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Abstract
In this paper, we study the following nonlinear Schrödinger-Poisson type equation{

−ε2�u + V (x)u + K (x)φu = f (u) in R
3,

−ε2�φ = K (x)u2 in R
3,

where ε > 0 is a small parameter, V : R
3 → R is a continuous potential and K : R

3 → R

is used to describe the electron charge. Under suitable assumptions on V (x), K (x) and f ,
we prove existence and concentration properties of ground state solutions for ε > 0 small.
Moreover, we summarize some open problems for the Schrödinger-Poisson system.
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1 Introduction andmain results

In this paper, we consider the following Schrödinger-Poisson system{
−ε2�u + V (x)u + K (x)φu = f (u) in R

3,

−ε2�φ = K (x)u2 in R
3,

(1.1)

where ε > 0 is a small parameter, V (x) is a potential function and K (x) is used to describe
the electron charge. We are interested in the existence of positive ground state solutions for
competitive relationship between V (x) and K (x), and their asymptotical behavior as ε → 0.

This article is part of the section “Theory of PDEs” edited by Eduardo Teixeira.
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This problem arises when one studies the interaction between an unknown electromagnetic
field and the nonlinear Schrödinger field{

i� ∂�(x,t)
∂t = − �

2

2m�� + Ṽ (x)� + φ� − f (|�|) in R
3 × R,

−�φ = |�|2 in R
3,

(1.2)

where i is the imaginary unit, � is the Planck constant, m is the mass of the field �, Ṽ (x)
is a given external potential and f (exp(iθ)ξ) = exp(iθ) f (ξ) for θ, ξ ∈ R is a nonlinear
function which describes the interaction among many particles.

In recent years, a great deal of work has been devoted to the study of standing waves, i.e.

�(x, t) = e−i Et u(x),

which leads to the stationary Schrödinger-Poisson system (1.1) with ε2 = �
2

2m , Ṽ (x) =
V (x) − E . When ε = V (x) = K (x) = 1, (1.1) was first proposed by Benci and Fortunato
[5] in 1998 on a bounded domain, and is related to the Hartree equation ( [27]). Then, they
[6,7] continued to study the model{

−�u + u + φu = |u|p−2u in R
3,

−�φ = u2 in R
3,

for 4 < p < 6. D’Aprile and Mugnai [12] studied the existence of radially symmetric
solitary waves with 4 ≤ p < 6 and obtained solutions as Mountain-Pass critical points
for the associated energy functional. Azzollini et al. [4] proved the existence of nontrivial
solutions by supposing that the nonlinearity satisfies Berestycki-Lions type assumptions.
Ruiz [32], Ambrosetti and Ruiz [2] considered the system with parameter, that is{

−�u + u + μφu = |u|p−2u in R
3,

−�φ = 4πu2 in R
3,

By working in the radial functions subspace of H1
(
R
3
)
, they obtained the existence and

multiplicity results depending on the parameter p and μ > 0.
If the potential V (x) is not a constant, there are also some works about Schrödinger-

Poisson system {
−�u + V (x)u + φu = f (u) in R

3,

−�φ = u2 in R
3.

(1.3)

Since V (x) might not be radial, one cannot work in the radial functions space directly, then
we must look for some conditions on V (x) to overcome the lack of compactness. Wang and
Zhou [36] assumed that the potential V satisfies the global condition

(V ) 0 < inf
x∈RN

V (x) < lim inf|x |→∞ V (x) = V∞,

whichwas introduced byRabinowitz [30], they got the existence andnon-existence of positive
solutions for the problem (1.3) with asymptotically nonlinearities. Jiang and Zhou [19] first
applied the steep potential well conditions to Schrödinger-Poisson system, and proved the
existence of solutions. Moreover, they also studied the asymptotic behavior of solutions by
combining domains approximation with priori estimates. Later, Zhao et al. [46] considered
a case allowing the potential V change sign. Using variational setting of [15], they obtained
the existence and asymptotic behavior of nontrivial solutions for p ∈ (3, 6). If the electronic
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potential K (x) is not a constant, Ambrosetti [1] studied the existence with a parameter in
front of the nonlocal term. Cerami and Varia [8] studied{

−�u + u + K (x)φu = a(x)|u|p−2u in R
3,

−�φ = K (x)u2 in R
3.

Under suitable assumptions on K (x) and a(x), the authors proved the existence of positive
solutions. If the potential is radial symmetry and has asymptotical behavior at infinity, Li et
al. [23] studied the existence of infinitely many sign-changing solutions. For other related
nonlocal variational problems, we refer the interested readers to see [3,10,20,24,28,29,33,
41,42] and the references therein.

If we consider the case that the parameter ε goes to zero, the problem is used to describe
the transition between the Quantum Mechanics and the Classical Mechanics. The study of a
single Schrödinger equation

−ε2�u + V (x)u = g(u), in R
N

goes back to the pioneer work [16] by Floer and Weinstein. In [13], D’Aprile and Wei
considered {

−ε2�u + V (x)u + φu = |u|p−2u in R
3,

−�φ = u2 in R
3,

(1.4)

for p ∈ (
1, 11

7

)
, they constructed a family of positive radially symmetric solutions concen-

trating around a sphere when the potential is constant. When the potential V (x) satisfies the
global condition (V ), He [17] studied the multiplicity of positive solutions and proved that
these positive solutions concentrate around the global minimum of the potential V . Wang et
al. [34] studied the existence and the concentration behavior of ground state solutions for a
subcritical problem with competing potentials. The critical case was considered in [18], He
and Zou proved that system (1.4) possesses a positive ground state solution which concen-
trate around the global minimum of V . For other related results, we may refer the readers to
[31,38,39,44,45] for recent progress.

Motivated by the results mentioned above, the aim of this paper is to continue to study
the existence and concentration of solutions for the Schrödinger-Poisson system. In fact, we
are interested in the following Schrödinger-Poisson system{

−ε2�u + V (x)u + K (x)φu = f (u) in R
3,

−ε2�φ = K (x)u2 in R
3,

where ε > 0 is a small parameter, V : R
3 → R is a continuous potential and K : R

3 → R

is used to describe the electron charge which satisfy:

(V1) V ∈ C(R3, R) and inf x∈R3 V (x) = V1 > 0.
(V2) There is an open and bounded domain 
 such that

0 < V0 := inf



V (x) < min
∂


V (x).

Without loss of generality we assume 0 ∈ 
. Under the assumption
(K ) K is continuous and bounded with K (x) ≥ 0, K �≡ 0, K (x) = 0 if x ∈ M, where we

assume that M = {x ∈ 
 : V (x) = V0} �= ∅ and V (0) = min
x∈


V (x) = V0.

For the nonlinear term, we assume:
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( f1) f ∈ C(R, R), f (t) = o(t3) as t → 0 and f (t) = 0 for all t ≤ 0;
( f2) there is 4 < p < 6 such that

| f (t)| ≤ c1(1 + |t |p−1)

for all t ∈ R and some c1 > 0;
( f3) there is a constant μ > 4 such that

0 < μF(t) ≤ f (t)t, ∀ > 0,

where F(t) = ∫ t
0 f (τ )dτ ;

( f4) The function f (t)
t3

is strictly increasing for t > 0.

Remark 1.1 Note that, ( f1) and ( f2) imply that for each ε > 0, there is Cε > 0 such that

f (t) ≤ εt + Cε t
p−1 and F(t) ≤ εt2 + Cε t

p, ∀t ≥ 0.

By ( f3), we deduce that

F(t) > 0 and
1

4
f (t)t2 − F(t) > 0, ∀t > 0.

Moreover, it follows from ( f4) that there exist C1,C2 > 0 such that

F(t) ≥ C1t
μ − C2, ∀t ≥ 0.

In this case, we want to study how the behavior of the potential function and electric field
will affect the existence and concentration of the ground state solutions. Now we state our
main results as follows.

Theorem 1.1 Assume that (V1), (V2), (K ) and ( f1)-( f4) hold. Then for any ε > 0 small:

(i) The system (1.1) has a ground state solution ωε;
(i i) ωε possesses a global maximum point xε such that

lim
ε→0

V (xε) = V0;
(i i i) Setting vε(x) := ωε(εx + xε), then vε converges to a ground state solution of

−�u + V0u = f (u), in R
3;

(iv) There are positive constants C1,C2 independent of ε such that

ωε(x) ≤ Ce− c
ε
|x−xε |, ∀x ∈ R

3.

Corollary 1.1 Assume that (V1) holds. If there exist multiple disjoint bounded domains

 j , j = 1, . . . , k and constants c1 < c2 < . . . < ck such that

c j := inf

 j

V (x) < min
∂
 j

V (x).

Then for any ε > 0 small:

(i) The system (1.1) has a ground state solution ω
j
ε ;

(i i) ω
j
ε possesses a global maximum point x j

ε such that

lim
ε→0

V (x j
ε ) = c j ;
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(i i i) Setting v
j
ε (x) := ω

j
ε (εx + xε), then v

j
ε converges in to a ground state solution of

−�u + c j u = f (u), in R
3;

(iv) There are positive constants C1,C2 independent of ε such that

ω j
ε (x) ≤ Ce− c

ε
|x−x j

ε |, ∀x ∈ R
3.

Remark 1.2 We remark here that in Corollary 1.1, the solutions can be separated provided
ε is small since 
 j are mutually disjoint. Furthermore, if c1 is a global minimum of V (x),
then Corollary 1.1 describes a multiple concentrating phenomenon.

This paper is organized as follows. In Sect. 2, we present some basic results which will
be used later. In Sect. 3, we prove the existence of ground state solutions for the modified
problem for small ε > 0. In Sect. 4, we study the concentration phenomenon and complete the
proof of Theorem 1.1. Finally, we give some summaries and open problems in this direction.

Notation. Throughout this paper, we make use of the following notations.

• For any R > 0 and for any x ∈ R
3, BR(x) denotes the ball of radius R centered at x ;

• ‖ · ‖q denotes the usual norm of the space Lq(R3), 1 ≤ q ≤ ∞;
• on(1) denotes on(1) → 0 as n → ∞;
• C or Ci (i = 1, 2, . . .) are some positive constants may change from line to line.

2 Variational setting and preliminary results

Making the change of variable x �→ εx , we can rewrite the Eq. (1.1) as the following
equivalent form {

−�u + V (εx)u + K (εx)φu = f (u) in R
3,

−�φ = K (εx)u2 in R
3.

(2.1)

If u is a solution of the Eq. (2.1), then v(x) := u( x
ε
) is a solution of the equation (1.1). Thus,

to study the Eq. (1.1), it suffices to study the Eq. (2.1). In view of the presence of potential
V (x), we introduce the subspace

Hε =
{
u ∈ H1(R3) :

∫
R3

V (εx)u2dx < ∞
}
,

which is a Hilbert space equipped with the inner product

(u, v)ε =
∫

R3
∇u∇vdx +

∫
R3

V (εx)uvdx,

and the norm

‖u‖2ε =
∫

R3
|∇u|2dx +

∫
R3

V (εx)u2dx .

As we know, system (2.1) is the Euler-Lagrange equation of the functional J : Hε ×
D1,2(R3) → R defined by

J (u, φ) = 1

2
‖u‖2ε + 1

4

∫
R3

|∇φ|2dx + 1

2

∫
R3

K (x)φu2dx −
∫

R3
F(u)dx .
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It is easy to see that J exhibits a strong indefiniteness, namely it is unbounded both
from below and from above on infinitely dimensional subspaces. This indefiniteness can
be removed using the reduction method described in [5]. Recall that by the Lax-Milgram
theorem, we know that for every u ∈ H1(R3), there exists a unique φu ∈ D1,2(R3) such that

−�φu = K (x)u2

and φu can be expressed by

φu(x) = 1

4π

1

|x | ∗ (K (x)u2) = 1

4π

∫
R3

K (y)u2(y)

|x − y| dy, ∀x ∈ R
3,

which is called Riesz potential (see [22]), we will omit the constant π in the following. It is
clear that φu(x) ≥ 0 for all x ∈ R

3. Then the system (2.1) can be reduced to the Schrödinger
equation with nonlocal term:

− �u + V (εx)u + K (εx)φuu = f (u) in R
3. (2.2)

We define the energy functional �ε corresponding to Eq. (2.2) by

�ε(u) = 1

2

∫
R3

|∇u|2dx + 1

2

∫
R3

V (εx)u2dx + 1

4

∫
R3

[ 1

|x | ∗ K (εx)u2
]
K (εx)u2dx −

∫
R3

F(u)dx .

It follows by standard arguments that �ε ∈ C1(Hε, R). Also, for any u, v ∈ Hε , one has

�′
ε(u)v =

∫
R3

∇u∇vdx +
∫

R3
V (εx)uvdx +

∫
R3

[ 1

|x | ∗ K (εx)u2
]
K (εx)uvdx −

∫
R3

f (u)vdx .

Moreover, it is proved that critical points of �ε are weak solutions of system (2.1).
Because we are concerned with the non-local problem in view of the presence of term φu ,

we would like to recall the well-known Hardy-Littlewood-Sobolev inequality.

Lemma 2.1 (Hardy-Littlewood-Sobolev inequality, [25]) Let t, r > 1 and 0 < μ < 3 with

1

t
+ μ

3
+ 1

r
= 2,

f ∈ Lt (R3) and h ∈ Lr (R3). There exists a sharp constant C(t, μ, r), independent of f , h
such that ∫

R3

∫
R3

f (x)h(y)

|x − y|μ dydx ≤ C(t, μ, r)| f |t |h|r .

Using Hardy-Littlewood-Sobolev inequality, it is easy to check that∫
R3

[ 1

|x | ∗ K (εx)u2
]
K (εx)u2dx ≤ C‖u‖412

5
≤ C‖u‖4ε.

To characteristic the ground state energy, we define the Nehari manifold by

Nε = {u ∈ Hε \ {0} : �′
ε(u)u = 0}.

It is natural to define the ground state energy value by

cε := inf
u∈Nε

�ε(u).

If cε is attained by u ∈ Nε, then u is a critical point of �ε . Since cε is the lowest level for
�ε , u is called a ground state solution of Eq. (2.1).
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Lemma 2.2 For any u ∈ Hε\{0}, there exists a unique tε = tε(u) > 0 such that tεu ∈ Nε.
Moreover, �ε(tεu) = max

t≥0
�ε(tu).

Proof For any t > 0, let h(t) = �ε(tu). It is easy to check that h(0) = 0, h(t) > 0 for t > 0
small and h(t) < 0 for t large. Therefore, max

t≥0
h(t) is achieved at a tε = tε(u) > 0 such that

h′(tε) = 0 and tεu ∈ Nε . Since we have

h′(t) = 0 ⇔ tu ∈ Nε

⇔ t2‖u‖2ε + t4
∫

R3

[ 1

|x | ∗ K (εx)u2
]
K (εx)u2dx =

∫
R3

f (tu)tudx

⇔ ‖u‖2ε
t2

+
∫

R3

[ 1

|x | ∗ K (εx)u2
]
K (εx)u2dx =

∫
R3

f (tu)u

t3
dx .

By the definition of h, the left hand side is a strictly decreasing function, while the right hand
side is a strictly increasing function of t > 0. Therefore, max

t≥0
h(t) is achieved at a unique

tε = tε(u) > 0 such that h′(tε) = 0 and tεu ∈ Nε . Hence, we complete the proof. ��
In order to obtain a ground state solution, we need a characterization of the ground state

energy. Following [37], we define

cε = inf
u∈Nε

�ε(u), c∗
ε = inf

γ∈�ε

max
t∈[0,1] �ε(γ (t)), c∗∗

ε = inf
u∈Hε\{0}

max
t≥0

�ε(tu),

where �ε = {γ ∈ C([0, 1], Hε) : γ (0) = 0,�ε(γ (1)) < 0}.
Lemma 2.3 cε = c∗

ε = c∗∗
ε > 0.

Proof It follows from Lemma 2.2 that cε = c∗∗
ε . Note that for any u ∈ Hε \ {0}, there exists

some t0 > 0 such that �ε(t0u) < 0. Define a path γ : [0, 1] → Hε by γ (t) = t t0u. Clearly,
γ ∈ �ε and consequently, c∗

ε ≤ c∗∗
ε . Next we prove that cε ≤ c∗

ε . We have to show that
given γ ∈ �ε , there exist t̃ ∈ [0, 1] such that γ (t) ∈ Nε . Assuming the contrary we have
γ (t) /∈ Nε for all t ∈ [0, 1]. In view of ( f1), we have∫

R3
|∇γ (t)|2dx +

∫
R3

V (εx)γ 2(t)dx +
∫

R3

[ 1

|x | ∗ K (εx)γ 2(t)
]
K (εx)γ 2(t)dx >

∫
R3

f (γ (t))γ (t)dx

which implies that

�ε(γ (t)) >
1

4

∫
R3

|∇γ (t)|2dx + 1

4

∫
R3

V (εx)γ 2(t)dx +
∫

R3

[
1

4
f (γ (t))γ (t) − F(γ (t))

]
dx ≥ 0

which is a contradiction with the definition of γ . ��
In order to prove our main result, we will make use of the autonomous problem. Precisely,

for any μ > 0, ν ≥ 0, we consider the following constant coefficient system{
−�u + μu + νφu = f (u) in R

3,

−�φ = νu2 in R
3,

(2.3)

and the corresponding energy functional

Jμν(u) = 1

2

∫
R3

|∇u|2dx + μ

2

∫
R3

u2dx + ν2

4

∫
R3

[ 1

|x | ∗ u2
]
u2dx −

∫
R3

F(u)dx,
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for u ∈ H1(R3). Define the Nehari manifold associated with (2.3) by

Nμν := {
u ∈ H1(R3) \ {0} : J ′

μν(u)u = 0
}
,

and the ground state energy

cμν = inf
u∈Nμν

Jμν(u).

The energy value cμν and the manifold Nμν have properties similar to those of cε and Nε

stated in Lemmas 2.2–2.3. Hence, for each u ∈ H1(R3) \ {0}, there exists a unique tu > 0
such that tuu ∈ Nμν . Note that, cμν is attained at some positive u ∈ H1(R3), see [17] for
ν > 0 and [30] for ν = 0.

The following Lemma describes a comparison between the ground state energy values for
different parameters μ, ν, which will play an important role in proving the existence result
in the following .

Lemma 2.4 Let μ j > 0 and ν j ≥ 0 for j = 1, 2 with μ1 ≤ μ2 and ν1 ≤ ν2. Then
cμ1ν1 ≤ cμ2ν2 . In particular, if one of inequalities is strict, then cμ1ν1 < cμ2ν2 .

Proof Let u ∈ Nμ2ν2 be such that

cμ2ν2 = Jμ2ν2(u) = max
t>0

Jμ2ν2(tu).

Let u0 = t1u be such that Jμ1ν1(u0) = max
t>0

Jμ1ν1(tu). One has

cμ2ν2 = Jμ2ν2(u) ≥ Jμ2ν2(u0)

= Jμ1ν1(u0) + ν22 − ν21

4

∫
R3

[ 1

|x | ∗ u20
]
u20dx + μ2 − μ1

2

∫
R3

u20dx

≥ cμ1ν1 .

Thus, we complete the proof. ��

3 Themodified problem

In what follows, we will not work directly with the functional �ε, because we have some
difficulties to verify the (PS) condition. We will adapt for our case an argument explored by
the penalization method introduction by del Pino and Felmer [14], and build a convenient
modification of the energy functional �ε such that it satisfies the (PS) condition.

Note that, by ( f1) and ( f4), it is easy to check that

f (t) = o(t) as t → 0 (3.1)

and

The function
f (t)

t
is increasing for t > 0. (3.2)

Now, let us fix κ > 1 and then by (3.1)–(3.2), there exists unique a > 0 such that

f (a)

a
= V0

κ
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where V0 > 0 was given in (V2). Using these numbers, we set the functions

f∗(t) =
{
f (t), if t ≤ a
V0
κ
t, if t > a

and

g(x, t) = χ(x) f (t) + (1 − χ(x)) f∗(t),

where 
 is given in (V2) and χ is the characteristic function of the set 
 in R
3. Clearly,

f∗ ∈ C(R+, R
+) and f∗(t) ≤ f (t), f∗(t) ≤ V0

κ
t for all t ≥ 0. From hypotheses ( f1)-( f4),

it is easy to check that g is a Carathéodory function and satisfies the following properties.

(g1) 0 < μG(x, t) ≤ g(x, t)t for all (x, t) ∈ 
 × (0,∞);
(g2) 0 ≤ 2G(x, t) ≤ g(x, t)t ≤ V0

κ
t2 for all x ∈ 
c × (0,∞),

where G(x, t) = ∫ t
0 g(x, s)ds. From (g1)-(g2), it is easy to check that

(g3)
1
4κ V (x)t2 + 1

4g(x, t)t − G(x, t) ≥ 0 for all (x, t) ∈ R
3 × R;

(g4) M(x, t) := V (x)t2 − g(x, t)t ≥ (1 − 1
κ
)V (x)t2 ≥ 0 for all (x, t) ∈ 
c × R.

Now we study the modified problem{
−�u + V (εx)u + K (εx)φu = g(εx, u) in R

3,

−�φ = K (εx)u2 in R
3.

(3.3)

Note that if uε is a solution of (3.3) with

uε(x) ≤ a ,∀x ∈ 
c
ε,

then uε is a solution of system (2.1), where 
ε := {x ∈ R
3 : εx ∈ 
}.

Now, we define the modified functional �̃ε : Hε → R as

�̃ε(u) = 1

2

∫
R3

|∇u|2dx + 1

2

∫
R3

V (εx)u2dx + 1

4

∫
R3

[ 1

|x | ∗ K (εx)u2
]
K (εx)u2dx −

∫
R3

G(εx, u)dx,

which is of class C1 on Hε and its critical points are the solutions of (3.3).
The following Lemma implies that the functional �̃ε possesses the Mountain Pass struc-

ture.

Lemma 3.1 The functional �̃ε satisfies the following conditions:

(i) There exists α, ρ > 0 such that �̃ε(u) ≥ α with ‖u‖ε = ρ;
(i i) There exists e ∈ Hε satisfying ‖e‖ε > ρ such that �̃ε(e) < 0.

Proof (i). For any u ∈ Hε\{0}, by the Sobolev inequality, we have

�̃ε(u) = 1

2
‖u‖2ε + 1

4

∫
R3

[ 1

|x | ∗ K (εx)u2
]
K (εx)u2dx −

∫
R3

G(εx, u)dx

≥ 1

2
‖u‖2ε −

∫
R3

F(u)dx

≥ 1

4
‖u‖2ε − C‖u‖p

ε .

Since p > 4, hence, we can choose some ρ > 0 such that

�̃ε(u) ≥ α with ‖u‖ε = ρ.
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(i i). Fix ϕ ∈ Hε\{0} with suppϕ ⊂ 
ε. Then, for t > 0, we have

�̃ε(tϕ) ≤ t2

2
‖ϕ‖2ε + t4

4
‖K‖2∞

∫
R3

[ 1

|x | ∗ ϕ2]ϕ2dx −
∫


ε

F(tϕ)dx

≤ t2

2
‖ϕ‖2ε + t4

4
‖K‖2∞

∫
R3

[ 1

|x | ∗ ϕ2]ϕ2dx − C1t
μ

∫

ε

|ϕ|μdx + C2|
ε|,

where we have used the Remark 1.1. Therefore, (i i) follows with e = tϕ and t large enough.
��

It follows from Lemma 3.1 and the Mountain Pass theorem without (PS) condition [37]
that there exist a (PS)c sequence {un} ⊂ Hε such that

�̃ε (un) → c̃ε and �̃′
ε (un) → 0 in H−1

ε , (3.4)

with the mountain pass level

c̃ε = inf
γ∈�̃ε

sup
t∈[0,1]

�̃ε(γ (t)) > 0,

where �̃ε =
{
γ ∈ C ([0, 1], Hε) : γ (0) = 0, �̃ε(γ (1)) < 0

}
. Moreover, we have the fol-

lowing Lemmas.

Lemma 3.2 {un} is bounded in Hε.

Proof Let {un} ⊂ Hε be a (PS)c sequence for �̃ε , that is

�̃ε(un) → c̃ε and �̃′
ε(un) → 0.

By (g4), for n large enough, one has

C + C‖un‖ε ≥ �̃ε(un) − 1

4
�̃′

ε(un)un

= 1

4
‖un‖2ε +

∫
R3

[1
4
g(εx, un) − G(εx, un)

]
dx

≥ 1

4
(1 − 1

κ
)‖un‖2ε +

∫
R3

[ 1

4κ
V (εx)u2n + 1

4
g(εx, un) − G(εx, un)

]
dx

≥ 1

4
(1 − 1

κ
)‖un‖2ε

which implies that {un} is bounded in Hε . ��
Adopting similar arguments as in Lemma 2.3 we have the following equivalent charac-

terization of c̃ε.

Lemma 3.3 c̃ε = infu∈Hε\{0} maxt≥0 �̃ε(tu) for any ε > 0 small.

Proof For any u ∈ Hε \ {0}, we first define a function

J∞(tu) : = t2

2

(∫
R3

|∇u|2dx + ‖V ‖∞
∫

R3
u2dx

)
+ t4

4
‖K‖2∞

∫
R3

[
1

|x | ∗ u2
]
u2dx −

∫
R3

F(tu)dx .

Thus, we have

J∞(tu) → −∞ as t → ∞,
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which implies that there exists t0 > 0 large enough such that

J∞(t0u) < −2.

Hence there is R0 > 0 such that

t20
2

(∫
R3

|∇u|2dx + ‖V ‖∞
∫

R3
u2dx

)
+ t40

4
‖K‖2∞

∫
R3

[
1

|x | ∗ u2
]
u2dx −

∫
BR0

F(t0u)dx < −1.

Therefore,

�̃ε(t0u) = t2

2
‖u‖2ε + t40

4

∫
R3

[
1

|x | ∗ K (εx)u2
]
K (εx)u2dx −

∫
R3

G(εx, t0u)dx

≤ t20
2

‖u‖2ε + t40
4

‖K‖2∞
∫

R3

[
1

|x | ∗ u2
]
u2dx −

∫

ε

F(t0u)dx

≤ t20
2

(∫
R3

|∇u|2dx + ‖V ‖∞
∫

R3
u2dx

)
+ t40

4
‖K‖2∞

∫
R3

[
1

|x | ∗ u2
]
u2dx −

∫
BR0

F(t0u)dx

< −1.

Thus, we have

c̃ε ≤ inf
u∈Hε\{0}

max
t≥0

�̃ε(tu)

On the other hand, it is easy to see that t �→ �̃ε(tu) has at most one nontrivial critical point
t = t(u) > 0. As in [14, Lemma 1.2], we define

Mε := {t(u)u : u ∈ Hε \ {0}, t(u) < ∞}.
Then

inf
u∈Hε\{0}

max
t≥0

�̃ε(tu) = inf
v∈Mε

�̃ε(v).

Thus we only need to show that given γ ∈ �̃ε, there exists t̃ ∈ [0, 1] such that γ (t̃) ∈ Mε.
Similar to the proof in Lemma 2.3, this completes the proof. ��
Lemma 3.4 There exists ε∗ > 0 such that, for all ε ∈ (0, ε∗), there exist {yε} ⊂ R

3 and R,
δ > 0 such that ∫

BR(yε)
u2dx ≥ δ.

Proof Assume by contradiction that there exists a sequence ε j → 0 as j → ∞, such that
for any R > 0,

lim
j→∞ sup

y∈R3

∫
BR(y)

u2ε j
dx = 0.

Thus, by Lion’s concentration principle [26, Lemma 1.1], we have

uε j → 0 in Lr (R3) for 2 < r < 6.

Thus, by Remark 1.1 ∫
R3

g(ε j x, uε j )uε j dx → 0 as j → ∞,
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and by Lemma 2.1∫
R3

[ 1

|x | ∗ K (ε j x)u
2
ε j

]
K (ε j x)u

2
ε j
dx → 0 as j → ∞.

Therefore,

‖uε j ‖2ε j
= −

∫
R3

[ 1

|x | ∗ K (ε j x)u
2
ε j

]
K (ε j x)u

2
ε j
dx −

∫
R3

g(ε j x, uε j )uε j dx → 0. (3.5)

Moreover, it is not difficulty to check that exists constant r∗ such that

‖uε j ‖ε j ≥ r∗ > 0,

which is a contradiction with (3.5). ��

Lemma 3.5 The functional �̃ε satisfies the (PS)c condition.

Proof Let {un} ⊂ Hε be a (PS)c sequence for �̃ε , it follows from Lemmas 3.2–3.4 that {un}
is bounded in Hε and we can assume that there is u ∈ Hε such that

un⇀u in Hε

un(x) → u(x) a.e. in R
3,

un → u in Lq
loc(R

3), for 1 ≤ q < 6

(3.6)

and �̃′
ε(u) = 0. Thus,

∫
R3

|∇u|2dx +
∫

ε

V (εx)u2dx +
∫

R3

[ 1

|x | ∗ K (εx)u2
]
K (εx)u2dx +

∫

c

ε

M(εx, u)dx =
∫

ε

f (u)udx .

On the other hand, using the limit �′
ε(un)un = on(1), we deduce that

∫
R3

|∇un |2dx +
∫

ε

V (εx)u2ndx +
∫

R3

[ 1

|x | ∗ K (εx)u2n
]
K (εx)u2ndx +

∫

c

ε

M(x, un)dx

=
∫

ε

f (un)undx + on(1).

Since 
ε is bounded, the compactness of the Sobolev embedding gives

lim
n→∞

∫

ε

f (un)undx =
∫


ε

f (u)udx

and

lim
n→∞

∫

ε

V (εx)u2ndx =
∫


ε

V (εx)u2dx . (3.7)

Therefore,

lim sup
n→∞

∫
R3

|∇un |2dx +
∫

R3

[ 1

|x | ∗ K (εx)u2n
]
K (εx)u2ndx +

∫

c

ε

M(x, un)dx

=
∫

R3
|∇u|2dx +

∫
R3

[ 1

|x | ∗ K (εx)u2
]
K (εx)u2dx +

∫

c

ε

M(x, u)dx .
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Now, recalling that M(x, t) ≥ 0, the Fatou’s lemma lead to

lim inf
n→∞

∫
R3

|∇un |2dx +
∫

R3

[ 1

|x | ∗ K (εx)u2n
]
K (εx)u2ndx +

∫

c

ε

M(x, un)dx

≥
∫

R3
|∇u|2dx +

∫
R3

[ 1

|x | ∗ K (εx)u2
]
K (εx)u2dx +

∫

c

ε

M(x, u)dx .

Hence,∫
R3

|∇u|2dx ≤ lim inf
n→∞

∫
R3

|∇un |2dx ≤ lim sup
n→∞

∫
R3

|∇un |2dx

≤ lim sup
n→∞

∫
R3

|∇un |2dx + lim inf
n→∞

∫

c

ε

M(x, un)dx −
∫


c
ε

M(x, u)dx

+ lim inf
n→∞

∫
R3

[ 1

|x | ∗ K (εx)u2n
]
K (εx)u2ndx −

∫
R3

[ 1

|x | ∗ K (εx)u2
]
K (εx)u2dx

≤ lim sup
n→∞

( ∫
R3

|∇un |2dx +
∫


c
ε

M(x, un)dx +
∫

R3

[ 1

|x | ∗ K (εx)u2n
]
K (εx)u2ndx

)

−
∫


c
ε

M(x, u)dx −
∫

R3

[ 1

|x | ∗ K (εx)u2
]
K (εx)u2dx

=
∫

R3
|∇u|2dx

which implies that

lim
n→∞

∫
R3

|∇un |2dx =
∫

R3
|∇u|2dx .

Similarly,

lim
n→∞

∫

c

ε

M(x, un)dx =
∫


c
ε

M(x, u)dx

and

lim
n→∞

∫
R3

[ 1

|x | ∗ K (εx)u2n
]
K (εx)u2ndx =

∫
R3

[ 1

|x | ∗ K (εx)u2
]
K (εx)u2dx .

The last limit combined with the fact

M(x, t) ≤ V (x)t2 ≤ κ

κ − 1
M(x, t) for any (x, t) ∈ 
c × R,

yields

lim
n→∞

∫

c

ε

V (εx)u2ndx =
∫


c
ε

V (εx)u2dx . (3.8)

Hence, (3.7) and (3.8) imply that

lim
n→∞

∫
R3

V (εx)u2ndx =
∫

R3
V (εx)u2dx .

Thus,

lim
n→∞

(∫
R3

|∇vn |2dx +
∫

R3
v2ndx

)
=

∫
R3

|∇u|2dx +
∫

R3
u2dx .

Together with vn⇀u in H1(R3), we have vn → u in H1(R3). ��
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Lemma 3.6 The functional �̃ε has a positive critical point uε such that

�̃ε(uε) = c̃ε and �̃′
ε(uε) = 0.

Proof From Lemma 3.1 and (3.4), we know that there is a nontrivial uε ∈ Hε such that

�̃ε(uε) = c̃ε and �̃′
ε(uε) = 0.

Moreover, the function uε is nonnegative, because

�̃′
ε(uε)u

−
ε = 0 ⇒ u−

ε = 0,

where u−
ε = min{uε(x), 0}. Thus, by strong maximal principle, we get a positive critical

point. ��
To find a new upper bound for c̃ε, we need to investigate the “limit” problem:

−�u + V0u = f (u), in R
3.

Firstly, denote the standard norm of HV0 by

‖u‖V0 :=
(∫

R3
|∇u|2 + V0u

2dx

)1/2

The associated energy functional is

JV0(u) = 1

2

∫
R3

|∇u|2dx + V0
2

∫
R3

u2dx −
∫

R3
F(u)dx .

It is easy to check that JV0 is well defined on HV0 and JV0 ∈ C1
(
HV0 , R

)
. Then we can

define

N V0 = {
u ∈ HV0\{0} | 〈J ′

V0(u), u
〉 = 0

}
and

cV0 = inf
u∈N V0

JV0(u).

Remark 3.1 For cV0 ,JV0 and N V0 , there are similar results obtained from Lemma 3.1 to
Lemma 3.6. By Mountain pass Theorem, we can see that there exists u ∈ HV0 such that
JV0(u) = cV0 and J ′

V0
(u) = 0.

The next lemma establishes an important relation between c̃ε and cV0 .

Lemma 3.7 lim supε→0 c̃ε ≤ cV0 .

Proof Let w be a positive ground state solution of JV0 , that is, w ∈ N V0 ,JV0(w) = cV0 and
J ′
V0

(w) = 0. Set wε(x) = η(εx)w(x), where η is a smooth function compactly supported in

, such that η = 1 in a small neighborhood of origin in 
. From the definition of g, one has∫

R3
g(εx, wε)wεdx =

∫
R3

f (wε)wεdx, and
∫

R3
G(εx, wε)dx =

∫
R3

F(wε)dx .

Thus, Lemma 2.2 implies that there exists tε > 0 such that tεwε ∈ Nε and satisfying

�̃ε(tεwε) = max
t≥0

�̃ε(twε). (3.9)
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By a standard argument, we know that there exist constants T1, T2 > 0 such that T1 ≤
tε ≤ T2. So, we can assume that tε → t0 > 0 as ε → 0. Note that, as ε → 0∫

R3
V (εx)w2

εdx → V0

∫
R3

w2dx,
∫

R3
f (tεwε)wdx →

∫
R3

f (t0w)wdx

and ∫
R3

[ 1

|x | ∗ K (εx)w2
ε

]
K (εx)w2

εdx → K 2(0)t40

∫
R3

[ 1

|x | ∗ w2]w2dx = 0

which implies that t0w ∈ N V0 . Moreover, w is also in N V0 . So, t0w = w and hence t0 = 1
by the uniqueness. Therefore, it follows from Lemma 3.3 and (3.9) that

lim sup
ε→0

c̃ε ≤ lim sup
ε→0

max
t≥0

�̃ε(twε) = lim sup
ε→0

�̃ε(tεwε) = JV0(w) = cV0 .

This completes the proof. ��
Lemma 3.8 For any εn → 0, consider the sequence {yεn } ⊂ R

3 given in Lemma 3.4 and
vn(x) := uεn (x + yεn ), with uεn obtained in Lemma 3.6. Then, there is u ∈ H1(R3) \ {0}
such that, up to a subsequence

vn → u in H1(R3).

Moreover, there is x0 ∈ 
 such that

lim
n→∞ εn yεn = x0 and V (x0) = V0.

Proof For simplicity of notations, we denote uεn and yεn by un and yn , respectively. We will
divided the proof into the following three claims.
Claim 1: {εn yn} is bounded.

In fact, suppose to the contrary that, up to a subsequence, |εn yn | → ∞ as n → ∞. We
can assume that V (εnx + εn yn) → V∞, K (εnx + εyn) → K∞ and χ(εnx + εn yn) → 0 as
n → ∞ uniformly hold on bounded sets of x ∈ R

3, where V∞ ≥ V0 and K∞ ≥ 0. Similar
to Lemma 3.2, {un} is bounded in H1(R3) and so {vn} is also bounded in H1(R3). Hence,
there is nonnegative u ∈ H1(R3) \ {0} such that

vn⇀u in H1(R3).

Obviously, vn satisfies

−�vn + V (εnx + εn yn)vn + (
1

|x | ∗ K (εnx + εn yn)v
2
n)K (εnx + εn yn)vn = g(εnx + εn yn, vn).

Thus, for any ϕ ∈ C∞
0 (R3), there holds

0 =
∫

R3

(∇vn∇ϕ + V (εnx + εn yn)vnϕ)dx +
∫

R3
(
1

|x | ∗ K (εnx + εn yn)v2n)K (εnx + εn yn)vnϕdx

−
∫

R3
g(εn x + εn yn , vn)ϕdx .

Since V is continuous and bounded, one has∫
R3

V (εnx + εn yn)vnϕdx → V∞
∫

R3
uϕdx,

∫
R3

g(εnx + εn yn, vn)ϕdx →
∫

R3
f∗(u)ϕdx .
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We claim that∫
R3

(
1

|x | ∗ K (εnx + εn yn)v
2
n

)
K (εnx + εn yn)vnϕdx → K 2∞

∫
R3

[ 1

|x | ∗ u2
]
uϕdx .

Note that∫
R3

(
1

|x | ∗ K (εnx + εn yn)v
2
n

)
K (εnx + εn yn)vnϕdx − K 2∞

∫
R3

[ 1

|x | ∗ u2
]
uϕdx

=
∫

R3

(
1

|x | ∗ K (εnx + εn yn)v
2
n

) (
K (εnx + εn yn)vn − K∞u

)
ϕdx

+ K∞
∫

R3

[
1

|x | ∗ (
K (εnx + εn yn)v

2
n − K∞u2

)]
uϕdx .

For the first term, by Lemma 2.1, one has∣∣∣∣
∫

R3

(
1

|x | ∗ K (εnx + εn yn)v
2
n

) (
K (εnx + εn yn)vn − K∞u

)
ϕdx

∣∣∣∣
≤ ‖K‖∞‖vn‖212

5
‖(K (εnx + εn yn)vn − K∞u)ϕ‖ 6

5

≤ C

( ∫
R3

|K (εnx + εn yn)vn − K∞u| 65 |ϕ| 65 dx
) 6

5

.

It is easy to check that

( ∫
R3

|K (εnx + εn yn)vn − K∞u| 65 |ϕ| 65 dx
) 6

5 → 0.

and then∣∣∣∣
∫

R3

(
1

|x | ∗ K (εnx + εn yn)v
2
n

) (
K (εnx + εn yn)vn − K∞u

)
ϕdx

∣∣∣∣ → 0.

For the second term, since K (εnx + εn yn)v2n → K∞u2 a.e. x ∈ R
3, then

K (εnx + εn yn)v
2
n⇀K∞u2 in L

6
5 (R3).

Recall that the convolution operator

1

|x | ∗ w(x) ∈ L6(R3)

for allw ∈ L
6
5 (R3) and it is a linear bounded operator from L

6
5 (R3) to L6(R3). Consequently

1

|x | ∗ (
K (εnx + εn yn)v

2
n

)
⇀K∞

( 1

|x | ∗ u2
)
in L6(R3).

So, ∫
R3

[
1

|x | ∗ (
K (εnx + εn yn)v

2
n − K∞u2

)]
uϕdx → 0.

Hence u satisfies

−�u + V∞u + K 2∞
( 1

|x | ∗ u2
)
u = f∗(|u|)u, x ∈ R

3.
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Taking the scalar product of this equation with u, one has

0 =
∫

R3
|∇u|2dx + V∞

∫
R3

u2dx + K 2∞
∫

R3

( 1

|x | ∗ u2
)
u2dx −

∫
R3

f∗(u)udx

≥
∫

R3
|∇u|2dx + V0

∫
R3

u2dx − V0
k

∫
R3

u2dx

≥
∫

R3
|∇u|2dx + κ − 1

κ
V0

∫
R3

u2dx,

which is a contradiction with u �= 0.
After extracting a subsequence, we may assume εn yn → x0 as n → ∞. If x0 /∈ 
̄, then

there exists δ0 > 0 such that {εn yn} ⊂ R
3 \ 
δ0 for n large enough. Repeating the argument

in the proof of Claim 1, we can get a same contradiction. Thus, we have that x0 ∈ 
̄.
Claim 2: x0 ∈ 
.

A similar argument as discussed in Lemma 3.6, we know that u is a solution of the
following equation

−�u + V (x0)u + K 2(x0)
( 1

|x | ∗ u2
)
u = ḡ(x, u), x ∈ R

3

where

ḡ(x, u) := ξ(x) f (u) + (1 − ξ(x)) f∗(u)

and

χ(εnx + εn yn) → ξ(x) a.e. in R
3,

with energy

�̌x0 (u) = 1

2

∫
R3

|∇u|2dx + V (x0)

2

∫
R3

u2dx + K 2(x0)

4

∫
R3

( 1

|x | ∗ u2
)
u2dx −

∫
R3

G(x, u)dx,

and the corresponding mountain pass level by čx0 . Note that, G(x, t) ≤ F(t) for all x ∈
R
3, t ≥ 0, which gives then cx0 ≤ čx0 , where cx0 denotes the mountain pass level associated

with J̌x0 , where J̌x0 : E → R is given by

J̌x0(u) = 1

2

∫
R3

|∇u|2dx + V (x0)

2

∫
R3

u2dx + K 2(x0)

4

∫
R3

( 1

|x | ∗ u2
)
u2dx −

∫
R3

F(u)dx .

Then,

cx0 ≤ čx0 ≤ �̌x0 (u) = �̌x0 (u) − 1

4
�̌′
x0 (u)u

= 1

4

∫
R3

|∇u|2dx + 1

4
(1 − 1

κ
)

∫
R3

V (x0)u
2dx +

∫
R3

(
1

4κ
V (x0)u

2 + 1

4
ǧ(x, u)u − Ǧ(x, u)

)
dx

≤ lim inf
n→∞

[
1

4

∫
R3

|∇vn |2dx + 1

4
(1 − 1

κ
)

∫
R3

V (εnx + εn yn)v2ndx

+
∫

R3

(
1

4κ
V (εnx + εn yn)v2n + 1

4
g(εnx + εn yn , vn)vn − G(εnx + εn yn , vn)

)
dx

]
= lim inf

n→∞ cεn ≤ cV0 .

Therefore, cx0 ≤ cV0 , which implies that V (x0) ≤ V (0) = V0. Then, by it follows that
x0 /∈ ∂
 and so x0 ∈ 
, proving the claim.
Claim 3: vn → u in H1(R3) as n → ∞.
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From Lemma 3.5, it is easy to see that

lim
n→∞

∫
R3

|∇un |2dx =
∫

R3
|∇u|2dx

and

lim
n→∞

∫
R3

V (εnx + εn yn)v
2
ndx = V (x0)

∫
R3

u2dx .

The last limit gives

lim
n→∞

∫
R3

v2ndx =
∫

R3
u2dx .

Thus,

lim
n→∞

(∫
R3

|∇vn |2dx +
∫

R3
v2ndx

)
=

∫
R3

|∇u|2dx +
∫

R3
u2dx .

Together with vn⇀u in H1(R3), we have vn → u in H1(R3). ��
The following lemma plays a fundamental role in the study of behavior of the maximum

points of the solutions. We omit its proof, which are related to the Moser iterative method
[17,38].

Lemma 3.9 There exists C > 0 independent of n such that ‖vn‖∞ ≤ C and

lim|x |→∞ vn(x) = 0 uniformly in n ∈ N.

Furthermore, there exist c1, c2 > 0 such that

vn(x) ≤ c1e
−c2|x |, ∀x ∈ R

3.

4 Proof of main results

In this section we will prove our main result. The idea is to show that the solutions obtained
in Lemma 3.6 verify the following estimate uε(x) ≤ a, ∀x ∈ 
c

ε for ε small enough. This
fact implies that these solutions are in fact solutions of the original problem (2.1).

Lemma 4.1 There exists n0 ∈ N such that

un ≤ a, ∀n ≥ n0 and x ∈ 
c
εn

.

Hence, un is a solution of (2.1) with ε = εn for n ≥ n0.

Proof By Lemma 3.9, we obtain that εn yn → x0 ∈ 
. Thus, up to a subsequence, there
exists r > 0 such that

B(εn yn, r) ⊂ 
, ∀n ∈ N.

Hence,

B

(
yn,

r

εn

)
⊂ 
εn , ∀n ∈ N,
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which implies that


c
εn

⊂ R
3 \ B

(
yn,

r

εn

)
, ∀n ∈ N.

Next, by Lemma 3.9, there exists R > 0 such that

vn(x) ≤ a, for |x | ≥ R and ∀n ≥ n0,

which means that

un(x) = vn(x − yn) ≤ a, x ∈ R
3 \ B(yn, R) and ∀n ≥ n0.

On the other hand, there is some n0 ∈ N such that


c
εn

⊂ R
3 \ B(yn,

r

εn
) ⊂ R

3 \ B(yεn , R), ∀n ≥ n0.

Therefore,

un ≤ a, ∀n ≥ n0 and x ∈ 
c
εn

.

This completes the proof. ��
Proof of Theorem 1.1. By Lemma 3.6, the problem (3.3) has a ground state solution uε for
all ε > 0. From Lemma 4.1, there exists ε0 > 0 such that

uε ≤ a, ∀x ∈ R
3 \ 
ε and ∀ε ∈ (0, ε0).

that is, uε is a solution of (2.1) for ε ∈ (0, ε0). Considering

ωε(x) = uε

( x
ε

)
, ∀ε ∈ (0, ε0).

Then ωε is a solution of the original system (1.1).
Now, we claim that there exists a ρ0 > 0 such that ‖vn‖∞ ≥ ρ0,∀n ∈ N. In fact, suppose

that ‖vn‖ → 0 as n → ∞. Then there exists n0 ∈ N such that

g(εnx + εn yn, vn) ≤ V0
2

vn for n ≥ n0.

Therefore, we have∫
R3

|∇vn |2dx + V0

∫
R3

v2ndx ≤
∫

R3
|∇vn |2dx +

∫
R3

V (εnx + εn yn)v
2
ndx

+
∫

R3
(
1

|x | ∗ K (εnx + εn yn)v
2
n)K (εnx + εn yn)v

2
ndx

=
∫

R3
g(εnx + εn yn)vndx

≤ V0
2

∫
R3

v2ndx .

This implies that ‖vn‖V0 = 0 for n ≥ n0, which is impossible because vn → u in H1(R3)

and u �= 0. Then, the claim is true.
From the above claim, we see that vn has a global maximum points pn ∈ BR0(0) for

some R0 > 0. Hence, the global maximum points of ωn given by xn := εn(pn + yn). Since
pn ∈ BR0(0) is bounded, then we know that {xn} is bounded and xn → x0 ∈ 
, that is

lim
n→∞ V (xn) = V (x0).
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Furthermore, similar to the argument of Lemma 3.9, ṽn(x) := ωn(εnx + εnxn) converges to
a positive ground state solution of

−�u + V0u = f (u).

At last, by Lemma 3.9, one has

ωn(x) = vn

(
x

εn
− yn

)
≤ Ce−c| x−εn yn

εn
| ≤ Ce−c| x−εn yn−εn pn

εn
| = Ce− c

εn
|x−xn |.

Thus, the proof of Theorem 1.1 is completed.

5 Some open questions

We close this paper by listing several problems that are left open in this direction.

Problem 1: Uniqueness and Non-degeneracy
If we set f (u) = |u|p−2u in our problem (1.1) with 4 < p < 6, we have{

−ε2�u + V (x)u + K (x)φu = |u|p−2u in R
3,

−ε2�φ = K (x)u2 in R
3,

which has a ground state solution converging to the uniqueness ground state solution of

− �u + V0u = |u|p−2u in R
3. (5.1)

For (5.1), uniqueness and non-degeneracy has a long history and has been addressed bymany
authors, see [9,11,21]. Then we want to know whether the Schrödinger-Poisson system also
has similar results.

Problem 2: Concentration phenomenon for local competing potential functions
In this problem we want to consider the following problem:{

−ε2�u + V (x)u + φu = Q(x) f (u) in R
3,

−ε2�φ = u2 in R
3.

The question is about the concentration phenomenon when V (x) has local minimum and
Q(x) has a local maximum:

(a) V , Q ∈ C(R3, R) and infx∈R3 V (x) = V1 > 0, infx∈R3 Q(x) = Q1 > 0.
(b) There is a open and bounded domain 
 such that

V (xmin) := inf



V (x) < min
∂


V (x), Q(xmax ) = sup



Q(x) > max
∂


Q(x).

In this case, V and Q all want to attract solutions to their local extreme point, the we call
it local competing potential functions. In fact, if the condition is global, there have been
some results for Schrödinger-Poisson system [34,35,38] and fractional Schrödinger-Poisson
system [40,43].

Problem 3: Double-critical case
For the double critical Schrödinger-Poisson system{

−�u + V (x)u + K (x)φ|u|3u = |u|4u in R
3,

−�φ = K (x)|u|5 in R
3,
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or more general

− �u + V (x)u + (Iα ∗ K (x)|u|p)K (x)φ|u|p−2u = |u|q−2u in R
N , (5.2)

where 1 < p ≤ N+α
N−2 , 2 < q ≤ 2∗ = 2N

N−2 and Iα : R
N → R is the Riesz potential of order

α ∈ (0, N ) defined for x ∈ R
N\{0} as

Iα(x) = Aα

|x |N−α
, Aα = �

( N−α
2

)
�

(
α
2

)
πN/22α

.

Because forα ∈ (0, N ) the Riesz potential Iα is theGreen function of the fractional Laplacian
(−�)α/2, then the system {−�u + φ|u|p−2u = |u|q−2u,

(−�)α/2φ = u p,

is formally equivalent to Eq. (5.2). Therefore, we want to know the existence, multiplicity
and different asymptotic behavior depending on α → 0.
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