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Abstract. In this paper, we are concerned with the following eigenvalue
problem

(−∆)su+ λg(x)u = αu, u ∈ Hs(RN ), N ≥ 3,

where s ∈ (0, 1), α, λ ∈ R and

g(x) ≡ 0 on Ω̄, g(x) ∈ (0, 1] on RN\Ω̄ and lim
|x|→∞

g(x) = 1

for some bounded open set Ω ⊂ RN . We discuss the existence and
some properties of the first two eigenvalues for this problem, which ex-
tend some classical results for semilinear Schrödinger equations to the
nonlocal fractional setting.

1. Introduction and the main results

In this paper, we discuss the eigenvalue problem

(−∆)su+ λg(x)u = αu, u ∈ Hs(RN ), N ≥ 3, (1.1)

where (−∆)s denotes the fractional Laplacian operator of order s ∈ (0, 1),
λ, α are real numbers, and the function g satisfies the condition:
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(G) g ∈ L∞(RN ,R) and there exists a nonempty bounded open set Ω ⊂
RN with Lipschitz boundary such that

g(x) ≡ 0 on Ω̄, g(x) ∈ (0, 1] on RN\Ω̄ and lim
|x|→∞

g(x) = 1.

By the condition (G), the potential functional g(x) represents a potential
well with the bottom Ω and whose depth is controlled by the parameter λ.

A basic motivation for the study of Eq. (1.1) arises in looking for the
standing wave solutions of the type

Ψ(x, t) = e−iEt/εu(x)

for the following time-dependent fractional Schrödinger equation

iε
∂Ψ

∂t
= ε2s(−∆)sΨ + (V (x) + E)Ψ− f(x,Ψ) (x, t) ∈ RN × R. (1.2)

Eq. (1.2) was introduced by Laskin [22, 23], which describes how the wave
function of a physical system evolves over time. In the last few years, the
study of elliptic equation involving fractional Laplacian operator appears
widely in both pure mathematical research and concrete applications, such
as the thin obstacle problem [7, 30], minimal surfaces [6, 9], phase transitions
[31], anomalous diffusion [4, 28, 34] and mathematical finance [12]. See [13,
14, 3] and references therein for an elementary introduction to the literature.
Recently, problem (1.1) and problems similar as (1.1) have captured a lot of
interest, especially on the existence and nonexistence of positive solutions,
multiple solutions, ground states and regularity, see for example, [5, 8, 11,
16, 17, 20, 36, 37, 38, 39] and the references therein.

For a bounded domain Ω ⊂ RN , R. Servadei and E. Valdinoci in [29]
studied the eigenvalue problem{

LKu = ξu in Ω,

u = 0 in RN\Ω,
(1.3)

where LK : RN\{0} → (0,+∞) is defined as

LKu(x) = −1

2

∫
RN

(
u(x+ y) + u(x− y)− 2u(x)

)
K(y)dy for all x ∈ RN ,

which satisfies the following conditions:

(i) mK ∈ L1(RN ), where m(x) = min{|x|2, 1},
(ii) There exist λ > 0 and s ∈ (0, 1) such that K(x) ≥ λ|x|−(N+2s),

(iii) K(x) = K(−x) for any x ∈ RN\{0}.
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In case K(x) = |x|−(N+2s), (1.3) transform into{
(−∆)su = ξu in Ω,

u = 0 in RN\Ω.
(1.4)

The authors prove that problem (1.3) or (1.4) has a sequence of eigenvalues
{ξk} satisfy

0 < ξ1 < ξ2 ≤ · · · ≤ ξk ≤ · · · and ξk →∞ as k →∞.

Moreover, for each k ∈ N, there exists an eigenfunction ϕk corresponding to
the eigenvalue ξk such that ∫

Ω
ϕ2
kdx = 1.

In particular, the first eigenvalue ξ1 is simple, isolated and there is a unique
eigenfunction satisfying the conditions∫

Ω
ϕ2

1dx = 1 and ϕ1 > 0 on Ω.

When the domain Ω is replaced by RN and there exists a potential func-
tion, one of the main difficulty, as opposed to their study on bounded do-
mains, is the fact that the spectrum contains points which are not eigenval-
ues. C.A. Stuart and H. Zhou in [33] discusses the problem

−∆u+ λg(x)u = αu, u ∈ H1(RN ), u > 0. (1.5)

Let the condition (G) be satisfied. They proved that the principal eigenvalue
λ = Λ(α) always exists for any α ∈ (Γ, µ1) with

Γ = inf
{∫

RN
|∇u|2dx : u ∈ H1(RN ) and

∫
RN

(1− g)u2dx = 1
}
,

where µ1 is the first eigenvalue of (1.4) with s = 1 and the Λ(α)-eigenfunction
ϕΛ is the only eigenfunction which does change sign. Later, X. Liu and Y.
Huang in [26] discuss the existence and properties of the second eigenvalue
for (1.5), and they prove the corresponding eigenfunctions change sign. All
the conclusions in [26, 33] are useful result to study the asymptotically linear
Schrödinger equation, see [1, 24, 25, 27, 35] for example.

Our aim in this paper is to show that the results of [26, 33] can be extended
to problem (1.1). In order to do this, as in the classical case, we will use a
variational technique for spectral analysis. We first set

Γ1 = inf
{∫

RN
|(−∆)

s
2u|2dx : u ∈ Hs(RN ) and

∫
RN

(1− g)u2dx = 1
}
.
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In the first part of this paper, we follows [33] describing the eigenvalue λ
as a function of the parameter α rather than the eigenvalue α as a function
of the parameter λ in the traditional treatment. Which can help us yield
some no-trivial conclusions. We begin by establishing the following result
concerning the quantity Γ1.

Theorem 1.1. Let the condition (G) be satisfied.

(i) If α ≥ ξ1, then there is no eigenvalue of (1.1) in [α,+∞) with a
non-negative eigenfunction.

(ii) If Γ1 < α < ξ1, then there exists a unique eigenvalue λ = Λ(α) of
(1.1) having a positive eigenfunction. Furthermore, Λ(α) > α, and
it is simple in the sense that

ker((−∆)s − α+ Λ(α)g) = span{uΛ(α)} := V1,

where uΛ(α) > 0 on RN . All other eigenvalues of (1.1) are less than
Λ(α), and their eigenfunctions change sign.

(iii) The function Λ ∈ C∞((Γ1, ξ1)) and is strictly increasing with

lim
α→Γ+

1

Λ(α) = Γ1 and lim
α→ξ−1

Λ(α) = +∞.

(iv) For Γ1 < α < ξ1, Λ(α) is characterized as the unique value of λ for
which Σ(λ) = 0, where

Σ(λ) = inf
{
aλ(u) : u ∈ Hs(RN ) and |u|2 = 1

}
and

aλ(u) =

∫
RN

(
|(−∆)

s
2u|2 − αu2 + λgu2

)
dx.

(v) If α ≤ Γ1, then problem (1.1) has no eigenvalues λ in the interval
(α,∞).

In the following, taking the alternative view, from Theorem 1.1, let λ be
fixed, for the fractional Schrödinger operator

Lλ := (−∆)s + λg(x),

we can define

α1(λ) := inf
{∫

RN
(|(−∆)

s
2u|2 + λg(x)u)dx : u ∈ Hs(RN ) and |u|2 = 1

}
.

Next, we define

Γ2 = inf
u∈Hs(RN )∩V ⊥1

∫
RN |(−∆)

s
2u|2dx∫

RN (1− g)u2dx
.
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Clearly, Γ2 ≥ Γ1. Let X1 denote the set of all closed subspaces of Hs(RN )
with codimension 1. Fixing λ ∈ (Γ2,∞), we define

α2(λ) = inf
{∫

RN
(|(−∆)

s
2u|2 +λg(x)u)dx : u ∈ Hs(RN )∩V ⊥1 and |u|2 = 1

}
and

α̃2(λ) = sup
V ∈X1

inf
u∈V

{∫
RN

(|(−∆)
s
2u|2 + λg(x)u)dx : |u|2 = 1

}
.

Let W2 denote the set of all closed subspaces of Hs(RN ) with dimension 2.
Define

α̂2(λ) = sup
V̂ ∈W2

inf
u∈V̂

{∫
RN

(|(−∆)
s
2u|2 + λg(x)u)dx : |u|2 = 1

}
.

Now, we state the second result in this paper as following:

Theorem 1.2. Let the condition (G) be satisfied. If λ > Γ2, then the
following assertions holds:

(i) α2(λ) is the second eigenvalue of the fractional Schrödinger operator
Lλ := (−∆)s+λg(x), and corresponding eigenfunctions change sign.

(ii) α2(λ) = α̃2(λ) = α̂2(λ).
(iii) α2(λ) is strictly increasing with λ.
(iv) lim

λ→∞
α2(λ) = ξ2.

Throughout this paper, we denote |·|p the usual norm of the space Lp(RN ),
1 ≤ p <∞, Br(x) denotes the open ball with center at x and radius r, C or
Ci(i = 1, 2, · · · ) denote some positive constants may change from line to line.
an ⇀ a and an → a mean the weak and strong convergence, respectively, as
n→∞.

2. Variational settings and preliminary results

First, fractional Sobolev spaces are the convenient setting for our problem,
so we will give some introduction of the fractional order Sobolev spaces and
the complete introduction can be found in [13]. We recall that, for any
s ∈ (0, 1), the fractional Sobolev space Hs(RN ) = W s,2(RN ) is defined as
follows:

Hs(RN ) =
{
u ∈ L2(RN ) :

∫
RN

(|ξ|2s|+ 1)|F(u)|2dξ <∞
}
,

whose norm is defined as

‖u‖2 =

∫
RN

(|ξ|2s|+ 1)|F(u)|2dξ,
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where F denotes the Fourier transform. We also define the homogeneous
fractional Sobolev space Ds,2(RN ) as the completion of C∞0 (RN ) with respect
to the norm

[u] :=
(∫∫

RN×RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2
.

The embedding Ds,2(RN ) ↪→ L2∗s (RN ) is continuous, where 2∗s = 2N
N−2s

is the fractional critical exponent, then there exists a best constant Ss > 0
such that

Ss := inf
u∈Ds,2(RN )

[u]2

|u|22∗s
.

The fractional Laplacian operator, (−∆)su, of a smooth function u :
RN → R, is defined by

F((−∆)su)(ξ) = |ξ|2sF(u)(ξ), ξ ∈ RN ,
that is

F(φ)(ξ) =
1

(2π)
N
2

∫
RN

e−iξ·xφ(x)dx,

for functions φ in the Schwartz class. Also (−∆)su can be equivalently
represented [13] as

(−∆)su(x) = −1

2
CN,s

∫
RN

u(x+ y) + u(x− y)− 2u(x)

|y|N+2s
dy, ∀x ∈ RN ,

where

CN,s =
(∫

RN

1− cosξ1

|ξ|N+2s
dξ
)−1

, ξ ∈ RN .

Also, by the Plancherel formula in Fourier analysis, we have

[u]2 =
2

CN,s
|(−∆)

s
2u|22.

As a consequence, the norms on Hα(R3) defined above

u 7−→
(∫

RN
|u|2dx+

∫∫
RN×RN

|u(x)− u(y)|2

|x− y|N+2α
dxdy

) 1
2
;

u 7−→
(∫

RN
(|ξ|2α + 1)|F(u)|2dξ

) 1
2
;

u 7−→
(∫

RN
|u|2dx+ |(−∆)

α
2 u|22

) 1
2

are equivalent.
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In view of the presence of potential g(x), we introduce the subspace

E =
{
u ∈ Hs(RN ) :

∫
RN

λg(x)u2dx < +∞
}
,

which is a Hilbert space equipped with the inner product

(u, v)E =

∫
RN

(
(−∆)

s
2u(−∆)

s
2 v + λg(x)uv

)
dx,

and the norm

‖u‖E =
(∫

RN

(
|(−∆)

s
2u|2 + λg(x)u2

)
dx
) 1

2
.

For the reader’s convenience, we review the main embedding result for
this class of fractional Sobolev spaces :

Lemma 2.1. [13] Let 0 < s < 1, then there exists a constant C = CN,s > 0,
such that

|u|22∗s ≤ C[u]2

for every u ∈ Hs(RN ). Moreover, the embedding Hs(RN ) ↪→ Lr(RN ) is
continuous for any r ∈ [2, 2∗s) and is locally compact whenever r ∈ [2, 2∗s).

Lemma 2.2. Under assumption (G), for fixed λ ∈ (0,∞), the norm

‖u‖E =
(∫

RN
(|(−∆)

s
2u|2 + λg(x)u2)dx

) 1
2

is equivalent to the form

‖u‖ =
(∫

RN
(|(−∆)

s
2u|2 + u2)dx

) 1
2
.

Proof. By the condition (G), there exists R > 0 such that Ω ⊂ BR(0) and
g(x) ≥ 1

2 for almost all x ∈ RN\BR(0), then∫
RN\Ω

g(x)u2dx ≥
∫
RN\BR(0)

g(x)u2dx ≥ 1

2

∫
RN\BR(0)

u2dx. (2.1)

By Lemma 2.1, we have

1

2

∫
RN\Ω

|(−∆)
s
2u|2dx ≥ 1

2

∫
(RN\Ω)∩BR(0)

|(−∆)
s
2u|2dx (2.2)

≥ 1

2c1

∫
(RN\Ω)∩BR(0)

u2dx.
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By (2.1) and (2.2), we obtain

1

2

∫
RN\Ω

|(−∆)
s
2u|2dx+

∫
RN\Ω

λg(x)u2dx (2.3)

≥ 1

2c1

∫
(RN\Ω)∩BR(0)

u2dx+
1

2
λ

∫
RN\BR(0)

u2dx

≥ min{ 1

2c1
,
1

2
λ}
(∫

(RN\Ω)∩BR(0)
u2dx+

∫
RN\BR(0)

u2dx
)

= min{ 1

2c1
,
1

2
λ}
∫
RN\Ω

u2dx.

Therefore, ∫
RN\Ω

(
|(−∆)

s
2u|2 + λg(x)u2

)
dx (2.4)

≥ 1

2

∫
RN\Ω

|(−∆)
s
2u|2dx+ min{ 1

2c1
,
1

2
λ}
∫
RN\Ω

u2dx

≥ c2

∫
RN\Ω

(|(−∆)
s
2u|2 + u2)dx,

where

c2 = min{1

2
,min{ 1

2c1
,
1

2
λ}}.

Also by the condition (G), we have∫
RN\Ω

(|(−∆)
s
2u|2 + λg(x)u2)dx ≤

∫
RN\Ω

(|(−∆)
s
2u|2dx+ λu2)dx (2.5)

≤ max{1, λ}
∫
RN\Ω

(|(−∆)
s
2u|2dx+ u2)dx.

By Lemma 2.1, we get∫
Ω
u2dx ≤ c3

∫
Ω
|(−∆)

s
2u|2dx,

then ∫
Ω
|(−∆)

s
2u|2dx ≥ 1

2

∫
Ω
|(−∆)

s
2u|2dx+

1

2c3

∫
Ω
u2dx

≥ min{1

2
,

1

2c3
}
∫

Ω
(|(−∆)

s
2u|2dx+ u2)dx.
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Since g(x) = 0 for x ∈ Ω, we have∫
Ω

(|(−∆)
s
2u|2 + λg(x)u2)dx =

∫
Ω

(|(−∆)
s
2u|2dx (2.6)

≥ min{1

2
,

1

2c3
}
∫

Ω
(|(−∆)

s
2u|2dx+ u2)dx.

and ∫
Ω

(|(−∆)
s
2u|2 + λg(x)u2dx =

∫
Ω

(|(−∆)
s
2u|2dx (2.7)

≤
∫

Ω
(|(−∆)

s
2u|2dx+ u2)dx.

Hence, by (2.4)-(2.7), we know that ‖ · ‖E is equivalent to the norm ‖ · ‖. �

Next, we deal with the fractional Schrödinger operators

H = (−∆)s + V

acting on L2(RN ) with V = λg(x). A suitable class of potentials V for the
fractional Schrödinger operators discussed here is the following Kato class
(denoted by Ks(RN )).

Definition 2.1. Let 0 < s < 1. We say that the potential V ∈ Ks(RN ) if
and only if V : RN → R is measurable and satisfies

lim
E→0
|((−∆)s + E)−1|V ||L∞→L∞ = 0,

where E > 0 is a positive number.

Remark 2.1. If V ∈ Ks, then H = (−∆)s +V defines a unique self-adjoint
operator on L2(RN ) with form domain H2s(RN ), and the corresponding
heat kernel e−tH maps L2(RN ) into L∞(RN ) ∩ C0(RN ) for any t > 0. In
particular, any L2-eigenfunction of H is continuous and bounded. See also
[10, 18, 19] for equivalent definitions of Ks and further background material.

Lemma 2.3. [18, 19] Let 0 < s < 1 and V : RN → R be given. If V ∈
Lp(RN ) with some max{1, N2s} < p ≤ +∞, then V ∈ Ks(RN ).

Definition 2.2. Let (H, 〈·, ·〉) be a real Hilbert space. Let L : D(L) ⊂ H →
H be a self-adjoint operator whose form domain is dense subspace of H. Its
resolvent set is

ρ(L) =
{
λ ∈ R : L− λI : D(L)→ H is an isomorphism

}
and its spectrum is the set

σ(L) = R\ρ(L).
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The elements of ρ(L) are called regular values for L : D(L) ⊂ H → H. The
following subsets of σ(L) are of primary importance. The point spectrum is
the set

σp(L) =
{
λ ∈ R : ker(L− λI) 6= {0}

}
,

its elements being the eigenvalues of L. The discrete spectrum is the set

σd(L) =
{
λ ∈ σp(L) : dim ker(L− λI) <∞ and

λ is an isolated point of σ(L)
}

and its complement in σ(L) is called the essential spectrum

σe(L) = σ(L)\σd(L).

From Remark 2.1, Lemma 2.3, and our condition (G), we know that
the fractional Schrödinger operators Lλ = (−∆)s + λg(x) is a self-adjoint
operator on L2(RN ) with form domain H2s(RN ). Moreover, similar to in
[2] and Theorem 3.8 in [32], for the point spectrum, we have the following
result.

Lemma 2.4. Let the condition (G) be satisfied. The fractional Schrödinger
operators Lλ = (−∆)s+λg(x) has no L2-eigenvalues in the interval (0,+∞).
In particularly, for g ≡ 0, the fractional operators (−∆)s has no L2-eigen-
values on RN .

Proof. Assume that f ∈ D ((−∆)s) = D(Lλ) is such that Lλf = λf with
λ > 0. By [2, Proposition 10.10], we know that f must have compact
support. Next, one may choose a periodic W : RN → R such that W (x) =
λg(x) for all x in the support of f . If L′λ = (−∆)s + W , then L′λf =
Lλf = λf , since λg(x)f = Wf. Hence, f is an eigenvector of the periodic
Schrödinger operator L′λ. By [2, Proposition 10.9], we conclude that f = 0.

For the second part, let L0 = (−∆)s. Suppose that u ∈ ker(L0 − λI) for
some λ ∈ R. Then

(−∆)su = λu,

which means that u ∈ L2(RN ) and∫
u(−∆)szdx =

∫
(λu)zdx for all z ∈ L2(RN ).

By the Fourier transform, we have

|ξ|2sû(ξ) = λû(ξ) for almost all ξ ∈ RN .
Since

{
ξ ∈ RN : |ξ|2s = λ

}
has N -dimensional zero, this implies that û(ξ) =

0 for almost all ξ ∈ RN . Thus, u ≡ 0 and ker(L0 − λI) = {0}. �
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3. Proof of theorem 1.1

Inspired by [33], we first describe the eigenvalue λ as a function of the
parameter α rather than the eigenvalue α as a function of the parameter
λ in the traditional treatment. In this case, if we denote α(λ) the lowest
eigenvalue of Lλ, we can see that α(λ) increases from Γ1 to ξ1 as λ increases
from Γ1 to ∞. Moreover, from Lemma 2.4, we can restrict eigenvalues λ for
problem (1.1) in the interval (α,+∞). In fact, if u satisfies (1.1), then

(−∆)su− λ(1− g)u = (α− λ)u,

and so α − λ is an L2-eigenvalue of the fractional Schrödinger operators
(−∆)s−λ(1−g). Using Lemma 2.4, this implies that λ > α. Henceforth, we
concentrate on the existence of eigenvalues of (1.1) in the interval (α,+∞).

In the following, we define the fractional Schrödinger operators

Aλ : H2s(RN ) ⊂ L2(RN )→ L2(RN )

by
Aλu = (−∆)su+ λgu− αu = (−∆)su+ (λg − α)u.

Then Aλ is a self-adjoint operator in L2(RN ) with spectrum σ(Aλ) and
essential spectrum σe(Aλ) = [λ− α,∞). Furthermore, setting

Σ(λ) = inf σ(Aλ),

we have

Σ(λ) = inf
{
aλ(u) : u ∈ Hs(RN ) and |u|2 = 1

}
> −∞, (3.1)

where

aλ(u) =

∫
RN

(
|(−∆)

s
2u|2 − αu2 + λgu2

)
dx.

If we set

Sα :=
{
λ ≥ α : Σ(λ) < 0

}
and Tα :=

{
λ ≥ α : Σ(λ) > 0

}
,

it is clear from (3.1) that Sα and Tα are intervals since Σ(λ) is non-decreasing
in λ.

In most of the discussion, the value of α is fixed and it is the variation
with respect to λ that is of interest. However, when the dependence on α is
relevant, we use the more explicit notation

Aαλ , aαλ , and Σα(λ).

Lemma 3.1. If (G) holds and λ > α, we have Σ(λ) = 0 if and only if λ is
an eigenvalue of (1.1) with a non-negative eigenfunction uλ. In this case, 0
is a simple eigenvalue of Aλ, kerAλ = span{uλ} and uλ > 0 on RN .
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Proof. We first suppose that Σ(λ) = 0. Then 0 = inf σ(Aλ) by (3.1) and

0 < λ− α = inf σe(Aλ).

Hence, 0 is an eigenvalue of Aλ and there exists uλ ∈ C(RN )∩H2s(RN ) such
that kerAλ = span{uλ} and uλ > 0 on RN (see [19, Appendix]). Thus, λ is
an eigenvalue of (1.1) with eigenfunction uλ.

On the other hand, if λ is an eigenvalue of (1.1) with an eigenfunction
uλ ≥ 0, then we have already observed that uλ ∈ C(RN ) ∩ H2s(RN ) and
Aλuλ = 0. Thus, 0 ∈ σ(Aλ), and so

Σ(λ) ≤ 0 < inf σe(Aλ).

This implies that Σ(λ) is a simple eigenvalue of Aλ with a positive eigen-
function v ∈ H2s(RN ). Thus,

Σ(λ)〈uλ, v〉2 = 〈uλ, Aλv〉2 = 〈Aλuλ, v〉2 = 0 and 〈uλ, v〉2 > 0,

showing that Σ(λ) = 0. �

Lemma 3.2. If (G) holds, then α ∈ Sα if and only if Γ1 < α.

Proof. If Σ(λ) < 0, then there exists u ∈ Hs(RN ) such that

|u|2 = 1 and

∫
RN

(
|(−∆)

s
2u|2 − α(1− g)u2

)
dx < 0.

It follows that ∫
RN

(1− g)u2dx > 0

and that Γ1 < α.
On the other hand, if Γ1 < α, then there exists u ∈ Hs(RN ) such that∫

RN
|(−∆)

s
2u|2dx < α

∫
RN

(1− g)u2dx,

hence, Σ(λ) < 0. �

Lemma 3.3. Let the condition (G) be satisfied. Then

0 ≤ Γ1 < ξ1.

Proof. Let ϕ1 ∈ Hs
0(Ω) be an eigenfunction of (1.4) corresponding to ξ1

with |ϕ1|2 = 1. Extending ϕ by

ϕ = ϕ1 in Ω, ϕ ≡ 0 in RN\Ω.
We now have ϕ ∈ Hs(RN ), gϕ ≡ 0 on RN , and hence∫

RN
(1− g)ϕ2dx = 1.
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Thus,∫
RN
|(−∆)

s
2ϕ|2dx =

∫
Ω
|(−∆)

s
2ϕ1|2dx = ξ1

∫
Ω
ϕ2dx = ξ1

∫
RN

(1− g)ϕ2dx,

showing that Γ1 ≤ ξ1. However, if Γ1 = ξ1, it follows that ϕ ∈ Hs(RN )
minimizes ∫

RN
|(−∆)

s
2u|2dx

under the constraint ∫
RN

(1− g)u2dx = 1

and consequently∫
RN

(−∆)
s
2ϕ(−∆)

s
2 vdx = ξ1

∫
RN

(1− g)ϕvdx, for all v ∈ Hs(RN ).

Since gϕ ≡ 0 on RN , this implies that ϕ is an L2-eigenfunction of (−∆)s on
RN . However, from Lemma 2.4, (−∆)s has no such L2-eigenfunctions and
hence Γ1 < ξ1. �

Lemma 3.4. If (G) holds,

(i) Sα and Tα are open subsets of [α,+∞).
(ii) If α ≥ ξ1, then Sα = [α,+∞).

(iii) If Γ1 < α < ξ1, then there exists Λ(α) ∈ (α,+∞) such that
Sα = [α,Λ(α)), where α < Λ(α) <∞.

Proof. (i) By the definition of aλ, we see that, for all λ, µ ∈ R and u ∈
Hs(RN ),

aλ(u)− aµ(u) = (λ− µ)

∫
RN

g(x)u2dx. (3.2)

Suppose that λ ∈ Sα. Then there exists u ∈ Hs(RN ) such that |u|2 = 1 and
aλ(u) < 0. Since

aµ(u) ≤ aλ(u) + |λ− µ|
∫
RN

g(x)u2dx ≤ aλ(u) + |λ− µ|,

it follows that Σ(µ) < 0 for all µ ≥ α such that |λ− µ| ≤ 1
2 |aλ(u)|, showing

that Sα is open.
Suppose now that λ ∈ Tα. Then for all u ∈ Hs(RN ) with |u|2 = 1, we

have

aµ(u) ≥ aλ(u)− |λ− µ| ≥ Σ(λ)− |λ− µ| ≥ 1

2
Σ(λ) > 0



136 Guangze Gu and Zhipeng Yang

for all µ such that |λ− µ| ≤ 1
2Σ(λ). Thus,

Σ(µ) ≥ 1

2
Σ(λ) > 0 for all µ

such that |λ− µ| ≤ 1
2Σ(λ), showing that Tα is open.

(ii) Let ϕ1 ∈ Hs
0(Ω) be the eigenfunction of (1.2), and set

ϕ = ϕ1 in Ω, ϕ ≡ 0 in RN\Ω.

We now have ϕ ∈ Hs(RN ) and gϕ ≡ 0 on RN . Thus,

aλ(ϕ) =

∫
Ω

(
|(−∆)

s
2ϕ1|2 − αϕ2

1

)
dx = ξ1 − α and |u|2 = 1,

showing that Σ(λ) < 0 if α > ξ1. Furthermore, if α = ξ1 and Σ(λ) = 0, then

0 = aλ(ϕ) = min
{
aλ(u) : u ∈ Hs(RN ) and

∫
RN

u2dx = 1
}
.

Hence, there is a Lagrange multiplier ζ ∈ R such that∫
RN

(
(−∆)

s
2ϕ(−∆)

s
2 v − (α− λg)ϕv

)
dx = ζ

∫
RN

ϕvdx for all v ∈ Hs(RN ).

Putting v = ϕ, we see that ζ = ξ1 − α = 0, and then∫
RN

(
(−∆)

s
2ϕ(−∆)

s
2 v + λgϕv − ξ1ϕv

)
dx = 0 for all v ∈ Hs(RN )

since gϕ = 0 in RN , which contradicts to Lemma 2.4. Hence, Σ(λ) < 0 if
α = ξ1, too.

(iii) Suppose now that Γ1 < α < ξ1. By Lemma 3.2, we have α ∈ Sα, and
there exists Λ(α) > α such that Sα = [α,Λ(α)) since Sα is an open interval
of [α,∞). If Λ(α) = ∞, then Sα = [α,+∞), and for any integer n ≥ α,
there exists un ∈ Hs(RN ) with |un|2 = 1 such that

an(un) =

∫
RN

(
|(−∆)

s
2un|2 − (α− ng)u2

n

)
dx < 0. (3.3)

Since g(x) ≥ 0, this implies that∫
RN
|(−∆)

s
2un|2dx ≤ α

∫
RN

u2
ndx = α,

and so {un} is bounded in Hs(RN ). Passing to a subsequence, still denoted
by un, we may assume that, for some u ∈ Hs(RN ),

un ⇀ u in Hs(RN ), un → u in L2
loc(RN ).
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By (3.3),

n

∫
RN

gu2
ndx < α

∫
RN

u2
ndx = α. (3.4)

Since lim
|x|→∞

g(x) = 1, there exists a compact set K ⊂ RN such that g(x) ≥ 1
2

for almost all x /∈ K. By (3.3), we have

n

2

∫
RN\K

u2
ndx ≤ n

∫
RN\K

gu2
ndx ≤ n

∫
RN

gu2
ndx < α,

that is, ∫
RN\K

u2
ndx ≤

2α

n
,

and so

1 =

∫
RN

u2
ndx =

∫
RN\K

u2
ndx+

∫
K
u2
ndx <

∫
K
u2
ndx+

2α

n
.

Since K is compact, this implies that

1 ≤ lim
n→∞

∫
K
u2
ndx =

∫
K
u2dx ≤

∫
RN

u2dx.

However, ∫
RN

u2dx ≤ lim inf
n→∞

∫
RN

u2
ndx = 1

and hence ∫
RN

u2dx =

∫
K
u2dx = 1.

However,

an(un) =

∫
RN

(
|(−∆)

s
2un|2 − (α− ng)u2

n

)
dx

≥
∫
RN
|(−∆)

s
2un|2dx− α

∫
RN

u2
ndx,

and by (3.3),

0 ≥ lim inf
n→∞

an(un) ≥
∫
RN
|(−∆)

s
2u|2dx− α. (3.5)

On the other hand, by (3.4),

0 ≤
∫
RN

gu2dx ≤ lim inf
n→∞

∫
RN

gu2
ndx ≤ lim inf

n→∞

α

n
= 0.

However, g(x) ≡ 0 in Ω and g(x) > 0 in RN\Ω. Hence, this implies that

u = 0 a.e. on RN\Ω and u = 0 a.e. on RN\Ω.
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Since Ω has a Lipschitz boundary, we have ũ ∈ Hs
0(Ω), where ũ is the

restriction of u to Ω. By (1.4),∫
Ω

(|(−∆)
s
2 ũ|2 − ξ1ũ

2)dx ≥ 0.

Thus,

0 ≤
∫

Ω
(|(−∆)

s
2 ũ|2 − ξ1ũ

2)dx =

∫
RN

(|(−∆)
s
2u|2dx− ξ1

<

∫
RN

(|(−∆)
s
2u|2dx− α,

since |u|2 = 1 and α < ξ1, which contradicts (3.5). Thus,

Λ(α) = supSα < +∞. �

Lemma 3.5. Let (G) be satisfied with Γ1 < α < ξ1, and consider λ ≥ α.
Then Σ(λ) = 0 if and only if λ = Λ(α), where Λ(α) is given by Lemma
3.3(iii). Furthermore, Λ(α) < Λ(β) for Γ1 < α < β < ξ1.

Proof. By Lemma 3.2, α ∈ Sα. If λ ≥ α and Σ(λ) = 0, then λ /∈ Sα and
λ > α. By Lemma 3.1, there exists uλ ∈ C(RN ) ∩H2s(RN ) with

uλ > 0, Aλuλ = 0 and |uλ|2 = 1.

Since g(x) > 0 on RN\Ω, ∫
RN

gu2
λdx 6= 0.

For any ε > 0, it follows from (3.2) that

aλ−ε(uλ) = aλ(uλ)− ε
∫
RN

gu2
λdx = −ε

∫
RN

gu2
λdx < 0,

and this means that λ− ε ∈ Sα for any ε > 0. Therefore,

λ = supSα = Λ(α).

On the other hand, if λ = Λ(α), it follows from Lemma 3.4 that λ /∈
Sα ∪ Tα, and since λ ≥ α, we must have Σ(λ) = 0.

Consider α, β ∈ (Γ1, ξ1) with α < β. Since Σα(Λ(α)) = 0, it follows
from Lemma 3.1 that there exists zα ∈ H2s(RN )\{0} such that kerAαΛ(α) =

span{zα} and hence aαΛ(α)(zα) = 0. However,

aβΛ(α)(zα) = aαΛ(α)(zα) + (α− β)

∫
RN

z2
αdx = (α− β)

∫
RN

z2
αdx < 0,

showing that Λ(α) ∈ Sβ and consequently Λ(β) > Λ(α). �
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Lemma 3.6. Consider λ > α and any p ∈ [2,∞).

(i) The map Aλ : X = W 2s,p(RN )→ Lp(RN ) is a Fredholm operator of
the index zero.

(ii) Let {vn} ⊂ X, vn ⇀ v in X and let {Aλ(vn)} converge strongly in
Lp(RN ). Then vn → v in X.

Proof. (i) Since lim
|x|→∞

(λg(x)− α) = λ− α > 0, we write

Aλ = (−∆)s + (V − λ)+ + (λ− α)− (V − λ)−,

where V ∈ L∞(RN ). From [21, Theorem 4.2 (i)], we have that

W 2s,p
(
RN
)
−→ Lp

(
RN
)
, u 7−→ (−∆)su+ (V − λ)+u+ (λ− α)u

is an isomorphism for all λ > α and is so a Fredholm operator with index 0.
Moreover, we have lim

|x|→∞
(V − λ)−(x) = 0. It follows from [21, Theorem 4.2

(ii)] that the multiplication operator

W 2,q
(
RN
)
−→ Lq

(
RN
)
, u 7−→ (V − λ)−u

is a compact operator. Recall that if T : X → Y is a bounded linear
Fredholm operator and K : X → Y is a compact operator, then T + K is
Fredholm and ind(T ) = ind(T + K). Thus, the operator Aλ is a Fredholm
operator with index 0 for all λ > α.

(ii) Since Aλ : X → Lp
(
RN
)

is a Fredholm operator of index zero, by [15,

Theorem 3.15], there exists T ∈ B
(
Lp
(
RN
)
, X
)

such that

TAλ = I +K,

where K : X → X is a compact linear operator. Let Aλvn → w strongly in
Lp
(
RN
)

for some w ∈ Lp
(
RN
)

; then

(I +K)vn = TAλvn → Tw

strongly in X. Since K is compact, it follows that Kvn → Kv strongly in X.
Therefore, vn → Tw−Kv strongly in X, and hence that vn → v = Tw−Kv
strongly in X. �

Proof of Theorem 1.1. (i) If α ≥ ξ1, it follows from Lemma 3.4 that
Σ(λ) < 0 for all λ ≥ α. Thus,

inf σ(Aλ) = Σ(λ) < 0 and inf σe(Aλ) = λ− α ≥ 0 for λ ≥ α.
Hence, there exists vλ ∈ C(RN ) ∩ H2s(RN ) such that Aλvλ = Σ(λ)vλ and
vλ > 0 on RN . However, if u ≥ 0 satisfies (1.1), as in the proof of Lemma 3.1,
this leads to a contradiction. Hence, (1.1) has no non-negative eigenfunction
with λ ≥ α.
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(ii) We now have 0 ≤ Γ1 < α < ξ1. It follows from Lemma 3.4 (iii) and
Lemma 3.5 that

Sα = [α,Λ(α)), Tα = (Λ(α),+∞)

and λ = Λ(α) > α is the unique point in [α,∞) such that Σ(λ) = 0. By
Lemma 3.1, Λ(α) is an eigenvalue of (1.1) and 0 is a simple eigenvalue of
AΛ(α) with kerAΛ(α) = span{zα}, where zα = uΛ(α) > 0 on RN . Suppose

that µ 6= Λ(α) is also an eigenvalue of (1.1) with eigenfunction w ∈ Hs(RN ).
Since Σ(µ) = inf σ(Aλ)), this shows that Σ(µ) ≤ 0 and hence µ ≤ supSα =
Λ(α). Therefore, Λ(α) is the largest eigenvalue of (1.1). Furthermore,

0 =

∫
RN

(
(−∆)

s
2 zα(−∆)

s
2w − αzαw + Λ(α)g(x)zαw

)
dx

=

∫
RN

(
(−∆)

s
2w(−∆)

s
2 zα − αwzα + µ(α)g(x)wzα

)
dx

so that

(Λ(α)− µ)

∫
RN

g(x)zαwdx = 0.

For µ < Λ(α), this implies that∫
RN\Ω

g(x)zαwdx = 0.

Since zα > 0 and g(x) > 0 on RN\Ω, it follows that either w ≡ 0 on RN\Ω
or w must change sign. However, if w ≡ 0 on RN\Ω, then its restriction w̃
to Ω belongs to H2s(Ω) ∩Hs

0(Ω)\{0}, since ∂Ω is Lipschitz and satisfies

(−∆)sw̃ − αw̃ = 0 on Ω.

However, α < ξ1, so this is impossible, and consequently w must change sign
on RN\Ω.

(iii) By part (ii), we know that for any α ∈ (Γ1, ξ1), there exists Λ(α) ∈
(α,+∞) such that Σα(Λ(α)) = 0, and it is a strictly increasing function of
α by Lemma 3.5.

Suppose that {αn} ⊂ (Γ1, ξ1) is an increasing sequence such that αn → ξ1.
Then Λ(αn) → Λ, where Λ ≥ ξ1, since Λ(αn) > αn. If Λ < ∞, for any

u ∈ Hs(RN ), aαnΛ(αn) → aξ1Λ . However, by Lemma 3.5, for all n ∈ N,

0 = Σαn(Λ(αn)) = inf
{
aαnΛ(αn)(u) : u ∈ Hs(RN ) and |u|2 = 1

}
,

and so aαnΛ(αn)(u) ≥ 0 for all u ∈ Hs(RN ). This implies that

aξ1Λ(αn)(u) ≥ 0 for all u ∈ Hs(RN )
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and hence that

Σξ1(Λ) = inf
{
aξ1Λ (u) : u ∈ Hs(RN ) and |u|2 = 1

}
≥ 0.

This means that Λ /∈ Sξ1 , contradicting the fact that Sξ1 = [ξ1,∞), which
was established in Lemma 3.4. Thus, lim

α→ξ−1
Λ(α) =∞.

Let τ = lim
α→Γ+

1

Λ(α), and observe that since Λ(α) > α, we must have

τ ≥ Γ1. Let us suppose that τ > Γ1. Consider a decreasing sequence {αn}
such that αn → Γ1. As in part (ii), there exists {zn} ⊂ C(RN ) ∩H2s(RN )
such that |zn|2 = 1 and

(−∆)szn − αnzn + Λ(α)gzn = 0 on RN .

Hence, {zn} is bounded in H2s(RN ). Passing to a subsequence, we suppose
henceforth that zn ⇀ z in H2s(RN ). However,

(−∆)szn − Γ1zn + τgzn = (αn − Γ1)zn + (τ − Λ(αn))gzn on RN ,

where

(αn − Γ1)zn + (τ − Λ(αn))gzn → 0 in L2(RN )

as n→∞ and

(−∆)s − Γ1 + τg : H2s(RN )→ L2(RN )

is a Fredholm operator of index zero since

lim
|x|→∞

{−Γ1 + τg(x)} = −Γ1 + τ > 0

(see [21, Theorem 2.3]). Then Lemma 3.6 implies that zn → z in H2s(RN ),
and hence

(−∆)sz − Γ1z + τgz = 0 with |z|2 = 1.

Furthermore, ∫
RN

gz2dx > 0,

since otherwise z ≡ 0 on RN\Ω, and we would then have (−∆)sz = Γ1z
on RN , contradicting the fact that (−∆)s has no L2-eigenfunctions on RN .
However, by the definition of Γ1, we have

0 ≤
∫
RN

(
|(−∆)

s
2 z|2 − Γ1(1− g)z2

)
dx

=

∫
RN

(
Γ1z

2 − τgz2 − Γ1(1− g)z2
)
dx
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= (Γ1 − τ)

∫
RN

gz2dx < 0.

This contradiction means that our assumption τ > Γ1 must be rejected, and
so τ = Γ1.

The smoothness of the function Λ : (Γ1, ξ1) → R could follows by a
standard application of the implicit function theorem. We omit here.

(iv) This follows from Lemma 3.5.
(v) Suppose that u satisfies (1.1) with λ > α. Then∫

Rn
gu2dx 6= 0,

since otherwise we have gu ≡ 0 on RN and u would be an L2-eigenfunction
of (−∆)s on RN , and, as we have already remarked several times, this is
false. However, (1.1) now yields∫

RN

(
|(−∆)

s
2u|2 − α(1− g)u2

)
dx = (α− λ)

∫
RN

gu2dx < 0,

from which it follows that ∫
Rn

(1− g)u2dx 6= 0

and that α > Γ1.

4. Proof of theorem 1.2

(i) We first show that α2(λ) is an eigenvalue of (1.1). First, we claim that

α2(λ) < λ. (4.1)

Indeed, let λ > Γ2, by the definition of Γ2, we have

λ > inf
u∈Hs(RN )∩V ⊥1

∫
RN |(−∆)

s
2u|2dx∫

RN (1− g)u2dx
.

Thus, there exists v ∈ Hs(RN ) ∩ V ⊥1 such that∫
RN
|(−∆)

s
2u|2dx < λ

∫
RN

(1− g)u2dx.

Then ∫
RN (|(−∆)

s
2 v|2dx+ λg(x)v2)dx∫
RN v

2dx
< λ,

which implies that α2(λ) < λ, i.e., (4.1) is proved.
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Next, we shall prove that there exists a function u ∈ Hs(RN ) ∩ V ⊥1 such
that

Φ(u) =

∫
RN

(|(−∆)
s
2 v|2dx+ λg(x)v2)dx

archives α2(λ). We borrow a method in the proof of [26, 35]. Let {un} ∈
Hs(RN ) ∩ V ⊥1 with |un|2 = 1 be such that

lim
n→∞

Φ(un) = α2(λ).

Obviously, {un} is bounded in Hs(RN ) ∩ V ⊥1 , passing to a subsequence, we
may assume that, for some u ∈ Hs(RN ) ∩ V ⊥1 ,

un ⇀ u in Hs(RN ) ∩ V ⊥1 , un → u in L2
loc(RN ).

By the condition (G), for every ε > 0 there exists R > 0 such that Ω ⊂
BR(0), and ∣∣∣ ∫

RN\BR(0)
(g(x)− 1)u2

ndx
∣∣∣ ≤ ε|un|22 = ε

for all n ∈ N. Since un → u in L2
loc(RN ),∣∣∣ ∫

BR(0)
(g(x)− 1)(u2

n − u2)dx
∣∣∣ ≤ ∫

BR(0)
(u2
n − u2)dx ≤ ε

for n large enough. Therefore,∫
RN

(g(x)− 1)u2
ndx→

∫
RN

(g(x)− 1)u2dx

as n→∞.
Define

Q(un) =

∫
RN

(|(−∆)
s
2un|2 + λ(g − 1)u2

n)dx,

then

Q(u) =

∫
RN

(|(−∆)
s
2u|2 + λ(g − 1)u2)dx

≤ lim inf
n→∞

∫
RN
|(−∆)

s
2un|2dx+ lim

n→∞

∫
RN

λ(g − 1)u2
ndx

≤ lim inf
n→∞

∫
RN

(|(−∆)
s
2un|2 + λ(g − 1)u2

n)dx = α2(λ)− λ.

(4.2)

By the definition of α2(λ), we get

Q(u) ≥ (α2(λ)− λ)

∫
RN

u2dx,
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which together with (4.1) and (4.2), implies∫
RN

u2dx ≥ 1.

Note that ∫
RN

u2dx ≤ lim
n→∞

∫
RN

u2
ndx = 1.

Therefore, ∫
RN

u2dx = 1,

then by the definition of α2(λ), we have Φ(u) ≥ α2(λ). However,

Φ(u) ≤ lim inf
n→∞

Φ(un) = α2(λ),

and hence Φ(u) = α2(λ).
By using the Lagrange-multipliers method, there exists η ∈ R such that∫

RN
((−∆)

s
2u(−∆)

s
2 v + λg(x)uv)dx (4.3)

= η

∫
RN

uvdx, ∀ v ∈ Hs(RN ) ∩ V ⊥1 .

For every w ∈ Hs(RN ), we have w = suα1(λ) + v for some s ∈ R and

v ∈ Hs(RN ) ∩ V ⊥1 . By (4.3), replacing v with w − suα1(λ), we get∫
RN

((−∆)
s
2u(−∆)

s
2 (w − suα1(λ)) + λg(x)u(w − suα1(λ)))dx

= η

∫
RN

u(w − suα1(λ))dx

for all w ∈ Hs(RN ). Since uα1(λ) is an eigenfunction corresponding to α1(λ),∫
RN

((−∆)
s
2u(−∆)

s
2uα1(λ) + λg(x)uuα1(λ))dx = α1(λ)

∫
RN

uuα1(λ)dx = 0.

Thus, ∫
RN

((−∆)
s
2u(−∆)

s
2w + λg(x)uw)dx = η

∫
RN

uwdx (4.4)

for all w ∈ Hs(RN ). Putting w = u in (4.4), then∫
RN

(|(−∆)
s
2u|2 + λg(x)u2)dx = η

∫
RN

u2dx = η

i.e., α2(λ) = η. Hence, α2(λ) is an eigenvalue of (1.1).
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For fixed λ > 0, let uα2(λ) be an arbitrary eigenfunction corresponding
to the eigenvalue α2(λ). Since 〈α1(λ), α2(λ)〉2 = 0, and α1(λ) > 0, we
know that α2(λ) must change sign, that is, all eigenfunctions corresponding
to α2(λ) must change sign. Note that all eigenfunctions corresponding to
α1(λ) do not change sign since α1(λ) is simple and there exists a positive
eigenfunction corresponding to α1(λ). By the definition of α2(λ), α2(λ) ≥
α1(λ), we finally get α2(λ) > α1(λ). If α(λ) is an eigenvalue of (1.1) with
an eigenfunction uα(λ) , it is clear that uα(λ) ∈ V ⊥1 , then α(λ) ≥ α2(λ) by
the definition of α2(λ), that is, α2(λ) is the second eigenvalue of Lλ.

(ii)We will prove that α̃2(λ) = α2(λ) and α̂2(λ) = α2(λ).

Step 1. α̃2(λ) = α2(λ). Obviously, α̃2(λ) ≥ α2(λ). On the other hand,
let v ∈ V1, u ∈ V ⊥1 with |v|2 = 1 and |u|2 = 1. π(v, u) denotes the plane
expanded by u, v. For any given V ∈ X1, then V ∩ π(v, u) 6= {0}, thus there
exists w ∈ V ∩ π(v, u) 6= {0} such that |w|2 = 1, and w = βv + µu with
β2 + µ2 = 1. By the definition of α1(λ), we have Φ(v) ≤ Φ(u), and then

Φ(w) = (β2 + µ2)Φ(w) = Φ(βv) + Φ(µu)

= β2Φ(v) + µ2Φ(u) ≤ β2Φ(u) + µ2Φ(u) = Φ(u).

Thus,

Φ(w) ≤ inf
u∈V ⊥1

Φ(u),

and hence

inf
u∈V

Φ(u) ≤ Φ(w) ≤ inf
u∈V ⊥1

Φ(u).

Notice that V is arbitrary, and so

sup
V ∈X1

inf
u∈V

Φ(u) ≤ inf
u∈V ⊥1

Φ(u),

that is, α̃2(λ) ≤ α2(λ).

Step 2. α̂2(λ) = α2(λ). Choose

V2 = span{uα1(λ), uα2(λ)},
then

sup
u∈V2
{Φ(u) : |u|2 = 1} = α2(λ).

Thus, for any V̂ ∈W2, we have

inf
V̂ ∈W2

sup
u∈V̂
{Φ(u) : |u|2 = 1} ≤ α2(λ),

i.e., α̂2(λ) ≤ α2(λ)
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On the other hand, for any given V̂ ∈ W2, we have dim V̂ = 2 and
V̂ ∩ V ⊥1 6= {0}, so that there exists w ∈ V̂ ∩ V ⊥1 such that |w|2 = 1. Hence,

sup
u∈V̂
{Φ(u) : |u|2 = 1} ≥ Φ(w) ≥ α2(λ),

and then
inf

V̂ ∈W2

sup
u∈V̂
{Φ(u) : |u|2 = 1} ≥ α2(λ),

that is, α̂2(λ) ≥ α2(λ).
Combining Step 1 and Step 2, (ii) is proved.

(iii) Suppose that u 6= 0 satisfies (1.1), then∫
RN

gu2dx 6= 0,

since otherwise we have gu ≡ 0 on RN , this implies that u is an L2-
eigenfunction of (−∆)s on RN . However, from Lemma 2.4, we know that
(−∆)s has no such eigenfunctions, and hence∫

RN
gu2dx > 0.

Since uαi(λ)(i = 1, 2) is an eigenfunction corresponding to αi(λ), αi(λ) sat-
isfies (1.1), ∫

RN
gu2

αi(λ)dx > 0.

We choose
V2 = span{uα1(λ), uα2(λ)} ∈W2,

then
sup

u∈V2,|u|2=1
Φ(u) = α2(λ).

If λ > µ, then

α2(λ) = sup
u∈V2,|u|2=1

∫
RN

(|(−∆)
s
2u|2 + λg(x)u2)dx

> sup
u∈V2,|u|2=1

∫
RN

(|(−∆)
s
2u|2 + µg(x)u2)dx

≥ inf
V̂ ∈W2

sup
u∈V̂ ,|u|2=1

∫
RN

(|(−∆)
s
2u|2 + µg(x)u2)dx = α2(µ).

(iv) Let ϕ̃i = ϕi(i = 1, 2) for x ∈ Ω, ϕ̃i = 0 for x ∈ RN\Ω. Choose

V2 = span{ϕ̃1, ϕ̃2} ∈W2,
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then

sup
u∈V2

Φ(u) = ξ2.

Therefore, for any V̂ ∈W2, we have

inf
V̂ ∈W2

sup
u∈V̂ ,|u|2=1

Φ(u) ≤ ξ2.

By α̂2(λ) = α2(λ), we get α2(λ) ≤ ξ2. Thus,

lim
λ→∞

α2(λ) = β0 ≤ ξ2.

If β0 = ξ2, then the conclusion is true. Now, we suppose that β0 < ξ2,
then there exists {λn} ⊂ (Γ2,∞) with λn →∞ as n→∞, and there exists
{un} ⊂ Hs(RN ) ∩ V ⊥1 with |un|2 = 1 such that

α2(λn) =

∫
RN

(|(−∆)
s
2un|2 + λng(x)u2

n)dx ≤ β0. (4.5)

By Lemma 2.2, we know that there exists c > 0 such that∫
RN

(|(−∆)
s
2un|2 + u2

n)dx ≤ c
∫
RN

(|(−∆)
s
2un|2 + g(x)u2

n)dx

≤ c
∫
RN

(|(−∆)
s
2un|2 + λng(x)u2

n)dx ≤ cβ0,

and so {un} is bounded in Hs(RN )∩V ⊥1 . Passing to a subsequence, we may
assume that for some u ∈ Hs(RN ) ∩ V ⊥1 ,

un ⇀ u in Hs(RN ) ∩ V ⊥1 , un → u in L2
loc(RN ).

By the condition (G), there exists R > 0 such that Ω ⊂ BR(0) and g(x) ≥ 1
2

for almost all x ∈ RN\BR(0). By (4.5), we have

λn

∫
RN

gu2
ndx ≤ β0,

and so ∫
RN\BR(0)

u2
ndx ≤

2β0

λn
.

Since un → u in L2
loc(RN ), which implies that

1 =

∫
BR(0)

u2
ndx+

∫
RN\BR(0)

u2
ndx ≤ lim

n→∞

∫
BR(0)

u2
ndx

=

∫
BR(0)

u2dx ≤
∫
RN

u2dx.
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Note that ∫
RN

u2dx ≤ lim inf
n→∞

∫
RN

u2
ndx = 1,

therefore, ∫
RN

u2dx =

∫
BR(0)

u2dx = 1.

Moreover, by (4.5),∫
RN

gu2dx ≤ lim inf
n→∞

∫
RN

gu2
ndx ≤ lim

n→∞

β0

λn
= 0.

Hence, by the condition (G), we see that u = 0 a.e. on RN\Ω, so that
u ∈ Hs

0(Ω). Since un ∈ Hs(RN ) ∩ V ⊥1 , we see that 〈u, ϕ1〉2 = 0. By the
definition of ξ2 and β0 < ξ2, we have

0 ≤
∫

Ω
(|(−∆)

s
2u|2 − ξ2u

2)dx =

∫
RN
|(−∆)

s
2u|2dx− ξ2 (4.6)

<

∫
RN
|(−∆)

s
2u|2dx− β − 0.

On the other hand, by (4.5),∫
RN
|(−∆)

s
2u|2dx ≤ lim inf

n→∞

∫
RN
|(−∆)

s
2un|2dx ≤ β0,

which contradicts (4.6), thus limλ→∞ α2(λ) = ξ2, and the proof of Theorem
1.2 is complete.
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