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Abstract. In this paper, we are concerned with the following eigenvalue
problem

(=AY u+ Ag(z)u = au, ue H*RY), N >3,
where s € (0,1), a, A € R and

glx)=00nQ, g(z)€ (0,1 on RN\Q and lim g(z) =1

for some bounded open set @ C RY. We discuss the existence and
some properties of the first two eigenvalues for this problem, which ex-
tend some classical results for semilinear Schrédinger equations to the
nonlocal fractional setting.

1. INTRODUCTION AND THE MAIN RESULTS
In this paper, we discuss the eigenvalue problem
(=A)Yu+ Ag(z)u = au, ue H*RY), N >3, (1.1)
where (—A)?® denotes the fractional Laplacian operator of order s € (0, 1),

A, « are real numbers, and the function g satisfies the condition:
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(G) g € L>®(RY,R) and there exists a nonempty bounded open set © C
RY with Lipschitz boundary such that
g(x)=00n Q, g(x)€ (0,1 on RM\Q and lim g(z)=1.
|z|—o00
By the condition (G), the potential functional g(x) represents a potential
well with the bottom 2 and whose depth is controlled by the parameter A.

A basic motivation for the study of Eq. (1.1) arises in looking for the
standing wave solutions of the type

(x,t) = e Fey(s)
for the following time-dependent fractional Schrédinger equation

ie%—\f =B(—APU + (V(2) + E)V — f(z,V) (2,t) cRY xR, (1.2)
Eq. (1.2) was introduced by Laskin [22, 23], which describes how the wave
function of a physical system evolves over time. In the last few years, the
study of elliptic equation involving fractional Laplacian operator appears
widely in both pure mathematical research and concrete applications, such
as the thin obstacle problem [7, 30], minimal surfaces [6, 9], phase transitions
[31], anomalous diffusion [4, 28, 34] and mathematical finance [12]. See [13,
14, 3] and references therein for an elementary introduction to the literature.
Recently, problem (1.1) and problems similar as (1.1) have captured a lot of
interest, especially on the existence and nonexistence of positive solutions,
multiple solutions, ground states and regularity, see for example, [5, 8, 11,
16, 17, 20, 36, 37, 38, 39] and the references therein.

For a bounded domain  C R™, R. Servadei and E. Valdinoci in [29]
studied the eigenvalue problem

{EKU =¢&u in ),

1.3
u=0 in RV\Q, (1.3)

where L : RV\{0} — (0, +0o0) is defined as

Lru(x) = —% /RN (w(z +y) +u(x —y) — 2u(z)) K (y)dy for all v € RY,

which satisfies the following conditions:
(1) mK € LY(RY), where m(z) = min{|z|?, 1},
(i7) There exist A > 0 and s € (0, 1) such that K (z) > A|z|~(N+29),
(iii) K(x) = K(—x) for any 2 € RV\{0}.



POSITIVE EIGENFUNCTIONS 125
In case K(x) = |z|~(N*2%) (1.3) transform into

—A)u = in Q
{i:())u - in]R}V\Q. (14)

The authors prove that problem (1.3) or (1.4) has a sequence of eigenvalues
{&} satisty
0<f << < <---and & — oo as k — o0.

Moreover, for each k € N, there exists an eigenfunction ¢y, corresponding to
the eigenvalue & such that
/ rdr = 1.
Q

In particular, the first eigenvalue &; is simple, isolated and there is a unique
eigenfunction satisfying the conditions

/go%da:zl and ¢; > 0 on .
Q

When the domain Q is replaced by RY and there exists a potential func-
tion, one of the main difficulty, as opposed to their study on bounded do-
mains, is the fact that the spectrum contains points which are not eigenval-
ues. C.A. Stuart and H. Zhou in [33] discusses the problem

— Au+ Ag(x)u = au, ue HY(RY), u>0. (1.5)

Let the condition (G) be satisfied. They proved that the principal eigenvalue
A = A«) always exists for any « € (T, 1) with

F:inf{/ |Vu|?dz : e HY(RY) and/ (1—g)u2d:c:1},
RN RN

where p is the first eigenvalue of (1.4) with s = 1 and the A(a)-eigenfunction
pp is the only eigenfunction which does change sign. Later, X. Liu and Y.
Huang in [26] discuss the existence and properties of the second eigenvalue
for (1.5), and they prove the corresponding eigenfunctions change sign. All
the conclusions in [26, 33] are useful result to study the asymptotically linear
Schrodinger equation, see [1, 24, 25, 27, 35] for example.

Our aim in this paper is to show that the results of [26, 33] can be extended
to problem (1.1). In order to do this, as in the classical case, we will use a
variational technique for spectral analysis. We first set

rlzinf{/Ny(—A)SuFdx: u e HY(RY) and /N(l—g)u2da::1}.
R R
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In the first part of this paper, we follows [33] describing the eigenvalue A
as a function of the parameter « rather than the eigenvalue « as a function
of the parameter A in the traditional treatment. Which can help us yield
some no-trivial conclusions. We begin by establishing the following result
concerning the quantity I'y.

Theorem 1.1. Let the condition (G) be satisfied.

(1) If « > &1, then there is no eigenvalue of (1.1) in o, +00) with a
non-negative eigenfunction.

(i) If T'1 < a < &, then there exists a unique eigenvalue X\ = A(a) of
(1.1) having a positive eigenfunction. Furthermore, A(a) > «, and
it is simple in the sense that

ker((—=A)* — a+ Ala)g) = span{uyq)} == Vi,

where upq) > 0 on RN . All other eigenvalues of (1.1) are less than
A(«), and their eigenfunctions change sign.
(731) The function A € C*°((I'1,&1)) and is strictly increasing with

lim A(a) =T and lim A(a) = +oo.

+ —
a—TI"7 a—&]

(iv) ForT'1 < a < &, M) is characterized as the unique value of A for
which ¥(\) = 0, where

Y(A) = inf {a,\(u) cu € HS(RY) and |uly = 1}
and
ax(u) = /]RN (|(—A)§u|2 —au? + Aqu)d:E.

(v) If a < Ty, then problem (1.1) has no eigenvalues X\ in the interval
(@, 00).

In the following, taking the alternative view, from Theorem 1.1, let A be
fixed, for the fractional Schrodinger operator

Ly = (=4)" + Ag(2),

we can define
ai(A) := inf {/ ([(=A)2ul? + Ag(z)u)dz : u € H¥(RN) and |uly = 1}.
RN

Next, we define

Lo= e O |(_A)§“2’2dx.
u€Hs (RN )NV fRN(l — g)uldx
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Clearly, T'; > I';. Let X; denote the set of all closed subspaces of H*(R)
with codimension 1. Fixing A € (I'y, 00), we define

ag(A) = inf { /RN(|(—A)§U|2+)\9(:B)U)d:B cue HSRM) NVt and |uly = 1}

and

&(\) = sup inf {/ ((=A)3u? + Ag(z)u)dz : |uls = 1}.
vex, u€V L JRN

Let W5 denote the set of all closed subspaces of H*(RY) with dimension 2.
Define

Go(A\) = sup inf {/ (J(=A)2ul? + Ag(2)u)dz : |u)s = 1}.
Vew, ueV RN
Now, we state the second result in this paper as following:

Theorem 1.2. Let the condition (G) be satisfied. If A\ > T'a, then the
following assertions holds:
(1) aa(N) is the second eigenvalue of the fractional Schrodinger operator
Ly = (—=A)*+ Xg(x), and corresponding eigenfunctions change sign.
(i) az(A) = az(N) = a2(N).
(7i1) ag(N) is strictly increasing with A.
(iv) /\li_)n;o az(A) = &s.

Throughout this paper, we denote ||, the usual norm of the space LP(RY),
1 < p < o0, Br(z) denotes the open ball with center at = and radius r, C or
Ci(i =1,2,---) denote some positive constants may change from line to line.
a, — a and a, — a mean the weak and strong convergence, respectively, as
n — oo.

2. VARIATIONAL SETTINGS AND PRELIMINARY RESULTS

First, fractional Sobolev spaces are the convenient setting for our problem,
so we will give some introduction of the fractional order Sobolev spaces and
the complete introduction can be found in [13]. We recall that, for any
s € (0,1), the fractional Sobolev space H*(RY) = W*2(R") is defined as
follows:

@) = {ue P@Y): [ (P4 DIFwPE < oo},
RN
whose norm is defined as

Jull? = [ (6P D17 P
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where F denotes the Fourier transform. We also define the homogeneous
fractional Sobolev space D*2(R™) as the completion of C3°(RY) with respect

to the norm )‘2 )
u(y 3

102) Z VI izd )

//RNX]RN |z —y \N’LQS Y

The embedding DSQ(RN < L% (RY) is continuous, where 2! = NQi\;S

is the fractional critical exponent, then there exists a best constant Ss > 0
such that

[u)?

S = .
*T ueps2®Y) |ul3

The fractional Laplacian operator, (—A)%u, of a smooth function w :
RN — R, is defined by

F((=A)yu)(€) = [E° F(u)(§), ¢eRY,
that is

_ ! e T (x)dx
FONO = [ et

for functions ¢ in the Schwartz class. Also (—A)°u can be equivalently
represented [13] as

s 1 u(z +y) + u(x — y) — 2u(x) N
(—A)u(z) = —EON,S /RN WhEE dy, Yz € RY,

where

Cy.s = (/ 1|£,$i32§1d5) £ eRY.

Also, by the Plancherel formula in Fourier analysis, we have

2 s
l” = o l-2) bl

As a consequence, the norms on H%(R3) defined above

e </ |Ude+//RN><RN IfL‘yINSZ)fd dy)é;
w ([ Gepe s Dz Pae)’

1

w— (/ uPde +|(~A)Fuf)
RN

are equivalent.
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In view of the presence of potential g(z), we introduce the subspace

E:{uGHS(]RN):/

Mg (z)uldr < —f—oo} ,
RN

which is a Hilbert space equipped with the inner product

(u,v)p = / ((—A)%u(—A)%U + Ag(z)uv)dz,
RN
and the norm

s = </sz (I(~A)5ul? + )\g(x)@ﬂ)d:c)é.

For the reader’s convenience, we review the main embedding result for
this class of fractional Sobolev spaces :

Lemma 2.1. [13] Let 0 < s < 1, then there exists a constant C = Cn s > 0,
such that

[uf3, < Clu?

for every u € H*(RN). Moreover, the embedding H*(RY) — L"(RY) is
continuous for any r € [2,2%) and is locally compact whenever r € [2,2%).

Lemma 2.2. Under assumption (G), for fired X € (0,00), the norm
1
fulle = ([ (-85 + dgla)u)de)
RN
is equivalent to the form
1
Jull = ([ (-8l + u?)dz)”.
RN

Proof. By the condition (G), there exists R > 0 such that Q C Bg(0) and
g(z) > 3 for almost all 2 € RV\Bg(0), then

/ g(x)udr > / g(x)u’dx > 1/ uldz. (2.1)
RN\Q RN\B(0) 2 JrM\Br(0)
By Lemma 2.1, we have
ez ()Pl @2
2 Jemio 2 J®N\Q)NBR(0)
> L u?dz.

~ 2¢1 J®M\Q)NBR(0)
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By (2.1) and (2.2), we obtain

! / (—A)Sul?da + / Ag(z)ulda (2.3)
2 RN\Q RN\Q

1 2 1 2
> udr + =\ u“dx

2¢1 (RN\Q)mBR(O) 2" JrM\BR(0)

1
> min A / w?dr + / u’dx
{201 2 }< (RN\Q)NBR(0) RN\BR(0) )

:mim{L 1)\}/ uldz.

Therefore,

where

1 1
—, =A} )
5

co = min{g, min{

Also by the condition (G), we have
/ (|(=A)2uf? + Ag(2)u?)dx < / (|(=A) 2 ufde + Au?)dz (2.5)
RN\Q RN\Q

< max{1, )\}/ A)zul?dr 4+ u?)dz.
N\Q

By Lemma 2.1, we get

/uzd:p < Cg/ [(—A)zu?da,
Q Q

s 1 s 1
/|(—A)2u2dx2 / ](—A)?u\zd:):—l—/uzd:):
Q 2¢3 Jo

>H11H{2 5 }/ A)zulde + u?)de.

then
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Since g(x) = 0 for x € 2, we have

/ ((=A)5uf? + Ag(a)u?)da = / ((~A) Fuf2de (2.6)
Q Q

> min{;,213}/9(\(—A)3u|2d95+u2)dx.

and
/(!(—A)SM\Q + \g(z)uidr = /(!(—A)Su\QdaE (2.7)
Q Q
< /(](—A)§u|2d:v +2)da.
0
Hence, by (2.4)-(2.7), we know that [ - || g is equivalent to the norm [|-|. O

Next, we deal with the fractional Schrédinger operators
H=(-A*+V

acting on L?(RY) with V = A\g(z). A suitable class of potentials V for the
fractional Schrodinger operators discussed here is the following Kato class
(denoted by K (RM)).

Definition 2.1. Let 0 < s < 1. We say that the potential V € K (RN) if
and only if V : RNV — R is measurable and satisfies

lim [(—A)* + )1 |V||pe s = 0,
E—0
where B > 0 is a positive number.

Remark 2.1. If V € K, then H = (—A)* 4V defines a unique self-adjoint
operator on L?(RY) with form domain H2?*(RY), and the corresponding
heat kernel e maps L?(RY) into L>®(RY) N CO(RY) for any ¢t > 0. In
particular, any L2-eigenfunction of H is continuous and bounded. See also
[10, 18, 19] for equivalent definitions of K and further background material.

Lemma 2.3. [18, 19] Let 0 < s < 1 and V : RN — R be given. If V €
LP(RN) with some max{1, 2L} < p < +oo, then V € K (RY).

Definition 2.2. Let (H,(-,-)) be a real Hilbert space. Let L : D(L) C H —
H be a self-adjoint operator whose form domain is dense subspace of H. Its
resolvent set is

p(L) = {/\ ER:L—-X:D(L)— H is an isomorphism}
and its spectrum is the set
o(L) = R\p(L).
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The elements of p(L) are called regular values for L : D(L) C H — H. The
following subsets of o(L) are of primary importance. The point spectrum is
the set

op(L) = {/\ e R : ker(L — \I) {o}},

its elements being the eigenvalues of L. The discrete spectrum is the set

oq(L) = {)\ € op(L) : dimker(L — M) < oo and
A is an isolated point of J(L)}

and its complement in o(L) is called the essential spectrum
oe(L) = o(L)\oa(L).

From Remark 2.1, Lemma 2.3, and our condition (G), we know that
the fractional Schrédinger operators Ly = (—A)® 4+ Ag(z) is a self-adjoint
operator on L?*(RY) with form domain H?*(R"). Moreover, similar to in
[2] and Theorem 3.8 in [32], for the point spectrum, we have the following
result.

Lemma 2.4. Let the condition (G) be satisfied. The fractional Schrédinger
operators Ly = (—A)*+\g(x) has no L?-eigenvalues in the interval (0, +00).
In particularly, for g = 0, the fractional operators (—A)® has no L*-eigen-
values on RV,

Proof. Assume that f € D ((—A)®) = D(L)) is such that Lyf = A\f with
A > 0. By [2, Proposition 10.10], we know that f must have compact
support. Next, one may choose a periodic W : RV — R such that W(zx) =
Ag(z) for all = in the support of f. If LY = (=A)* + W, then L\ f =
Lyf = \f, since Ag(x)f = W f. Hence, f is an eigenvector of the periodic
Schrodinger operator L. By [2, Proposition 10.9], we conclude that f = 0.

For the second part, let Ly = (—A)®. Suppose that u € ker(Ly — AI) for
some A € R. Then

(—=A)’u = A,

which means that v € L?(RY) and

/u(—A)Szdaz = /()\u)zdx for all z € L*(RY).

By the Fourier transform, we have
1€)%50(¢) = Ma(€)  for almost all € € RY.

Since {¢€ € RY : [¢[>* = A} has N-dimensional zero, this implies that u(§) =
0 for almost all £ € RY. Thus, u = 0 and ker(Ly — M) = {0}. O
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3. PROOF OF THEOREM 1.1

Inspired by [33], we first describe the eigenvalue A as a function of the
parameter « rather than the eigenvalue o as a function of the parameter
A in the traditional treatment. In this case, if we denote a(\) the lowest
eigenvalue of Ly, we can see that a(\) increases from I'; to & as A increases
from I'; to co. Moreover, from Lemma 2.4, we can restrict eigenvalues A for
problem (1.1) in the interval («, +00). In fact, if u satisfies (1.1), then

(=A)’u = A1 = glu= (e = M,
and so a — \ is an L?-eigenvalue of the fractional Schrédinger operators
(=A)*—=A(1—g). Using Lemma 2.4, this implies that A > «. Henceforth, we
concentrate on the existence of eigenvalues of (1.1) in the interval (o, +00).
In the following, we define the fractional Schrodinger operators
Ay H¥(RY) c L*(RY) — L*(RY)
by
Ayu = (—A)’u+ Agu — au = (—A)°u+ (A\g — a)u.

Then Ay is a self-adjoint operator in L?(R™) with spectrum o(A)) and
essential spectrum o.(A)) = [A — @, 00). Furthermore, setting

Y(A) =info(Ay),

we have
S(\) = inf {aA(u) cu € H5(RY) and |ufs = 1} > 0o, (3.1)
where
ay(u) = /N (\(—A)%uP — au?® + Mgu?)dz.
If we set :

Sa={A>a:3(\) <0} and T,:={A>a:3()) >0},
it is clear from (3.1) that S, and T}, are intervals since 3(\) is non-decreasing
in .
In most of the discussion, the value of « is fixed and it is the variation

with respect to A that is of interest. However, when the dependence on « is
relevant, we use the more explicit notation

S, af, and X%(\).
Lemma 3.1. If (G) holds and X\ > «, we have 3(\) = 0 if and only if X is

an eigenvalue of (1.1) with a non-negative eigenfunction uy. In this case, 0
is a simple eigenvalue of Ay, ker Ay = span{uy} and uy >0 on RN,
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Proof. We first suppose that 3(\) = 0. Then 0 = inf o(A)) by (3.1) and
0 <X—a=info.(Ay).

Hence, 0 is an eigenvalue of Ay and there exists uy € C(RY)NH?*(RY) such
that ker Ay = span{uy} and uy > 0 on RY (see [19, Appendix]). Thus, \ is
an eigenvalue of (1.1) with eigenfunction wy.

On the other hand, if A is an eigenvalue of (1.1) with an eigenfunction
uy > 0, then we have already observed that uy € C(RY) N H?*(RY) and
Ajuy = 0. Thus, 0 € 0(A,), and so

E(A) <0 <infoe(Ay).

This implies that ¥()\) is a simple eigenvalue of Ay with a positive eigen-
function v € H2*(RY). Thus,

S(A)(un, v)a = (ur, Axv)a = (Ayuy,v)a =0 and (uy,v)2 > 0,
showing that X(\) = 0. O
Lemma 3.2. If (G) holds, then o € Sy, if and only if 1 < a.

Proof. If ¥()\) < 0, then there exists u € H*(R") such that

lul2 =1 and / (|(—A)%ul2 —a(l - g)u?)dz < 0.
RN

It follows that
/ (1—g)ude >0
RN

and that I'1 < a.
On the other hand, if I'; < a, then there exists u € H*(RY) such that

/ [(=A)2ul?dx < a/ (1 — g)u?dr,
RN

RN
hence, ¥(\) < 0. O
Lemma 3.3. Let the condition (G) be satisfied. Then

0<TIy <&.

Proof. Let ¢1 € H{(2) be an eigenfunction of (1.4) corresponding to &;
with |p1]2 = 1. Extending ¢ by

o= inQ, ¢=0inRV\Q.
We now have ¢ € H*(RY), gpo =0 on R, and hence

/ (1—g)p?dr = 1.
RN



POSITIVE EIGENFUNCTIONS 135

Thus,

[ Jeayiokan = [ -ayiola =g [ Gao=g [ 0-getd

showing that I'y < &;. However, if Ty = &, it follows that ¢ € H*(RM)

minimizes
/ [ENEDRR2
RN

/ (1—g)ude =1
RN

Nlw

under the constraint

and consequently

/ (=A)2p(—A)2vds = 51/ (1 — g)pvdz, for all v e H¥(RY).
RN RN

Since g = 0 on RY, this implies that ¢ is an L2-eigenfunction of (—A)* on
RY. However, from Lemma 2.4, (—A)® has no such L2-eigenfunctions and
hence I'y < &;. O

Lemma 3.4. If (G) holds,
(i) So and T, are open subsets of [a, +00).
(i) If o > &1, then Sy = [a, +00).
(131) IfT'1 < a < &1, then there exists A(a) € (o, +00) such that
S = [a, A()), where a < Aa) < o0.

Proof. (i) By the definition of ay, we see that, for all A,y € R and u €
HE(RY),

x(w) ~aulw) = =) [ gla)ulda, (3:2)
Suppose that A € S,. Then there exists u € H*(RY) such that |u|z = 1 and
ax(u) < 0. Since

() < ar) + N = pl [ gle)ulds < axw) + A=l

it follows that X(p) < 0 for all u > « such that |A — u| < 3]ax(u)], showing
that S, is open.

Suppose now that A € T,. Then for all u € H*(RY) with |u|s = 1, we
have

au) > ax(u) ~ A=l > D)~ A~ ] = 50 > 0
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for all p such that [A — p < $3(\). Thus,
1
Y(p) > 52()\) >0 for all p

such that [A — p| < $3(\), showing that T, is open.
(73) Let 1 € H3(€2) be the eigenfunction of (1.2), and set
e=¢1inQ, ¢=0inRV\Q.
We now have ¢ € H*(R™) and gy = 0 on RY. Thus,

ox(e) = [ (=81 — agf)do = & — o and fuly = 1.
showing that X(A) < 0 if @ > &;. Furthermore, if o = & and X(\) = 0, then

0:a,\(<p):min{a>\(u) cue HY(RY) and u2dm:1}.

RN
Hence, there is a Lagrange multiplier ¢ € R such that

/ ((—A)%gp(—A)%v — (= Ag)pv)dz = C/ oudx for all v € H*(RY).
RN RN
Putting v = ¢, we see that ( =& — a =0, and then
/ ((—A)%@(—A)%v + Agpv — &1pv)dr =0 for all v € H*(RY)
RN

since go = 0 in RY which contradicts to Lemma 2.4. Hence, X(\) < 0 if
a = &1, too.

(7i7) Suppose now that I'y < a < &. By Lemma 3.2, we have a € S,,, and
there exists A(a) > a such that S, = [a, A(«)) since S, is an open interval

of [a,00). If A(a) = o0, then S, = [a,+00), and for any integer n > «,
there exists u, € H*(R™) with |u,|2 = 1 such that
an(uyp) = / (|(—A)%un|2 —(a— ng)ui)dx < 0. (3.3)
RN

Since g(x) > 0, this implies that

/ [(=A)2u,|?de < a/ uidr = a,
RN RN

and so {u,} is bounded in H*(R"). Passing to a subsequence, still denoted
by un, we may assume that, for some u € H*(RY),

w, — uin H5(RY),  w, — uin L} (RY).
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By (3.3),
n/ gude < a/ uldr = a. (3.4)
RN RN
Since | l|im g(z) = 1, there exists a compact set K C RY such that g(z) > 3
Tr|—00
for almost all ¢ K. By (3.3), we have
n/ uldr < n/ guidr < n/ guide < a,
2 Jrn\k RN\K RN
that is,
2
/ uldr < a,
RNV\K n
and so

2
1 :/ uidx:/ uidﬂ:+/ uldzr </ u%d$+£.
RN RN\ K K K n

Since K is compact, this implies that

1< lim u%d:vz/ u2dm§/ u’dx.

However,
/ w?dz < lim inf/ ufldx =1
RN n—0o0 RN
and hence
/ u2dx:/ u?de = 1.
RN K
However,
n(un) = [ (1-8)3unf? (o~ ng)u)da
RN
2/ ](—A)Sunlzdx—a/ uldz,
RN RN
and by (3.3),
0 > lim inf ay (1) > / (—A)5ul2dz — . (3.5)
n—oo RN

On the other hand, by (3.4),

0< / guldz < lim inf/ guidm < liminf > _ 0.
RN RN

n—00 n—oo N
However, g(x) =0 in Q and g(x) > 0 in RV\Q. Hence, this implies that
u=0ae on R"\Q and u=0a.e. on RN\Q.
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Since Q has a Lipschitz boundary, we have @ € H{(f2), where @ is the
restriction of u to Q. By (1.4),

/ ((=A)3ap — &i)de > 0.
Q
Thus,

o< [l-asar —aitye = [ (-85 g
—A)2ul?dz — o
< [ U-a)iufdo—a

since |ula = 1 and a < &, which contradicts (3.5). Thus,
A(a) =sup S, < +o0. O

Lemma 3.5. Let (G) be satisfied with T'y < o < &1, and consider A > a.
Then (X)) = 0 if and only if X\ = A(«), where A(a) is given by Lemma
3.3(iii). Furthermore, A(a)) < A(B) forT1 < a < fp < &.

Proof. By Lemma 3.2, « € S,. If A > o and X(A\) = 0, then X\ ¢ S, and
A > a. By Lemma 3.1, there exists uy € C(RY) N H?*(RY) with

uy >0, Ayuy=0 and \u>\|2 =1.
Since g(x) > 0 on RV\Q,
/ guidw #0.
RN

For any ¢ > 0, it follows from (3.2) that

ar—c(uy) = ax(uy) — 5/

R
and this means that A\ — e € S, for any € > 0. Therefore,

A =supS, = Aa).

On the other hand, if A = A(«), it follows from Lemma 3.4 that \ ¢
Sa UT,, and since A > «, we must have X(\) = 0.
Consider «, 8 € (I'1,&) with o < . Since ¥*(A(a)) = 0, it follows

from Lemma 3.1 that there exists z, € H?*(R")\{0} such that ker AR ) =

guidaz = —5/ gu%\dm <0,
N RN

span{z,} and hence ag O()(zo[) = 0. However,

ai(a)(za) = aﬁ(a)(za) + (o — 6)/ 22dr = (o — 6)/ 22dx <0,

RN RN
showing that A(a) € Sz and consequently A(3) > A(«). O
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Lemma 3.6. Consider A > «a and any p € [2,00).
(i) The map Ay : X = W2sP(RN) — LP(RY) is a Fredholm operator of
the index zero.
(i) Let {vp,} C X, v, = v in X and let {Ax(v,)} converge strongly in
LP(RN). Then v, — v in X.
Proof. (i) Since lim (Ag(z) —a) =X —a > 0, we write

|z| =00
A=A+ V-N"+A—a)— (V=N
where V € L>®(RY). From [21, Theorem 4.2 (i)], we have that
W2sp (]RN) — LP (]RN) ;o ur— (=APu+ (V=N u+ (A —a)u

is an isomorphism for all A > a and is so a Fredholm operator with index 0.
Moreover, we have lim (V — X)7(x) = 0. It follows from [21, Theorem 4.2

|z|—o00
(ii)] that the multiplication operator
W24 (RY) — L1 (RY), ur— (V=N)"u
is a compact operator. Recall that if T : X — Y is a bounded linear
Fredholm operator and K : X — Y is a compact operator, then 7'+ K is
Fredholm and ind(7") = ind(T + K). Thus, the operator A, is a Fredholm

operator with index 0 for all A > a.
(ii) Since Ay : X — LP (RV) is a Fredholm operator of index zero, by [15,

Theorem 3.15], there exists T' € B (Lp (]RN) ,X) such that
TAy=1T+K,
where K : X — X is a compact linear operator. Let Ayv, — w strongly in
LP (RN ) for some w € LP (RN ) ; then
(I + K)v, =TA\v, - Tw
strongly in X. Since K is compact, it follows that Kv, — Kwv strongly in X.

Therefore, v,, — Tw — Kwv strongly in X, and hence that v,, > v=Tw— Kv
strongly in X. O

Proof of Theorem 1.1. (i) If o > &, it follows from Lemma 3.4 that
Y(A) <0 for all A > a. Thus,

info(Ay) =3(A\) <0 and info.(Ay) =A—a >0 for A > a.
Hence, there exists vy € C(RY) N H2¥(RY) such that Ayvy = S(\)vy and
vy > 0 on RY. However, if u > 0 satisfies (1.1), as in the proof of Lemma 3.1,

this leads to a contradiction. Hence, (1.1) has no non-negative eigenfunction
with A > «a.
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(7i) We now have 0 < T'y < a < ;. It follows from Lemma 3.4 (iii) and
Lemma 3.5 that
Sa = [, M),  To = (A(a), +00)

and A = A(a) > « is the unique point in [a, 00) such that X(A) = 0. By
Lemma 3.1, A(«) is an eigenvalue of (1.1) and 0 is a simple eigenvalue of
Ap(a) With ker Ap(,) = span{za}, where 2, = up() > 0 on RN, Suppose
that u # A(a) is also an eigenvalue of (1.1) with eigenfunction w € H*(RY).
Since ¥(p) = inf 0(Ay)), this shows that ¥(x) < 0 and hence p < sup S, =
A(«). Therefore, A(a) is the largest eigenvalue of (1.1). Furthermore,

0= / ((—A)%za(—A)%w — azqw + Aa)g(z) zqw) da
RN

= / ((—A)%w(—A)gza — awzq + p(a)g(z)wz,)dx

so that
(Alar) — ) /]RN g(x)zqwdz = 0.

For p < A(«), this implies that

/ 9(z)zqwdx = 0.
RN\Q

Since z, > 0 and g(z) > 0 on RV\Q, it follows that either w =0 on RM\Q
or w must change sign. However, if w = 0 on RV\Q, then its restriction w
to 2 belongs to H?*(Q) N H(2)\{0}, since 99 is Lipschitz and satisfies

(—A)’w —aw =0 on .
However, o < &1, so this is impossible, and consequently w must change sign
on RV\ Q.
(797) By part (i7), we know that for any a € (I'1, &), there exists A(a) €
(o, +00) such that X*(A(a)) = 0, and it is a strictly increasing function of
a by Lemma 3.5.

Suppose that {a,,} C (I'1,&;) is an increasing sequence such that o, — &;.
Then A(ay,) — A, where A > &, since A(ay,) > a,. If A < oo, for any

u € H5(RN), ai’(an) — a‘il. However, by Lemma 3.5, for all n € N,
0=X"(A(ay)) = inf {ai’(an)(u) we HYRY) and |uls = 1},
Qn

and so ai’z )(u) > 0 for all w € H*(RY). This implies that

ail(an)(u) >0 for all u e H(RY)
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and hence that
YE(A) = inf{af}(u) s u € HY(RY) and |uly = 1} > 0.

This means that A ¢ Sg,, contradicting the fact that Sg, = [£;,00), which

was established in Lemma 3.4. Thus, lim A(a) = .
a—E]

Let 7 = lim+ A(a), and observe that since A(a) > «, we must have
a—TI"7]

7 > T';. Let us suppose that 7 > I';. Consider a decreasing sequence {ay,}
such that a,, — I'1. As in part (ii), there exists {z,} C C(RV) N H?*(RN)
such that |z,]2 = 1 and

(=A)z, — anzn + Ala)gz, =0 on RY.

Hence, {z,} is bounded in H?*(R"). Passing to a subsequence, we suppose
henceforth that z, — z in H*(RY). However,

(=A)*zp —Tyi2p + 7920 = (n — 1) 20 + (1 — A(o))gzn on RY,
where
(n —T1)2n 4 (1 — Ala))gzn — 0 in L2(RY)
as n — oo and
(=A)* =Ty +7g: H*¥RY) - L*(RY)
is a Fredholm operator of index zero since
lim {-T'1 +79(z)} =-T1+7>0
|z|—o0

(see [21, Theorem 2.3]). Then Lemma 3.6 implies that z, — z in H?$(RY),
and hence

(—=A)°z—T12+ 7192z =0 with |z|] = 1.

/ gz%dx > 0,
RN

since otherwise z = 0 on RV\(2, and we would then have (—A)*z = I'yz
on RY contradicting the fact that (—A)* has no L2-eigenfunctions on RY,
However, by the definition of I'y, we have

0< /RN ((=A)2 2> = T1(1 — g)22)dx

Furthermore,

= / (T12* — 7g2® —T1(1 — g)2°)da
RN
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= (T — 7')/ gzdx < 0.
RN

This contradiction means that our assumption 7 > I'; must be rejected, and
soT=1I4.

The smoothness of the function A : (I'1,&) — R could follows by a
standard application of the implicit function theorem. We omit here.

(7v) This follows from Lemma 3.5.

(v) Suppose that u satisfies (1.1) with A > a. Then

/ guidz # 0,

since otherwise we have gu = 0 on RY and u would be an L?-eigenfunction
of (—A)® on RY and, as we have already remarked several times, this is
false. However, (1.1) now yields

/ (](—A)%u|2 —a(l - g)u2)dx = (a— A)/ guldx <0,
RN

RN
from which it follows that

/ (1 —g)ude #0

and that a > IT'q.

4. PROOF OF THEOREM 1.2
(i) We first show that ag()) is an eigenvalue of (1.1). First, we claim that
az(A) < A. (4.1)

Indeed, let A > I'y, by the definition of 'y, we have

—A)zu|%d
A> g Jer|CA)uldr
ueHs(RN)NV*- fRN<1 — g)u*dx

Thus, there exists v € H*(RV) N V- such that
/ [(—A)2ul?dz < A (1 — g)u’dz.
RN RN
Then
Jan ([(=A)2v|?dz + Ag(z)v?)da
Jpn vida

which implies that ag(\) < A, i.e., (4.1) is proved.

<A,
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Next, we shall prove that there exists a function u € H*(R™) N Vj* such
that

O (u) = /RN(](—A)SUFCZSU + Ag(x)v?)da

archives ag(A). We borrow a method in the proof of [26, 35]. Let {u,} €
H*(RN) N Vi with |u,|2 = 1 be such that

lim ®(u,) = az(N).

n—oo

Obviously, {u,} is bounded in H*(RY) N Vi, passing to a subsequence, we
may assume that, for some v € H*(RY) NV,

Up —uin SRV NV, w, — win L (RY).

By the condition (G), for every ¢ > 0 there exists R > 0 such that Q C

Br(0), and
‘/ —1Du? dl” <elupl=c¢
RN\Bg(0

for all n € N. Since u, — u in LZZOC(]RN),

‘/ z) —1)(u2 — u dx‘</ (u2 —u?)dx < e
Bgr(0 Br(0)

for n large enough. Therefore,

/RN (9(z) — 1)u%dm — (9(z) — l)uzd:c

RN
as n — oo
Define
Q) = [ ((-8) s+ Xg - 1)u )
R
then

Q) = [ (=85 + Mg = u)da

gnminf/ [(=A)3uy,|2dz + lim Mg — Duldz (4.2)
RN

n—o0 n—oo [pN

n—o0

< liminf/ (I(=A)2un 2 4+ A(g — Dul)dz = as(X) — A
RN
By the definition of aa()), we get

Q(u) > (aa(N) = \) /R N u?dz,
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which together with (4.1) and (4.2), implies

/ uldr > 1.
RN
Note that
/ uldr < lim u,%dx =1.
RN n—oo RN
Therefore,

/ wide =1,
RN

then by the definition of ag(\), we have ®(u) > ao(A). However,
P (u) < lirginf@(un) = as(N),

and hence ®(u) = ag(\).
By using the Lagrange-multipliers method, there exists n € R such that

/R N((—A)%u(—A)%v + Ag(z)uv)dz (4.3)
=7 wodz, Y v e HY(RY) NVt
RN

For every w € H*(RY), we have w = SUg,(n) + v for some s € R and
v e H¥(RV)NVit. By (4.3), replacing v with w — SUq, (n)> We get

JRES

=7 o u(w — suq, (x))dx

N|w
N|w

u(=2)2 (w = suq, (n) + Ag(@)u(w — suq, (n))dx

for all w € H*(RY). Since Uq, (x) is an eigenfunction corresponding to a1 (),

=)

Thus,

N|o

u(—A)%ual(A) + Ag(z)utg, (ny)dr = a1(N) /RN Uy, (nydx = 0.

/ (=A)2u(—A) 2w + Ag(z)uw)ds = 17/ wwdz (4.4)
RN RN

for all w € H*(RY). Putting w = u in (4.4), then
[ (8 4+ 2g(opyis = [ alds =
RN RN
i.e., aa(A) =n. Hence, as(\) is an eigenvalue of (1.1).
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For fixed A > 0, let ug,(y) be an arbitrary eigenfunction corresponding
to the eigenvalue ag(M). Since (a1(A),a2(N))2 = 0, and a;(\) > 0, we
know that ag(A) must change sign, that is, all eigenfunctions corresponding
to ae(A) must change sign. Note that all eigenfunctions corresponding to
a1(A) do not change sign since aq(A) is simple and there exists a positive
eigenfunction corresponding to aq(A). By the definition of ag(A), as(A) >
a1(A), we finally get ag(A) > ai(N). If a(N) is an eigenvalue of (1.1) with
an eigenfunction u,(y) , it is clear that uq(yy € V-, then a(A) > aa(A) by
the definition of aa(\), that is, aa()) is the second eigenvalue of L.

(79)We will prove that () = az(A) and da(N) = aa(N).

Step 1. a2(A) = az(A). Obviously, G2(A) > az(N). On the other hand,
let v € V4, u € V& with |v]s = 1 and |u|z = 1. 7(v,u) denotes the plane
expanded by wu,v. For any given V' € X7, then V Nw(v,u) # {0}, thus there
exists w € V Nw(v,u) # {0} such that |w|s = 1, and w = fv + pu with
B2 + p? = 1. By the definition of a;1()\), we have ®(v) < ®(u), and then

(w) = (8% + 1)@ (w) = () + B(juu)
— B20(0) + 120 (u) < F(u) + 12D (u) = D(u).

Thus,

O(w) < inf ®(u),
ueVit

and hence

;Iel‘f/q)(u) < P(w) < uleI%/{L D (u).

Notice that V is arbitrary, and so

sup inf ®(u) < inf ®(u),
VE)IgluEV ( )_uevlL ()

that iS, dg()\) < 042()\).
Step 2. da(\) = aa(A). Choose

‘/2 = span{ual()\)auag()\)}a
then

sup {®(u) : [uls = 1} = as(N).
ueVa

Thus, for any Ve Ws, we have

inf sup{®(u) : Juls = 1} < as(N),

i.e., dg()\) S 042()\)
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X On the other hand, for any given VA € Wy, we have dimV = 2 and
V N Vi # {0}, so that there exists w € V N V- such that |w|y = 1. Hence,
sup{®(u) : July = 1} > B(w) > as(N),

ueV
and then

inf sup{®(u) : Juls = 1} > as(N),

that is, da(A\) > as(N).
Combining Step 1 and Step 2, (i) is proved.
(797) Suppose that u # 0 satisfies (1.1), then

/ guldz # 0,
RN

since otherwise we have gu = 0 on RY, this implies that u is an L2-
eigenfunction of (—A)* on RY. However, from Lemma 2.4, we know that
(—A)?® has no such eigenfunctions, and hence

/ guldz > 0.
RN

Since uq,(x) (7 = 1,2) is an eigenfunction corresponding to a;(\), a;(A) sat-

isfies (1.1),
/ guii(A)dx > 0.
RN

We choose
Va = span{uq, (x), Uas(n) } € Wa,
then
sup  D(u) = aa(N).
u€Va,|ula=1
If A > p, then
)= swp [ (AR + dgla)u)da
u€Va,|ula=1JRN

> sup /R (=23 + pg()?)da

u€V2,|’u,|2=1

>t s [ (1-8)hP + pg(e)e?)do = as(i).
VEW2 4eV |ulp=1 /RN

(iv) Let @; = ;(i = 1,2) for z € Q, §; = 0 for z € RV\Q. Choose
Va = span{¢1, g2} € Wa,
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then

sup ®(u) = &o.
ueVs

Therefore, for any Ve W, we have

_inf sup  P(u) < &o.
VEW2 ueV Julo=1

By da2(A) = ag(N), we get az(A) < &. Thus,
lim as (M) = By < &.
A—00

If By = &, then the conclusion is true. Now, we suppose that Gy < &,
then there exists {\,} C (I'2,00) with A, — 0o as n — oo, and there exists
{u,} € H*(RN) N V- with |up|2 = 1 such that

ar) = [ (D)l + dglohid)ds < o (19)

By Lemma 2.2, we know that there exists ¢ > 0 such that

/ ((=A)Fun ? + u2)da < e / ((=A)Fun? + g(z)u2)da
RN RN

<o [ (AR + dgla)ud)ds < cho
RN
and so {u,} is bounded in H*(RY)NV;t. Passing to a subsequence, we may
assume that for some v € H*(RY) N Vi,
Up —uin KSRV N VL, w, — win L (RY).
By the condition (G), there exists R > 0 such that Q! C Bg(0) and g(z) > 3
for almost all z € RV\Bg(0). By (4.5), we have

)\n/ guidx < By,
RN

and so

/ wldr < 2—60.
RM\BR(0) =~ An

Since u,, — u in L2 (RY), which implies that
1:/ u%dm—k/ uldr < lim u?dx
Br(0) RN\BR(0) " S BR(0)

:/ uzdxg/ u’dz.
Br(0) RN
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Note that

u?de < lim inf uidw =1,
RN n—oo RN

/ uldr = / wldr = 1.
RN Br(0)
Bo

/ gu?dz < liminf guldr < lim = =0.
RN

n—oo JpN n—00 \p,

therefore,

Moreover, by (4.5),

Hence, by the condition (G), we see that v = 0 a.e. on RV\Q, so that
u € HE(Q). Since u, € H*RY) NV, we see that (u,p1)s = 0. By the
definition of & and By < &, we have

0< [U-ayuf—etio = [ (-aiuPa-& @)

RN
< / (—A)3ul2dz — B —0.
RN
On the other hand, by (4.5),

/ ](—A)Su\zd:r < liminf/ \(—A)%un|2dx < Bo,
]RN n—oo RN

which contradicts (4.6), thus limy_,+ a2(A) = &2, and the proof of Theorem
1.2 is complete.
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