists A, > 0 such that 7¢ < A,. Then (4.13) holds true.
Now we estimate Io(T<uc). Note that

Ip(Teue) < (TE /I( 2)7ue ()| dx - 22 / [uey) e us (I ”d dx)

J |x —y[¥
7} ~ F (Tsus()/) )F(suz(x)) ) (4.14)
(3 /V‘)“Ed" u// PR
= 11+Iz.

For I, we set

- / (-2)F ue00)|2dx,

2 2
B =/ |u€()/)‘ H |u€(X)‘ H dde,

' |x - y|H
R3 R

and consider the function 0 : [0, o) — R defined by

2,
(1) = fAT _Te B,
2256
we have that 79 = (A ) 22# s is a maximum point of 8 and
2 L
9 T - AZ —1 Bl 2"
(To) 22,
Combining with Lemma 4.3, (4.5) and (4.7) we have
2, fh !
I < ;; SHT +0(E3)+ 0(e 7). (4.15)

For I, given Ag > 0, we invoke (f3) to obtain R = R(4o) > O such that, forx € R3, t > R,

Agt?nst if3 < 4s,
F(x,t) > { Agt?ns 75 (logt)?  if 3 = 4s, (4.16)
Aot 75 if3 > 4s.

By (4.6) and (4.16), we need to estimate I, in three cases. Since the argument is similar, we only consider the
case that 3 < 4s. For |x| < € < §, noting that ¢ = 1 in Bg(0), by the definition of u, and (4.13), we get a
constant 8 > 0 such that

TeUe(x) 2 A1Ue(x) 2 BSZST_B.
Then we can choose £; > 0 such that T.u. = R, for |x| < £, 0 < € < ;. It follows from (4.16) that

20 -1 20 -1
F(x, Teug(x)) 2 At u " 7,
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for |x| < €,0 < € < 1. Then forany O < € < &1, by (4.8) we get

//F(Tgug(x))F(‘rgug(y)) dydx>A2// (Teute (y) 2™ Teus () s~ dydx

|x —y# \x y#
B B B: B:
Ue(y) 25"} | Ue ()21
2CA2//| £ dydx
0 =y Y
B: B

= A30(£7%).

Note that F(u) = 0, (4.6) and (4.13), we have

h s Cluel - o / / ul (Tf“‘g'()’(‘)zF (et ) gy < (€ - €1AZ)E7 2. (417)
U,S )/|

Inserting (4.15) and (4.17) into (4.14), we get

25 -1
* U~
5

S

21 .
To(teue) < Z’TSHZT +(Ca+ C- CLADE S + 0(e7). (4.18)
U,

Observe that 6%" > 3 - 2s for 3 < 4s,and Ap > 0 is arbitrary, we choose large enough A, such that C + C, —
C1A3 < 0. Then for small £ > 0 we have v := T.u, satisfies (4.12). O

Theorem 4.1. Assume that (f1) - (f3) hold. Then autonomous problem (4.1) has a positive ground state solution
u with Ip(u) = Cv,-

Proof. By Lemma 3.2 with V(x) = Vo and the Mountain Pass Theorem without (PS) condition (cf. [50]), there
exists a (PS)c,, -sequence {un} C Ho of Io with

2% -1

2* 255

u,s ~ E

Cy, < 7*SH,L .
22}1’5

By Lemma 3.5 and 4.3, {u,} is bounded in H® (R?) and non-vanishing, namely there exist r,4 > 0 and a
sequence {yn} C R? such that

lim inf / |un|?dx = 6.
n—oo
By(yn)

Up to s subsequence, there exists u € H*(R?) such that

Un — uin HS(R?),

Un — uin LI’OC(]R3), 2<r<2;,

un(x) — u(x) a.e. in R>.
As Lemma 2.5, we have I{)(u) = 0. Since I, and I}, are both invariant by translation, without lost of generality,
we can assume that {yn} is bounded. Note that u, — u in L}, .(R?). Then w/= 0. So u € No. Then

v, < To() = To(w) - 5 (To(w), u)

//G(u(y)) (gw0)u(x) - Gu(x)))dydx

ys

hmmf//G(u"(y» (gun())un(x) - G(un(x))) dydx

n—oo
R3 R3

= 1i)gi°rgf(10(un) - E<Ia(un), Un))

=Cv,>
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where we used Fatou Lemma and Lemma 2.4. Therefore, Iy(u) = cy,, which means that u is a ground state
solution for (4.1).
Next we prove that the solution u is positive, using u~ = max{-u, 0} as a test function in (4.1) we obtain

/(—A)%u(—A)%u_dx + / Volu™|?dx = 0. (4.19)

R}
On the other hand,
W) —u)w () -u (y)

‘X — y|3+25 dXdy

/( A u(-A) udx = C(s)
R3xR3
1
5C(s)
{w0}x{u<0}
1 (u () -u (y)?
+ EC(S) / |x - y|3+2s dxdy
{u<0}x{u<0}

1 ' (u(x) —u()u (%)
+§C(S) |x - y|3*+2s drdy

(ux) - u(y)(-u (y))dxd
‘X y|3+25

{u<0}x{u>0}
2 0.

Thus, it follows from (4.19) that u~ = 0 and u > 0. Rewriting the equation (4.1) in the form of

(-A)°u + Vou = ( %dy)[((u) inR>,

where .
u|?ws + F(u)

H(u) := I

K = P2 s S f) € L (R) + L7 ().
U,S
By Lemma 2.8, we know u € LP(R3) forall p € [2, m) Using the growth assumption (f;) and the
higher integrability of u, for some C > O we have

G(u
|/ ‘X( ()),/|)3 < C||u| w4 T+ || 2 s C(|u|3(6 o + |u|3q1 +ul%,), (4.20)
ET]

U

which is finite since the various exponents live within the range [2, (3711)1(+25)). Thus,

L fw) in®3.
U,

(=AY u+Vou < C(\u\z;fz’“u +

By the Moser iteration, similar arguments developed in Lemma 6.1 below, we can get u € L*(R?) and
lim u(x) = 0 uniformly in n. Then, by regularity theory [43], there exists a € (0, 1) such that u € C?O’?(R3).

|X] —+o0
Therefore, if u(xo) = 0 for some xo € R3, we have that (-4)*u(xo) = 0 and by [19, Lemma 3.2], we have

(—A)su(Xo) _ _@ / u(XO + )/) + Tl)/(f;(_),.z_s )’) - 2u(XO) dy,

therefore,

u(xo +y) +ulxo-y) ,

/ Y32 dy =0,
R}

yielding u = 0, a contradiction. Therefore, u is a positive solution of the equation (4.1) and the proof is

completed. O
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The next result is a compactness result on autonomous problem which we will use later.

Lemma 4.8. Let {un} C Ny be a sequence such that Io(un) — cy,. Then {un} has a convergent subsequence
in H().

Proof. Since {un} C No, it follows from Lemma 4.1-(a3), Lemma 4.2-(b,) and the definition of cy, that

_ u
Vn=mtun)= —2— €85, vneN,
llunllo

and
Wo(vn) = Io(un) = cy, = igf Y.
0

Although S is incomplete, due to Lemma 4.1, we can still apply the Ekeland’s variational principle [21] to the
functional Oy : H — R U {eo}, defined by O¢(u) = Wo(u) if u € S§ and Op(u) = oo if u € 0S{, where H = S?is
the complete metric space equipped with the metric d(u, v) := ||u - v|o. In fact, take € = k% in Theorem 1.1 of
[21], we have a subsequence {vn, } C {vn} such that

1
cy, < Y(vn) s cy, + @

From Theorem 1.1 in [21], for A = %, there exist a sequence {¥;} C S{, such that
- 1
Oo(i) < Bp(vn,) < cy, + 2

and

=

[Va = Villo <

In particular, for any u € S§ we have
- 1 -
WYo(u) > Yo(¥y) - EH“ = Villo-
Hence, similar the proof for Theorem 3.1 in [21], we have that there exists A; € R such that
3! [~ / (=~ 1
1Yo (") = Akgo(@illo < %’

where go(u) = ||ul|3 - 1. Which means that

1

= (g Gz PO 863 + 0D, b =i

Ak
From Lemma 4.2-(b1),

A = (B0, Ti) + 04 (1) = T3, (I6(t3, 71, Vi) + 0x(1) = 04(2).

Therefore, we can conclude there is a sequence {¥n} C S such that {¥n} is a (PS)c,, sequence for ¥, on S
and
[lun = Vnllo = on(1).

Now the remainder of the proof follows from Lemma 4.2, Theorem 4.1 and arguing as in the proof of Lemma
3.8. O

5 Solutions for the penalized problem

In this section, we shall prove the existence and multiplicity of solutions. We begin showing the existence
of the positive ground-state solution for the penalized problem (3.1).
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Theorem 5.1. Suppose that the nonlinearity f satisfies (f1) — (f3) and that the potential function V satisfies
assumptions (V1) — (V). Then, for any € > 0, problem (3.1) has a positive ground-state solution u.

Proof. Similar to Lemma 3.2, we can prove that J¢ also satisfies the Mountain Pass geometry. Let

ce:= inf maxJe(tu) = inf Je(u).
u€H\{0} 720 ueN,

Then, we know that there exists a (PS) sequence at ¢, i.e.
Je(un) — 0 and Je(un) — ce.

Therefore, by Lemma 3.7, the existence of ground state solution u, is guaranteed. Moreover, similarly to the
proof in Theorem 4.1, we know that us(x) > 0 in R>. O

Next, we will relate the number of positive solutions of (3.1) to the topology of the set M. For this, we consider
6 > 0 such that My C Q and by Theorem 4.1, we can choose w € Ng with Ip(w) = cy,. Let 1 be a smooth
nonincreasing cut-off function defined in [0, +o0) such that n(t) = 1if0 < ¢ < g and n(t) = 0if t = 6. For each
y eM, let

We,y(x) = nllex - yI)W(Q).

Then for small € > 0, one has ¥,y € H:\{0} for all y € M. In fact, using the change of variable z = x - £, one
has

/ V(sx)‘f’f,y(x)dx = / V(ex)nz(\sx - y|)w2(gX£7_y)dx = / Viez + y)rlz(\sz\)wz(z)dz
R3 R3 R3
< C [ w?(2)dz < +oo.
/

Moreover, using the change of variable x’ = x - £, 2/

- exyy _ - ezyy|2
|(—A)5Ws,y|%=%C(S)// Indlex =yt Txizz(ﬁz IWEN 4z

=z - %, wehave

R3xR3
2
1 [n(ex' Dw(x') - n(jez' hw(z)|
2 // X/ = Z/|3+2s dx'dz’
R3xR3

(-2)2 n(lex)w()|3 = |(-4)2 new3,

where n¢(x) = n(Jex|). By Lemma 2.3, we see that n.w € D>2(R?) as ¢ — 0, and hence ¥,y € D?(R?) for
€ > 0 small. Hence ¥,y € He. Now we proof ¥y # 0. In fact,

[ wax= [ex-ywrE Dax= [ ndlex-ypwtE D yax
R3 R3 lex-y|<6

2 2 2 2
> n-(lezw(2)dz = w(z)dz — | w(z)dz >0
/ o]

|zl<3; Bo(2)
as € — 0. Then ¥,y # O for small € > 0. Therefore, there exists unique 7. > 0 such that
nrlgjxlg(r‘lfg,y) = Ie(1¢We,y) and 7 ¥,y € Ne.
We introduce the map @, : M — N¢ by setting
De(y) = e ¥e,y.

By construction, @¢(y) has a compact support for any y € M and @; is a continuous map.
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Lemma 5.1. The functional @.(y) has the following property:

lim Je(De(y)) = cy, uniformlyiny € M.
e—0

Proof. Suppose that the result is false. Then, there exist some §y > 0, {yn} C M and &, — 0 such that

en(@e, (Y1) = v, | = 8o. (5.1)

By the definition of 7., we have

0<T / (-A)2 ¥,y |2dx + T2, / V(enx)¥s, 5, dx
R R?

// H(SnX, Teg, q’sn,yn)}‘if(c?f);,‘:gn ‘Ilgn’yn)‘l'gn lpgmyn dde

(5.2)

1
2*
u.s R3 R3
It follows from (5.2) that ¢,/ — O, then 1¢, > T¢ > O for some 7o > 0.If T, — +o0, by (f>) and the boundedness
of ¥e,,y,, we get

(/l(_A)%lIIEn’Ynlde+/V(gnx)lllgmy"dx)

R3 R3
1 / / H(enX, Te, We,,y )(EnX, Te, We, y,
2;,5 X -y Te,

(5.3)

Weryn dydx — +oo
R3 R
as n — +oo. But the left side of the above inequality is boundedness, which is impossible. Hence, 0 < ¢ <

T¢, < C. Without loss of generality, we may assume that 7, — T > O.
Next we claim that T = 1. By Lemma 2.3 and Lebesgue’s theorem we have

. 2 2
Tim ¥,y 2, = [,

. (5.4)
lim Xp(¥e,,y,) = Zo(w)
n—+oo
Moreover, from
H , Te, P h , Te, V. v,
2 [ Weryall2, = 2} // (enX, Te, Pe,.y,) ‘)((ij ;sn enya) Ten Ve yn dydx 5.5)
U,S Y|
R3 R3
we can deduce that
HWH(Z) = nli)m 2} // H(SnX, Tey WEn:Yn)}Ting’:sn lIISn;Yn)Tgn ng)’n dde (5.6)
*® 2y yl
R3 R3

Taking into account that w is a ground state solution to (4.1) and using (f>), we deduce that T = 1. It follows
from (5.4), we have

lim Je, (De,(yn)) = JoW) = cy,, (5.7)
n—+oo
which is a contradiction with (5.1). This completes the proof. O

Let p = p(8) > 0 be such that Mg C B,(0). Consider y : R> — R> be defined as y(x) = x for |x| < p and
xx) = % for |x| = p. Finally, let us consider the barycenter map ¢ : N. — R given by

Jos X ()dx 5

Be(u) = f]R3 12 (x)dx

Lemma 5.2. The functional ¢ satisfies

lim Be(Dc(y)) = y uniformly iny € M.
e—0
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Proof. Suppose by contradiction that there exist 6o > 0, {yn} C M and &, — 0 such that
|Be, (@, (yn)) = yn| = 6o. (5.8)
Using the change of variables z = ¥ and the definition of 8¢, we have

S Ot(enz + ) - yn)in(enz))w(z) 2 dx
Jrs IM(enzw(2)|2dx

ﬁs,, ((Dan ()’n)) =Ynt

Since {yn} ¢ M C B,(0) and X’ B, = id, we conclude that

‘.B«Sn (‘Dsn (Yn)) = Ynl|= on(1),

which contradicts (5.8) and the desired conclusion holds. O

Lemma 5.3. Let en — 0 and {un} C Ng, be such that Je,(un) — cy,. Then, there exists a sequence {jn} C R3
such that vn(x) = un(x + yn) has a convergent subsequence in Hy. Moreover, passing to a subsequence, yn :=
Eny¥n — Yo € M.

Proof. By Lemma 3.5, {u} is bounded in Hy. Note that cy, > 0, and since ||ux||e, — 0 would imply J¢, (un) —
0, we can argue as in the proof of Lemma 4.3 to obtain a sequence {j,} ¢ R and constants R, § > 0 such
that

liminf uzdx=p > 0.
n— +oo
BR()?H)

Define vn(x) := un(x + ¥n), then {v,} is also bounded in Hy and up to a subsequence, we have
vn — v # 0in Hy.

Let 74, > 0 be such that ¥y, := Tnvn € N and set yn = enyn. By {un} C Ne,, we have

Cy, < Jo(Vn) = Jo(Tnun) < ]sn(Tnun) < ]sn(un) =Cy, t+ on(1).

Which implies that HETM Jo(#n) = cy,. In virtue of 1, € Ny, we obtain {¥»} is bounded in Hy. It follows
from the boundedness of {vn} in Hp that {7} is bounded, without loss of generality, we may assume that
Thn — To = 0.If 79 = O, in view of the boundedness of {vx} in Hy, we have ¥, = Tovn — 0 in Hy. Hence
Jo(¥x) — 0, which contradicts cy, > 0. Thus, 7 > 0 and the weak limit of {¥",} is different from zero. Hence,
up to a subsequence, we have 7, — 7oV := ¥ # 0 in Hy by the uniqueness of the weak limit. From Lemma 4.8,
we know that ¥, — ¥ in Hy. Moreover, ¥ € Nj.

Now, we will show that {y»} is bounded in R>. Suppose that after passing to a subsequence, |yn| — +oo.
Choosing R > 0 such that Q c Bg(0). Without loss of generality we may assume that |yn| > 2R. Then, for all
z € By, (0),

|enz + yn| 2 [yn| - |€nz| > R. (5.9)

By the change of variable x — z + tildeyn, using the fact that Vy < V(ex) and (5.9), we have

vnll3 < C/H(ez+yn, Vn)vndx < C / G(vn)vndz + C / G(vn)vndz. (5.10)
R3

Brley, R3\ Bg/e,
Since G(u) < %u and v, — vin Hy, we can see that (5.10) implies that
[Vall§ = on(1),

that is v, — 0 in Hy, which is a contradiction. Therefore, up to s subsequence, we may assume that y, —
Yo € R?. It remains to check that y, € M. Clearly, if yo ¢= Q, then we can argue as before and we deduce that
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un — 01in Hg, which is impossible. Hence we only need to show that V(yo) = Vy. Arguing by contradiction
again, we suppose that V(yg) > Vg. Then, by using ¥, — ¥ in Hy and Fatou’s Lemma, we have

cy, =Jo()
<1iminf(1/|(—A)%m2dx+l/V(yo)vzdx—zo(f/))
n—oo ‘2 2
R3 R3

< liminf(1 /\(—A)%Vn|2dx+ 1 / V(enx+yn)f/$ldx—20(17n))
n—eo ‘2 2
R R3
< liminf J¢,(Tnun)
n—oo

< liminf J¢, (un)
n—oo
= Cy,,
which yields a contradiction. So, yo € M and the proof is completed. O
Let h : R* — R* be any positive function satisfying h(¢) — 0" as € — 0*. Define the set
Ne = {u € Ne : Je(u) < cy, + h(e)}.
Giveny € M, we conclude from Lemma 5.1 that h(e) = sup |Ie(P:(y)) - cy,| — Oas e — 0*. Thus, P:(y) € Ne

yeM
and N # () for € > 0. Moreover, we have the following Lemma.

Lemma 5.4. For any 6 > O, there holds that

lim sup inf u)-y|=0.
Jim sup inf |Be(w) -y

Proof. Let {en} C R* be such that £, — 0. By definition, there exists {un} c N, such that

inf [Be,(un) —y| = sup inf |Be,(u) - y|+on(1).
yeEMs ueN,, yeEMs

So, it suffices to find a sequence {yn} C M; satisfying
Jim [Be, (un) = yn| = 0. (5.11)
Since un € Ne, C Ne,, we get

Cy, < Cey < Je,(Un) < cy, + h(en).

It follows that Je,(un) — cy,. Thus, we can invoke Lemma 5.3 to obtain a sequence {j»} C R3 such that
Yn = €nyn € Mg for n large enough. Then

s (X(EnX + yn) = yn)[un(x + yn)|*dx
Jg Tun(x + )2 dx

Be., (un) = yn+
For Vx € R3 fixed, since enx + yn — ¥ € Mg, we have that the sequence {yn} satisfies (5.11). This completes
the proof. O

Next we prove our multiplicity result by presenting a relation between the topology of M the number of solu-
tions of the modified problem (3.1), we will apply the Ljusternik-Schnirelmann abstract result in [44, 46].

Theorem 5.2. Assume that conditions (V1) — (V2) and (f1) — (f3) hold. Then, given § > O there is &g > O such
that for any € € (0, €), problem (3.1) has at least cat,(M) positive solutions.
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Proof. Fory e M, set y:(y) = mz1(D:(y)). It follows from Lemma 3.4 and Lemma 5.1 that
lim Ve (ye(y)) = im I(@(y)) = cv,, (512)
£—0 £—0

uniformly in y € M. Let
St ={weS;: ¥e(w) < cy, + h(e)},

where h is given in the definition of Ne. From (5.12), we know that there is a number & such that 8§} # ¢ for
€ (0,8).

For a fixed 6 > 0, by Lemmas 3.3, 5.1-5.2 and 5.4, we know that there exists a & = €5 > 0 such that for any
€ € (0, &), the diagram

~ -1 ~ ~
AN RN LN NN VN

is well defined. From Lemma 5.2, there is a function A(g, y) with |A(e, y)| < g uniformly in y € M, for all
e € (0, &),such that Bc(D:(y)) := y + Ale, y) for all y € M. Define H(t,y) = y + (1 - t)A(e, y). Then, H :
[0, 1] x M — Mgy is continuous. Obviously, H(0, y) = Be(@:(y)), H(1,y) = y for all y € M. That is, H(t, y) is
homotopy between B¢ o @ and the inclusion map id : M — Mg. This fact and Lemma 4.3 in [7] implies that

catgzyg(M) 2 catyg, (M).

On the other hand, using the definition of N, and choosing &5 small if necessary, we see that I satisfies the
(PS) condition in Ne recalling Lemma 3.7. By Lemma 3.4 and 3.8, we obtain that ¥, satisfies the (PS) condition
in S¢. Therefore, the standard Ljusternik-Schnirelmann theory provides at least catg,ye(M) critical points of

¥, restricted to Sf. Using Lemma 3.7 again, we infer that I. has at least catyg, (M) critical points. Using the
same arguments contained in the proof Theorem 4.1, we see that the equation (3.1) has at least caty,(M)
positive solutions. O

6 Proof of Theorem 1.1

In this section we will prove our main result. The idea is to show that the solutions obtained in Theorem
5.2 verify the following estimate u¢(x) < a, ¥x € Q¢ for € small enough. This fact implies that these solutions
are in fact solutions of the original problem (2.3). The key ingredient is the following result, whose proof uses
an adaptation of the arguments found in [20], which are related to the Moser iteration method [35].

Lemma 6.1. Let e, — 0" and un € Ne, be a solution of (3.1). Then up to a subsequence, vy = un(x+jn) satisfies
that vy, € L=(R3) and there exists C > 0 such that

lvallp=®3) £ C, VR EN,
where {yn} is given in Lemma 5.3. Furthermore,

lim vn(x) =0 uniformlyinn € N.
|x|—e0

Proof. Rewriting the equation (3.1) in the form of

H(u(y))u(y)

(=A)°u + V(ex)u = ( =y

R3

dy)K(u) in R3,

where

, K(u) = s 2 4 23 fw) € L5 (R3) + L7 (B?).

1S

HQw o 1+ FQ
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By Lemma 2.8, we know u € LP(R3) forall p ¢ [2, (3_}1)1(%25)). Using the growth assumption (f;) and the
higher integrability of u, for some C > 0 we have

’/ G(u(y)) < C|Juf? s 4 | + |u|fh’ 2 C(|u|3(6 s+ luld b ¥ |u\321)
|X y‘}l 3-u

which is finite since the various exponents live within the range [2, m) Therefore, we have

H(enx + &n¥n, vn)

|h(ex, va)| := ( = ylH dy)h(enx + enyn, vn) = V(enX + €nyn)vn < C(1 + [va|?h) (6.1)
R3
for n large enough.
Let T > 0, we define
0, ift<0,
H(t) = tP, ifo<t<T,

BTAY(t-T)+ TP, ift=>T,

with 8 > 1 to be determined later. Since H is Lipschitz with constant L, = ST#~!, we have

[H(Vn)]-Ds,z _ </ |H(Vn(X)) _H(Vn()/))‘zdxd)/)%

‘X — y|3+25
R3xRR3
Lg|va(0) - va(y)|? :
// |X y|3+25 d dy)z
R3xR3
= Lo[Vn]Ds,z.

Therefore, H(vy) € D%2(R3). Moreover, by the definition of H, we know that H is a convex function, then we
have
(=4)°H(vn) < H'(vn)(=4)°vn (6.2)

in the weak sense. Thus, from H(vy) € D%2(R3) and (6.1)-(6.2), we have

IO < € / \(=4)% H(vn)Pdx = C / H(vn)(~A) H(vy)dx
R3 3
< C/H(vn)H'(vn)(—A)svndx = C/H(vn)H'(vn)h(enx, vn)dx
<C / Hvn)H (va)dx + C / Hv)H (va)v2'd

Using the fact that H(vn)H'(vn) < ﬁvzﬁ Land voH (vn) < BH(vy), we have

(/(H(vn))zgdx>Z = Cﬁ(/viﬁ_ldx+/(H(vn))2 2 de), (6.3)
R3 R3 R3

where C is a positive constant that does not depend on f3. Notice that the last integral is well defined for T in
the definition of H. Indeed

/(H(Vn))z v dx = / (H(Vn))zvf,;_zdx+ / (Hvn)) va 224y

R3 Vn<T vi>T

< T?2 /vf,sdx+ C/vffdx < oo,
3

R3
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We choose now f in (6.3) such that 2 - 1 = 25, and we name it 81, that is

2:+1
Bl = 52 . (64)

Let R > 0 to be fixed later. Attending to the last integral in (6.3) and applying the Holder’s inequality with
2
-2’

exponents y := 27 andy’ :=

/(H(V"))zvﬁ;_zdx= / (H(vn))2v§§‘2dx+ / (H(Vn))zvﬁg‘zdx

R3 vns<R V>R
H( ) 2 2 25-2 (65)
v Aot . s . 5
< / %stfldx+ (/(H(vn))zsdx>2 </v3,5dx) s
n
vn<R R3 V>R

By Lemma 4.8, we know that {v,} has a convergent subsequence in Hy, therefore we can choose R large
enough so that

*
2,2

2o\ % 1
(/vndx) Sflﬁ’

V>R

where C is the constant appearing in (6.3). Therefore, we can absorb the last term in (6.5) by the left hand side

of (6.3) to get
2 2
* 2 * P H
</(H(vn))25dx> ° sZCﬁl(/vﬁsdx+stl/((;/n))dx),
R3 R3 R3 !

Now we use the fact that H(vn) < vﬁl and we take T — oo, we obtain

2
(/visBldx> " 2C,81(/vﬁsdx+f22fl/vffdx).
R3 R R

and therefore

vn € L3P (R3). (6.6)
Let us suppose now 8 > B;. Thus, using that H(vy) < vﬁ in the right hand side of (6.3) and letting T — oo
we get
2
(/v%ﬁdx) " g Cﬁ(/vflﬁfldx +R%1 /viﬁﬁs—zdx). (6.7)
R3 R3 R3
Set cg := 25%:1;) and c; := 28 - 1 - ¢¢. Notice that, since > 81, then 0 < ¢ < 25, ¢1 > 0. Hence, applying

Young’s inequality with exponents y := 25/co and ' := 25/25 - o, we have

*
251

*
- C 2" 2 *
/vf,ﬁ Yax < —g/vnsdx+ Sk /vﬁS “ dx
2 2 —-Co

R3 R3 R3

2; 2B+25-2
s/v,ﬁdx+/vnﬁ+s dx

R3 R3

<C(1+ /vfllm:_zdx),
R3

with C > 0 independent of . Plugging into (6.7),

2

(/vi;ﬁdx> % Cﬁ(1+/vflﬁ+2;72dx),
R3

R3
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with C changing from line to line, but remaining independent of . Therefore

1 1
e 26D . G0
(1 + / vﬁsﬁdx) R (CB) ey (1 + /vffms 2dx) .
R3

R3

Repeating this argument we will define a sequence i, m = 1 such that
2Bmi1 + 25— 2 = 25Bm.
Thus,
2*
Bm+1 -1= (i)m(ﬁl - 1)-
Replacing it in (6.8) one has

1 1
* 25 Bme1-1) 1 * 25(Bm-1)
(1 + / vﬁsﬁmﬂ dX) sWm+1 < (Cﬁm+1) 2(Bm+1-1) (1 + /Vflsﬁm dx> s\wPm .

R3 R3

1
: 5(Bm-1)
Am = (1+/vﬁsﬁmdx)2 7,

R3

Defining Cy;41 := CBim+1 and

we conclude that there exists a constant Cy > 0 independent of m, such that
m 1
Am <[] €7 Ax < CoAs.
k=1

Thus,
[[Vallee s CoAq < oo,

uniformly in n € N, thanks to (6.6). Now argue as in the proof of [3, Lemma 2.6], we conclude that
un(x) — 0 as |x| — oo,

uniformly in n € N. This finishes the proof of Lemma 6.1.

We are now ready to prove the main result of the paper.

— 77

(6.8)

(6.9)

O

Proof of Theorem 1.1. We fix a small § > 0 such that Mg C Q. We first claim that there exists some &; > 0

such that for any € € (0, &5) and any solution u € N of the problem (3.1), there holds

luell =@ \a, < a-

(6.10)

In order to prove the claim we argue by contradiction. So, suppose that for some sequence £, — 0* we can

obtain u, € Ne, such that It (un) =0 and

un|=gs\q,) = a

(6.11)

As in the proof of Lemma 5.3, we have that J¢,(un) — cy, and we can obtain a sequence {j,} € R3 such that

Enyn — Yo € M.
If we take r > 0 such that B/(yo) C B,(yg) C Q we have that

Yoy _ l
Bé(Sn) . Br(yo) C Qe,.
Moreover, for any z € BEL (¥n), there holds

Yo ~ - Yo 1 2r
-=|<|lz- - <= 1)) < =,
|z €n|<||Z Yn| +|¥n En‘ gn(r+on( )] e



772 —— 7.Yang,F. Zhao, Multiplicity and concentration behaviour of solutions for a fractional Choquard DE GRUYTER

for n large. For these values of n we have that B (7n) C Q,, that is, R3\Q¢, C R3 \B- (y,,) On the other
hand, it follows from Lemma 6.1 that there is R > 0 such that

un(x) <afor|x|2RandVvn e N,

from where it follows that
vn(x = ¥n) < afor x € B{(jn) and n € N.

Thus, there exists ng € N such that for any n = np and =~ > R, there holds
R2\Q¢, C R3\Bé(§/n) C R*\Bg(Fn).

Then, there holds
up(x)<a vxe R3\Qs,,,

which contradicts to (6.11) and the claim holds true.

Let &5 given by Theorem 5.2 and let €45 := min{&s, &5 }. We will prove the theorem for this choice of ;. Let
€ € (0, &5) be fixed. By using Theorem 5.2 we get caty,,(M) nontrivial solutions of problem (3.1). If u € H is
one of these solutions, we have that u € Ne, and we can use (6.10) and the definition of g to conclude that
H(-, u) = G(u). Hence, u is also a solution of the problem (2.1). An easy calculation shows that w(x) = u(%) is
a solution of the original problem (1.8). Then, (1.8) has at least caty,, (M) positive solutions.

Now we consider e, — 0* and take a sequence u, € Hg, of positive solutions of the problem (3.1) as
above. In order to study the behavior of the maximum points of u,, we first notice that, by the definition of H
and (h1), (hy), there exists 0 < y < a such that

H(enx, Wu < I;—(uz, forallx e R?, u < y. (6.12)
Using a similar discussion above, we obtain R > 0 and {J»} ¢ R? such that

lunll =g @) < Y- (6.13)

Up to a subsequence, we may assume that

HunHL""(BR(f/n)) 2. (6.14)

Indeed, if this is not the case, we have ||un|| -~ < ¥, and therefore it follows from ]{:n (un) = 0 and (6.12) that

V
lunl, < 2 [ k. (619)

]R3
The above expression implies that ||un||e, — 0 as n — oo, which leads to a contradiction. Thus, (6.14) holds.
By using (6.13) and (6.14) we conclude that the maximum points p, € R of u, belongs to Bg(¥»). Hence,
Dn = Jn + qn for some gn € Bg(0). Recalling that the associated solution of (1.8) is of the form wn(x) = un(%),
we conclude that the maximum point 7 of v is §e := enyn + €nqn. Since {gn} C Bg(0) is bounded and
&n¥n — Yo € M, we obtain
Jim V(ne) = V(yo) = Vo.

Thus, the proof of Theorem 1.1 is completed.
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