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Abstract: This article deals with the following fractional Kirchhoff problem with critical exponent
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where >a b, 0 are given constants, ε is a small parameter, =∗
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N
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2 with < <s0 1 and ≥N s4 . We first
prove the nondegeneracy of positive solutions when =ε 0. In particular, we prove that uniqueness breaks
down for dimensions >N s4 , i.e., we show that there exist two nondegenerate positive solutions which
seem to be completely different from the result of the fractional Schrödinger equation or the low-dimen-
sional fractional Kirchhoff equation. Using the finite-dimensional reduction method and perturbed argu-
ments, we also obtain the existence of positive solutions to the singular perturbation problems for ε small.
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1 Introduction and main results

In this article, we are concerned with the following fractional Kirchhoff problem:
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where >a b, 0 are given constants, ε is a small parameter, � �( ) →K x : N , ( )−Δ s is the pseudo-differential
operator defined by
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where � denotes the Fourier transform, =∗
−
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2 is the standard fractional Sobolev critical exponent.
Recently, when =ε 0 in (1.1), Yang and Yu [1] established uniqueness and nondegeneracy for < <N s1 4 .
Then in this article, we will consider the high-dimensional cases, i.e., ≥N s4 and the associated singularly
perturbation problems.

If =s 1, equation (1.1) reduces to the well-known Kirchhoff-type problem; this problem and its variants
have been studied extensively in the literature. The equation that goes under the name of Kirchhoff
equation was proposed in [2] as a model for the transverse oscillation of a stretched string in the form
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for ≥t 0 and < <x L0 , where ( )=u u t x, is the lateral displacement at time t and at position �x, is the
Young’s modulus, ρ is the mass density, h is the cross-sectional area, L is the length of the string, and p0 is
the initial stress tension. Problem (1.2) and its variants have been studied extensively in the literature.
Bernstein obtains the global stability result in [3], which has been generalized to arbitrary dimension ≥N 1
by Pohozaev in [4]. We point out that such problems may describe a process of some biological systems
dependent on the average of itself, such as the density of population (see, e.g., [5]). Many interesting work
on Kirchhoff equations can be found in [6–9] and references therein. We also refer to [10] for a recent survey
of the results connected to this model.

On the other hand, the interest in generalizing the model introduced by Kirchhoff to the fractional case
does not arise only for mathematical purposes. In fact, following the ideas of [11] and the concept of
fractional perimeter, Fiscella and Valdinoci proposed in [12] an equation describing the behavior of a string
constrained at the extrema in which appears the fractional length of the rope. Recently, problem similar to
(1.1) has been extensively investigated by many authors using different techniques and producing several
relevant results (see, e.g., [13–23]).

Besides, if =b ε, 0 in (1.1), then we are led immediately to the following fractional Schrödinger
equation:

�( )− = −∗u uΔ , in ,s N2 1s (1.3)

which is also of practical interest and importance. For instance, it arises as the Euler-Lagrange equation of
the functional
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And we also define the homogeneous fractional Sobolev space
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Since the fractional Laplacian ( )−Δ s is a nonlocal operator, one cannot apply directly the usual techniques
dealing with the classical Laplacian operator. By using the moving plane method of integral form, Chen et al.
[25] proved that every positive regular solution of (1.3) is radially symmetric and monotone about some point,
and therefore assumes the form
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which actually reflects the invariance of the equation under the above scaling and translations. Then Dávila
et al. [26] proved that the solution above is nondegenerate in the sense that all bounded solutions to the
equation

( ) ( )− = −∗ −∗ϕ u ϕΔ 2 1s
s

2 2s
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2 and ∂ ≤ ≤u i N, 1xi . We also refer to [27–33] for

recent works for the nonlocal problems.
From the viewpoint of calculus of variation, the fractional Kirchhoff problem (1.1) is much more com-

plex and difficult than the classical fractional Laplacian equation (1.3) as the appearance of the term

�
∣( ) ∣ ( )( )∫ − −b u x uΔ d Δ s2

N

s
2 , which is of order four. So a fundamental task for the study of problem (1.1) is

to make clear the effects of this nonlocal term. Recently, Rǎdulescu and Yang [34] established uniqueness
and nondegeneracy for positive solutions to Kirchhoff equations with subcritical growth. More precisely,
they proved that the following fractional Kirchhoff equation:
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2 , has a unique nondegenerate positive radial solution. For the high-

dimensional case, Yang [35] proved that uniqueness breaks down for dimensions >N s4 , i.e., there exist
two nondegenerate positive solutions which seem to be completely different from the result of the fractional
Schrödinger equation or the low-dimensional fractional Kirchhoff equation. As one application, combining
this nondegeneracy result and Lyapunov-Schmidt reduction method, they also derive the existence of
solutions to the singularly perturbation problems [36,37]. For the critical problem (1.1) with =ε 0,
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Yang and Yu [1] established uniqueness and nondegeneracy for < <N s1 4 . Then as a counterpart to these
results, we consider the high-dimensional fractional Kirchhoff equations with critical growth. The first
results of this article are collected in the following.

Theorem 1.1. Assume that >a b, 0. Then the following statements are true:
(i) If < <N s1 4 , then problem (1.4) has exactly one solution;

(ii) If =N s4 , then problem (1.4) is solvable if and only if ( )− <b QΔ 1
2
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Furthermore, problem (1.4) has exactly one solution when the equality holds and has exactly two solu-
tions for the other case.

Moreover, define the solution by U , which is of the form
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Theorem 1.2. Suppose that >a b, 0. Then any positive solution ( )U x of problem (1.4) is nondegenerate in the
sense that there holds
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acting on �( )L N2 with domain D.

By Theorem 1.2, it is now possible that we apply finite-dimensional reduction to study the perturbed
fractional Kirchhoff equation (1.1). Our problem is motivated by an interesting work [38], in which the
following local problem was studied
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Equation (1.6) can be derived from the following scalar curvature equation:
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where Δg0 and S0 denote the Laplace-Beltrami operator and the scalar curvature of the N -dimensional
Riemannmanifold ( )M g, 0 , respectively. Equation (1.7) and its variants have been studied extensively by the
mathematicians, and the reader can check [39–42] and references therein.

Note that if u is a (weak) solution to equation (1.1), then the following Pohozâev identity [19] holds:
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Obviously, equation (1.1) does not have any solution if ⋅∇ <x K 0 or ⋅∇ >x K 0. Thus, in order to ensure the
existence of solutions of equation (1.1), it is natural to suppose that K has critical points. More precisely, we
assume that
(K1) � �( ) ( )∈ ∩∞K L CN N1 has finitely many critical points and set ( ) { ∣ ( ) }≔ ∇ =K x K xCrit 0 .
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Now we state the existence result as follows.

Theorem 1.3. Let >a b, 0, ( )K x satisfy ( ) ( )−K K1 4 , < <N s1 4 , or =N s4 with ( )− <b QΔ 1
2

2s
2 , then there

exist constants >ε λ, 00 0 , and �∈ξ N
0 such that for all ∣ ∣ <ε ε0, problem (1.1) has a solution uε and

( ) ( )→ →u x U x as ε, 0.ε λ ξ,0 0

Theorem 1.4. Let >a b, 0, ( )K x satisfy ( ) ( )−K K1 4 , >N s4 with ( ) ( )
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0 such that for all ∣ ∣ <ε ε0, problem (1.1) has two solutions ( )=u i 1, 2ε

i

(one solution when the equality holds) and

( ) ( )→ →u x U x as ε, 0.ε
i

λ ξ
i

,0 0

This article is organized as follows. We complete the proof of Theorem 1.1 in Section 2 and prove
Theorem 1.2 in Section 3. In Section 4, we present some basic results and explain the strategy of the proof
of Theorems 1.3 and 1.4.
Notation. Throughout this article, we make use of the following notations.
• For any >R 0 and for any �∈x N , ( )B xR denotes the ball of radius R centered at x;
• ‖⋅‖q denotes the usual norm of the space �( ) ≤ ≤ ∞L q, 1q N ;

• ( )o 1n denotes ( ) →o 1 0n as → ∞n ;
• C or ( )= …C i 1, 2,i are some positive constants that may change from line to line.

2 Proof of Theorem 1.1

In this section we prove Theorem 1.1. Our methods depend on the following result for the well-known
fractional critical problem

�( )− = ∈−∗u u xΔ , .s N2 1s (2.1)

By using the moving plan method of integral form, Chen et al. [25] proved that every positive regular
solution of (2.1) is radially symmetric, monotone about some point, and therefore assumes the form
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Therefore, to find solution ( )U x of (1.4), it suffices to find positive solutions of the above algebraic equation
(2.2), and � is a constant, which only depends on a b, , and Q.

Case 1: < <N s1 4 : In this case, we have <− 1N s
s
2

2 , which implies that ( ) = +∞→+∞ �� flim . Moreover, one

has ( ) <f a 0. Consequently, there exists unique >� a0 such that ( ) =�f 00 , which means that (1.4) has a
unique solution.
Case 2: =N s4 : In this case, (2.2) becomes
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and the maximum of ( )�f is
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Since ( )″ <�f 0 in ( )+∞0, due to >N s4 , we know that ( )�f is concave in ( )+∞0, . Noting further that
( ) = − <f a0 0 and ( ) = −∞→+∞ �� flim , a sufficient and necessary condition for the solvability of equation

(2.2) in ( )+∞0, is ( ) ≥�f 0.0 Hence, equation (2.2) has a solution in ( )+∞0, if and only if inequality (2.8)
holds. Furthermore, we have
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, then equation (2.2) has exactly one positive solution �0 defined

by (2.6);
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, then equation (2.2) has exactly two positive solutions �1 and �2 such

that ( )∈� �0,1 0 and ( )∈ +∞� � ,2 0 .

3 Nondegeneracy results

In this section, we prove the nondegeneracy results of Theorem 1.2. For positive constants a b, , we define
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Differentiating the equation

�( )− = −∗
U UΔ in ,s

λ ξ λ ξ
N

, ,
2 1s

with respect of the parameters at = =λ ξ1, 0, we see that the functions

∂ = − + ⋅∇ ∂ = −∂U N s Q x Q U Q2
2

,λ λ ξ ξ λ ξ x, ,i i

annihilate the linearized operator around Q; namely, they satisfy the equation

�( ) ( )− = −∗ −∗ϕ Q ϕΔ 2 1 in .s
s

N2 2s

With no loss of generality, we assume that ( ) (∣ ∣)=U x U x is the unique positive radial energy solution to
equation (2.1). Then we have

{ }= − + ⋅∇ …+T N s U x U U U UKer span 2
2

, , , , .x x xN1 2 (3.1)

Since ∂
∂

U
xi
is nonradially symmetric, we have the following corollary:

Corollary 3.1. +T is invertible on �( )L N
rad
2 .

Lemma 3.1. Let ( )U x be a positive solution to the equation ( ) =L u 0 in �( )Hs N . Then ( ) =∂
∂

L 0U
x2

i
for

{ }∈ …i N1, 2, , .

Proof. From the definition of L2, and U is the solution of the equation

( )− = −∗c U UΔ .s 2 1s

We have

�

⎜ ⎟
⎛
⎝

⎞
⎠

( )∫∂
∂

= − ∂
∂

−L U
x

b U
x

U x2 Δ d .
i i

s
2

N

Therefore,

� �

⎜ ⎟
⎛
⎝

⎞
⎠

( )∫ ∫∂
∂

= − ∂
∂

= − ∂

∂
−∗ ∗

∗

L U
x

b
c

U U
x

x b
c

U

x
x2 d 2 d .

i i i
2

2 1

1
2

2

N

s

N

s
s

Since, for any fixed i, up to a translation, the function
( )∂

∂

∗
∗U

x
s

s

i

1
2

2

is odd in variable xi, it is easy to see that

�

( )∫
∂

∂
=

∗
∗U

x
xd 0.

i

1
2

2

N

s
s

Therefore, ( ) =∂
∂

L 0U
x2

i
. □

Lemma 3.2. Let ( )U x be a positive solution to the equation ( ) =L u 0 in �( )Hs N . If >N s4 and

�
( ) ( )∫− −

=
N s b U x

sc

2 Δ d

2
1,

s
2

2
N

then

�

( ) ( )
( )

∫ − = −
−

− −

−b Q x sa N s
N s

Δ d 2 4
2

,
s
2

2

N

s N
s

N s
s

N s
s

4
2

4
2

2
2

where �( )∈Q Hs N is the unique positive solution to the equation (1.3).
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Proof. Noting that
�

( )∫= + −c a b U xΔ d
s
2

2
N , the assumption

�
( ) ( )∫− −

=
N s b U x

sc

2 Δ d

2
1

s
2

2
N

implies

�

( ) ( )∫ − =
−

= −
−

b U x sa
N s

c N s a
N s

Δ d 2
4

and 2
4

.
s
2

2

N

Since �( ) ( )∈U x Hs N is a positive solution to the equation ( ) =L u 0, we know that ( )U x has the following
form:

( ) ( )= −U x Q c xs
1

2

with �( ) ( )∈Q x Hs N being the unique positive solution to equation (1.3). Therefore,

� � �

( ) ( ) ⎛
⎝

( ) ⎞
⎠

( )∫ ∫ ∫− = − = −
−

−−
−

U x c Q x N s a
N s

Q xΔ d Δ d 2
4

Δ d .
s s s
2

2
2

2
2

2

N

N s
s

N

N s
s

N

2
2

2
2

Therefore, we have

�

( ) ( )
( )

∫ − = −
−

− −

−b Q x sa N s
N s

Δ d 2 4
2

.
s
2

2

N

s N
s

N s
s

N s
s

4
2

4
2

2
2

This completes the proof. □

Lemma 3.3. Let ( )U x be a positive solution to the equation ( ) =L u 0 in �( )Hs N . Suppose that

< ≤N s1 4

or

�

( ) ( )
( )

∫> − ≠ −
−

− −

−N s and b Q x sa N s
N s

4 Δ d 2 4
2

.
s
2

2

N

s N
s

N s
s

N s
s

4
2

4
2

2
2

Then

�( ) ( ) { }⋂ =+� LKer 0 .N
rad
2

Proof. Direct computation shows that ( )+ ⋅∇ = + ′− −U x U U rU rN s N s2
2

2
2 is indeed a radial solution to equa-

tion =+� φ 0. We have to prove that + ⋅∇− U x UN s2
2 is the unique radial solution to equation =+� φ 0 in

Drad up to a constant, where Drad contains all the radial functions in �( )Ds N,2 .

Let ( )= + −c a b UΔ
2

2s
2 . Recall thatU is a ground state solution of (1.2). It follows from above that c is a

constant independent of U under the assumptions of Theorem 1.1. Let ∈φ D rad satisfy =+� φ 0. It is
equivalent to

�

( ) ( )
⎛

⎝
⎜⎜

( ) ( )
⎞

⎠
⎟⎟

( )∫≐ − − − = − − − −+
∗ −∗T φ c φ U φ b U v x UΔ 2 1 2 Δ Δ d Δ .s
s

s2 1s

N

s s
2 2

Write = + ⋅∇−e U x UN s
0

2
2 for simplicity. Since D rad is a Hilbert space, denote by D0 the orthogonal com-

plement of �e0 in D rad . Then = +φ λe v0 for some �∈λ and ∈v D0. By a direct computation, we find that
( ) ( )∫ − ⋅ − =u eΔ Δ 00

s s
2 2 . This implies ∈u D0. Moreover, note that +T is invertible on D0. It follows from =+T e 00

and ( ) ( )∫ − ⋅ − =u eΔ Δ 00
s s
2 2 that v satisfies
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�

⎛

⎝
⎜⎜

( ) ( )
⎞

⎠
⎟⎟

( )∫ ( )= − − − − = −+
−∗T v b U v x U bσ

c
U2 Δ Δ d Δ 2 ,s v 2 1

N

s s
s2 2 (3.2)

where

�

( ) ( )∫= − −σ U v xΔ Δ d .v
N

s s
2 2

By applying [43, Theorem 3.3], we conclude that

( )= − = −+
− −∗v bσ

c
T U bσ

sc
ψ2 ,v v1 2 1s (3.3)

where = ⋅∇ψ x U . Multiplying (3.3) by ( )− UΔ s and integrating over �N , we see that

� �

( ) ( )∫ ∫− = − −v U x bσ
sc

ψ U xΔ d Δ d .s v s

N N
(3.4)

Note that

� �

( ) ( ) ( )∫ ∫− = − −v U x U v xΔ d Δ Δ ds

N N

s s
2 2 (3.5)

and

� �

( ) ∣( ) ∣∫ ∫− = − −ψ U x s N U xΔ d 2
2

Δ ds 2

N N

s
2 (3.6)

(see, e.g., [44]). We then conclude from (3.4) to (3.6) that

�

( ) ∣( ) ∣ ( )( )∫= − − − = − − −σ b s N σ
sc

U x c a s N
sc

σ2
2

Δ d 2
2

.v
v

v
2

N

s
2

It follows from Lemma 3.2 that

�
( ) ( )∫

+
− −

≠
s N b U x

sc
1

2 Δ d

2
0

s
2

2
N

provided that < ≤N s1 4 , or >N s4 and
�

( ) ( )

( )
∫ − ≠ −

−

− −

−b Q xΔ d
s sa N s

N s
2

2 2 4

2
N

s N
s

N s
s

N s
s

4
2

4
2

2
2

. Therefore, under this assump-
tion, we have ≡v 0. This completes the proof. □

Proof of Theorem 1.2. Since ( ) ( )− = − −∗U c UΔ s 1 2 1s and ( ) (∣ ∣)=U x U x is radial function, the operator +L
commutes with rotations in �N (see, e.g., [45]). Therefore, we can decompose �( )L N2 using spherical
harmonics

�( ) = ⊕ ≥ �L N l l
2 0

so that +L acts invariantly on each subspace

�( )= ⊗+
−� �L r r, d .l

N
l

2 1

Here { }= ∈� Yspanl l m m M, l denotes space of the spherical harmonics of degree l in space dimension N and Ml
is an index set depending on l and N . Precisely, ( )

( )
= + − !

− ! !
Ml

l N
N l

1
1 for ≥l 0 and =M 0l for <l 0. Moreover,

denote by −ΔZN 1 the Laplacian-Beltrami operator on the unit −N 1 dimensional sphere −ZN 1 in �N and by
= …Y l, 0, 1,l m, the spherical harmonics satisfy

− =− Y λ YΔZ l m l l m, ,N 1
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for all = …l 0, 1, and ≤ ≤ − −m M M1 l l 2, where

( )= + − ∀ ≥λ l N l l2 0l

is an eigenvalue of − −ΔZN 1 with multiplicity ≤ − −M Ml l 2 for all �∈k . In particular, =λ 00 is of multiplicity 1
with =Y 10,1 , and = −λ N 11 is of multiplicity N with ∣ ∣= /Y x xm m1, for ≤ ≤m N1 (see, e.g., Ambrosetti and
Malchiodi [46, Chapter 2 and Chapter 4]).

We can describe the action of +L more precisely. For each l, the action of +L on the radial factor in � l is
given by

( )( ) (( ) )( ) ( ) ( ) ( ) ( )( )= − − − ++
∗ −∗L f r c f r U r f r b W f rΔ 2 1 2l l

s
s l,

2 2s

with the nonlocal linear operator

( )( ) (( ) )( ) (( ) )( ) ( )
( ) ∫= − −

+∞

−W f r π U r U r r f r r2
Γ

Δ Δ dl N l
s

l
s N

2 0

1
N
2

for � �( ) ( )∈ ⊂∞ +
+

−f C L r r, dN
0

2 1 . Here ( )−Δl
s is given by spectral calculus and the known formula

( )− = −∂ − − ∂ + + −N
r

l l N
r

Δ 1 2 .l r r
2

2

Applying arguments similar to that used in [43] and [45], one can verify that each +L l, enjoys a Perron-
Frobenius property, that is, if ( )= �E σinf l is an eigenvalue, then E is simple and the corresponding
eigenfunction can be chosen strictly positive. Moreover, we have >+L 0l, for ≥l 2 in the sense of quadratic
forms (see, e.g., [45]).

Since ( ) ( )∂ = ′ ∈ �U x U rx
x
r 1i

i , this shows that ′ =+L U 0,1 . Note that ( )′ <U r 0. It follows from the Perron-
Frobenius property that 0 is the lowest eigenvalue of +L ,1, with ( )− ′U r being its corresponding eigenfunc-
tion. Therefore, for any ∈ �v 1 satisfying =+L v 0,1 must be some linear combination of{ }∂ = …U i N: 1, 2, ,xi

and + ⋅∇− U x UN s2
2 . Recall that >+L 0l, for ≥l 2. Applying the Perron-Frobenius property again, 0 cannot

be an eigenvalue of >+L 0l, for ≥l 2. Finally, Lemma 3.3 implies that { }=+L 0,0 . Consequently, for any

∈ +v Lker , we conclude that ∈ �v 1 and hence { }= = ∂ ∂ … ∂ + ⋅∇+ +
−L L U U U U x Uker ker span , , , ,x x x

N s
,1

2
2N1 2 .

The proof is completed. □

4 Singularly perturbation problem

In this section, we are concerned with the singularly perturbation fractional Kirchhoff equation

�

�

⎛

⎝
⎜⎜

∣( ) ∣
⎞

⎠
⎟⎟

( ) ( ( ))∫+ − − = + −∗a b u x u εK x uΔ d Δ 1 , in .s N2 2 1

N

s
s2 (4.1)

It is known that every solution to (4.1) is a critical point of the energy functional � �( ) →I D:ε
s N,2 , given by

� � �

( ) ∣( ) ∣
⎛

⎝
⎜⎜

∣( ) ∣
⎞

⎠
⎟⎟

( ( ))∫ ∫ ∫= − + − − +∗
∗I u a u b u x εK x u x

2
Δ

4
Δ d 1

2
1 dε

s

s

2 2 2

2

2

N

s

N N

s2

for �( )∈u Ds N,2 , which is the fractional Sobolev space equipped with the inner product and norm given by

�
( ) ( ) ( )∫= − −u v u v, Δ ΔN

s s
2 2 and ( )‖ ‖ =u u u,2 , respectively. It is standard to verify that �( ( ))∈I C D .ε

s N2 ,2 So we
are left to find a critical point of Iε. However, because of the noncompactness of the injection of �( )Ds N,2 into

�( )
∗L N2s , it is impossible to prove that functional Iε satisfies the Palais-Smale condition. To prove main

results, based on the nondegeneracy of solution to (1.3), and the perturbation method [38], we use the
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finite-dimensional reduction arguments. Moreover, due to the presence of the double nonlocal terms ( )−Δ s

and
�

∣( ) ∣( )∫ − uΔ 2
N

s
2 , it requires more careful estimates in the procedure, which is more complicated than the

case of the fractional Schrödinger equation.

4.1 The abstract perturbation method

In this subsection, we state the abstract results we will use in the rest of the article. They are reported below
for the reader’s convenience.

Let E be a Hilbert space and let �( )∈I G C E, ,0
2 be given. Consider the perturbed functional

( ) ( ) ( )= −I u I u εG u .ε 0

Suppose that I0 satisfies
(1) I0 has a finite dimensional manifold of critical points Z ; let ( )=b I z0 , for all ∈z Z ;
(2) for all ( )∈z Z D I z, 2

0 is a Fredholm operator with index zero;
(3) for all ∈z Z there results ( )=T Z D I zKerz

2
0 .

Hereafter, we denote by Γ the functional ∣G Z .

Theorem 4.1. [38, Theorem 2.1] Let I0 satisfy (1)–(3) and suppose that there exists a critical point ∈z Z¯ of Γ
such that one of the following conditions hold:
(i) z̄ is nondegenerated;
(ii) z̄ is a proper local minimum or maximum;
(iii) z̄ is isolated and the local topological degree of ′Γ at z̄ , ( )′deg Γ , 0loc is different from zero.

Then for ∣ ∣ε small enough, the functional Iε has a critical point uε such that →u z̄ε as →ε 0.

To apply Theorem 4.1, we set �( )=E Ds N,2 ,

� � �

( ) ∣( ) ∣
⎛

⎝
⎜⎜

∣( ) ∣
⎞

⎠
⎟⎟∫ ∫ ∫= − + − − ∗

∗I u a u x b u x u x
2

Δ d
4

Δ d 1
2

d
s

s
0

2 2 2

2

2

N

s

N N

s2

and

�

( ) ( )∫= ∗
∗G u K x u x1

2
d .

s

2

N

s

Letting

�⎜ ⎟
⎧
⎨⎩

⎛

⎝

⎞

⎠

⎫
⎬⎭

= =
−

> ∈−
−

−Z U λ Q c x ξ
λ

λ ξ: 0, .λ ξ
N

,
N s s2

2

1
2

Then Z is an +N 1 dimensional manifold of critical points for the function I0 corresponding to (1.3). In order
to apply the abstract setting we will check the assumptions on I0 introduced above. The nondegeneracy
condition comes from Theorem 1.2, so we only need to prove the following result.

Lemma 4.1. Let

� �

( )
⎛

⎝
⎜⎜

( )
⎞

⎠
⎟⎟

( )
⎛

⎝
⎜⎜

( ) ( )
⎞

⎠
⎟⎟

( ) ( )∫ ∫″ = + − − + − − − − −∗ −∗
I U φ a b U x φ b U φ x U U φΔ d Δ 2 Δ Δ d Δ 2 1 .λ ξ

s
λ ξ

s
λ ξ

s
λ ξ s λ ξ0 , 2 ,

2
, , ,

2 2

N N

s s s2 2

Then ( )″I Uλ ξ0 , is a Fredholm operator with zero index.
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Proof. Recalling that

�

( )∫= + −c a b U xΔ d ,
s

λ ξ2 ,
2

N

then for any �( )∈ψ Ds N,2 , we have

� � �

�

( ) ( ) ( )
⎛

⎝
⎜⎜

( ) ( )
⎞

⎠
⎟⎟

( ) ( )

( )

∫ ∫ ∫

∫

⟨ ″ ⟩ = − − + − − − −

− −∗ −∗

I U φ ψ c φ ψ x b U φ x U ψ x

U φψ x

, Δ Δ d 2 Δ Δ d Δ Δ d

2 1 d .

λ ξ λ ξ λ ξ

s λ ξ

0 , , ,

,
2 2

N

s s

N

s s

N

s s

N

s

2 2 2 2 2 2

Suppose that { }φn is bounded in �( )Ds N,2 , then there exists a subsequence of { }φn (we still denote { })φn , such
that

�

�

�

( )

( )

→

→ ≤ <

→

∗

φ φ D
φ φ L q
φ φ

weakly in ,
strongly in , 2 2 ,
a.e. on .

n
s N

n
q N

s

n
N

,2

loc

Let

� � �

⎛

⎝
⎜⎜

( ) ( )
⎞

⎠
⎟⎟

( ) ( ) ( )∫ ∫ ∫⟨ ′ ⟩ ≔ − − − − − −∗ −∗
� φ ψ b U φ x U ψ x U φψ x, 2 Δ Δ d Δ Δ d 2 1 d .λ ξ λ ξ s λ ξ, , ,

2 2

N

s s

N

s s

N

s2 2 2 2

Then, using Hölder inequality we obtain

� �

� �

∣ ∣ ( ) ( ) ( ) ( )
⎛

⎝
⎜⎜

( ∣ ∣)
⎞

⎠
⎟⎟

⎛

⎝

⎜
⎜⎜

( ) ( ) ( )
⎛

⎝
⎜⎜

( ∣ ∣)
⎞

⎠
⎟⎟

⎞

⎠

⎟
⎟⎟

∫ ∫

∫ ∫

⟨ ′ − ′ ⟩ ≤ − − − ‖ ‖‖ ‖ + − − ‖ ‖

≤ − − − + − ‖ ‖

∗ − −

− −

∗
∗

∗

∗−
∗

∗

∗
∗

∗

∗−
∗

� �φ φ ψ b U φ φ x U ψ U φ φ x ψ

C U φ φ x U φ φ x ψ

, 2 Δ Δ d 2 1 d

Δ Δ d d .

n λ ξ n s λ ξ n

λ ξ n λ ξ n

, ,
2 2

2
2 1 2

, ,
2 2

2
2 1

N

s s

N

s
s

s

s
s

s

N

s s

N

s
s

s

s
s

2 2

2 1
2

2 2

2 1
2

Thus, we can obtain

� �

∥ ∥
⎛

⎝

⎜
⎜⎜

( ) ( ) ( )
⎛

⎝
⎜⎜

∣ ∣
⎞

⎠
⎟⎟

⎞

⎠

⎟
⎟⎟

( )

∫ ∫′ − ′ ≤ − − − + −
−

− −

∗ ∗

∗
∗

∗

∗−
∗

� �φ φ C U φ φ x U φ φ xΔ Δ d d .n λ ξ n λ ξ n, ,

2 2 2
2 1

2
2 1

N

s s

N

s s

s
s

s

s
s

2 2

2 1
2

On one hand, since →φ φn in �( )Ds N,2 , then

�

( ) ( ) ( )∫ − − − → → ∞U φ φ x nΔ Δ d 0 as .λ ξ n,
N

s s
2 2

On the other hand, by Vitali convergence theorem, we have

�

∣ ∣
( )

∫ − → → ∞
−

−

∗ ∗

∗
∗

∗−U φ φ x nd 0 as .λ ξ n,

2 2 2
2 1

N

s s

s
s

s

2
2 1

Therefore, we have ∥ ∥′ − ′ →� �φ φ 0n as → ∞n . Hence, ′� is a compact operator. □
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Up to now, we have proved that I0 satisfies assumptions (1)–(3). As described above, one has

�

( ) ( ) ( ( )) ( )∫= = +∗
∗λ ξ G U K c λx ξ Q x xΓ , 1

2
d ,λ ξ

s
,

2

N

s s
1

2

which is nothing but a Poincaré-Melnikov-type function. Our next goal is to show that, locally near any
∈z Z , there exists a manifold Zε, diffeomorphic to Z which is a natural constraint for Iε. By this we mean

that ∈u Zε and ∣′Iε Zε implies ( )′ =I u 0ε . In this way, the search of critical points of Iε on E is reduced to the
search of critical points of ∣′Iε Zε.

In the sequel, we define { }= … +T Z q q qspan , , ,λ ξ N, 1 2 1 by the tangent space to Z at Uλ ξ, , where

=
∂

∂
= … =

∂
∂+q

U
ξ

j N q
U

λ
, 1, 2, , , .j

λ ξ

j
N

λ ξ,
1

,

Lemma 4.2. For given >R 0, there exists constant >ε 00 and a C1 function

�( ) ( ) ( ) ( )= × − →+w w U ε B ε ε D, : 0 ,λ ξ R
N s N

,
1

0 0
,2

such that for any ( ) ( )∈ +λ ξ B, 0R
N 1 and ( )∈ −ε ε ε,0 0 , the following properties hold:

(i) ( )w U ε,λ ξ, is orthogonal to T Zλ ξ, ,

(ii) ( ( ))′ + ∈I U w U ε T Z,ε λ ξ λ ξ λ ξ, , , ,

(iii) ( ) =w U , 0 0λ ξ, , where ( )B 0R
N denotes the N dimension ball centering at zero with radius R.

Proof. We will find ( )w U ε,λ ξ, by means of the local inversion theorem applied to the map

� � � � �( ) ( ) ( )× × × → ×+ + +H B D D: 0R
N s N N s N N1 ,2 1 ,2 1

with components ∈H E1 and �∈ +H N
2

1 given by

( ) ( )

( ) ( )

∑= ′ + −

= ⟨ ⟩ … ⟨ ⟩
=

+

+

H Q w ε σ I Q w σ q

H Q w ε σ w q w q

, , , ,

, , , , , , , ,

λ ξ ε λ ξ
j

N

j j

λ ξ N

1 , ,
1

1

2 , 1 1

where

�

( ) ( )∫⟨ ⟩ = − ⋅ −u v u v x, Δ Δ d .
N

s s
2 2

Let us remark that =H 01 means that ( ( ))′ + ∈I U w U ε T Z,ε λ ξ λ ξ λ ξ, , , namely that ( )ii holds, while =H 02 means
that w is orthogonal to T Zλ ξ, , namely that ( )i holds.

Note that for each �∈Uλ ξ, ,

( ) ( ( ) ( )) ( ( ) )= = ′ =H U H U H U I U, 0, 0, 0 , 0, 0, 0 , , 0, 0, 0 , 0 0λ ξ λ ξ λ ξ λ ξ, 1 , 2 , 0 ,

and the derivative of H at �∈ = =Q ε σ, 0, 0λ ξ, and =w 0 can be stated as follows:

( )
( )[ ] ⎛

⎝
⎜ ( )[ ] ⎞

⎠
⎟∑∂

∂
= ″ − ⟨ ⟩ … ⟨ ⟩

=

+

+
H

w σ
Q ϕ d I Q ϕ d q ϕ q ϕ q

,
, 0, 0, 0 , , , , , , ,λ ξ λ ξ

j

N

j j N, 0 ,
1

1

1 1

where �( )∈ϕ D N1,2 and ( )= … +d d d, , N1 1 .

From Lemma 4.1, we can prove that ( )
( )
∂

∂
Q , 0, 0, 0H

w σ λ ξ, , is a Fredholm operator of index 0, so it is

enough to prove that it is injective. Then let us assume that ( )[ ] ( )
( )

=∂
∂

Q d ϕ, 0, 0, 0 , 0, 0H
w σ λ ξ, , . From

( )[ ] ∑″ =
=

+

I Q ϕ d qλ ξ
j

N

j j0 ,
1

1
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taking the inner product with qi, we infer that =d 0j and

( )[ ]″ =I Q ϕ 0.λ ξ0 ,

Using again ( )3 , we deduce that ∈ϕ T Z.λ ξ, On the other side,
( )

=∂
∂

0H
w σ,

1 implies that ϕ is orthogonal toT Zλ ξ,
and thus =ϕ 0. This shows that ( )

( )
∂

∂
Q , 0, 0, 0H

w σ λ ξ, , is invertible and an application of the implicit function
theorem yields the results. □

Based on Lemma 4.2, it is natural to introduce the perturbed manifold

{ ( )∣( ) ( )}= + ∈ +Z U w U ε λ ξ B, , 0 .ε λ ξ λ ξ R
N

, ,
1

It is easy to prove that Zε is a natural constraint for Iε, that is to say the critical point of Iε on Zε is also a
critical point of Iε on �( )Ds N,2 . In fact, if ( )= + ∈u U w U ε Z,λ ξ λ ξ ε, , is a critical point of Iε on Zε, then ( )′I uε is
orthogonal toT Zu ε, whereT Zu ε is the tangent space to Zε at u. On the other hand, from Lemma 4.2(ii) we can
know that ( )′ ∈I u T Zε λ ξ, andT Zu ε is nearT Zλ ξ, provided ε is small enough. Thus, ( )′ =I u 0ε . Moreover, we have
that

( ( )) ( ) ( ) ( )+ = − + →I U w U ε I U ε λ ξ o ε ε, Γ , as 0.ε λ ξ λ ξ λ ξ, , 0 ,

Consequently, if ( )λ ξ, is a critical point of the restriction ( )λ ξΓ , , then ( )+U w U ε,λ ξ λ ξ, , will turn out to be a
critical point of Iε. From the analysis above, then we turn to solve the finite-dimensional functional ( )λ ξΓ , .

4.2 Behavior of ( )λ ξΓ ,

We begin by proving some general properties of ( )λ ξΓ , . First of all, it is convenient to extend ( )λ ξΓ , by
continuity to =λ 0 for all fixed �∈ξ N by setting

�

( ) ( ) ( ) ( )∫= ≔∗
∗ξ K c ξ Q x x e K c ξΓ 0, 1

2
d ,

s

2
0

N

s s s
1

2
1

2

where

�

( )∫= ∗
∗e Q x x1

2
d .

s
0

2

N

s

Moreover, we have

�

( )
( ( ( )) ) ( )∫∂

∂
= ∇ + ⋅∗

∗λ ξ
λ

K c λx ξ c x Q x xΓ , 1
2

d .
s

2

N

s s s
1

2
1

2

Since

�

( )∫ = = …
∗x Q x x i Nd 0, for all 1, 2, , ,i

2

N

s

then

( )∂
∂

=
ξ

λ
Γ 0, 0. (4.2)

As a consequence, we can further extend Γ by symmetry to � +N 1 as a C1 function. We will use the same
symbol Γ for such a function. Moreover, from (4.2), we can find that

( ) ( )( )∈ ⇔ ∈−ξ K ξcCrit 0, Crit Γ .s
1

2 (4.3)
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In the sequel, we are going to introduce some lemmas which is crucial in studying the finite dimensional
functional ( )λ ξΓ , .

Lemma 4.3. Suppose that ( )K3 holds. Then there exists >R 0 such that

( ( ) ( )) ∣ ∣ ∣ ∣∇ ⋅ < + ≥λ ξ λ ξ for any λ ξ RΓ , , 0 .

Proof. Let ( )=z λ ξ, , and then

�

�

⎜ ⎟

( ( ) ) ( ( ( )) ( )) ( )

( ( ) ) ⎛

⎝

⎞

⎠

( )

∫

∫

∇ ⋅ = ∇ + ⋅ +

= ∇ ⋅
−

= +

∗ ∗

− −
−

− −

∗

z z K c λy ξ c λy ξ Q y y

c λ K x x Q c x ξ
λ

x

c λ J J

2 Γ d

d

,

s z

N

N
R R

2

2

1, 2,

N

s s

N
s

N

s
s

N
s

1
2

1
2

2

1
2

2

where

�

⎜ ⎟

⎜ ⎟

( ( ) ) ⎛

⎝

⎞

⎠

( ( ) ) ⎛

⎝

⎞

⎠

( )

( )

∫

∫

= ∇ ⋅
−

= ∇ ⋅
−

−

−

∗

∗

J K x x Q c x ξ
λ

x

J K x x Q c x ξ
λ

x

d ,

d .

R

B

R

B

1,

0

2

2,

\ 0

2

R

s
s

N R

s
s

1
2

1
2

From ( )( )K ii3 , we can deduce that there exists R0 such that for each ≥R R0,

( ) ( ( ) )
( )

∫≔ ∇ ⋅ <I R K x x xd 0.
B 0R

(4.4)

Let ( ) ( ( ) )= ∇ ⋅f x K x x . We define ( ) { ( ) }=+f x f xmax , 0 and ( ) { ( ) }= −−f x f xmax , 0 ,

⎜ ⎟

⎜ ⎟

( ) ⎛

⎝

⎞

⎠

( ) ⎛

⎝

⎞

⎠

( )

( )

≔
−

≔
−

∈

−

∈

−

∗

∗

λ ξ Q c x ξ
λ

λ ξ Q c x ξ
λ

max , max ,

min , min .

x B

x B

0
2

0
2

R

s
s

R

s
s

1
2

1
2

By a direct calculation, we can prove that

⎜ ⎟ ⎜ ⎟( ) ⎛

⎝

⎞

⎠
( ) ⎛

⎝

⎞

⎠

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

∫ ∫

∫ ∫

=
−

−
−

≤ ⋅ − ⋅

+
−

−
−

+ −

∗ ∗J f x Q c x ξ
λ

x f x Q c x ξ
λ

x

λ ξ f x x λ ξ f x x

d d

max , d min , d .

R

B B

B B

1,

0

2

0

2

0 0

R

s
s

R

s
s

R R

1
2

1
2

(4.5)

If ∣ ∣ ∣ ∣+λ ξ is large enough, then we have

⎜ ⎟

⎜ ⎟

( )
⎛
⎝

⎛
⎝

∣ ∣⎞
⎠

⎞
⎠

( )
⎛
⎝

⎛
⎝

∣ ∣⎞
⎠

⎞
⎠

≃

+ −

≃

+ +

λ ξ C λ

λ ξ

λ ξ C λ

λ ξ

max , ,

min , ,

N
N

R

c

N

N
N

R

c

N

2

2
2

2

2
2

s

s

1
2

1
2
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thus

( )
( )∣ ∣ ∣ ∣

=
+ →∞

λ ξ
λ ξ

lim max ,
min ,

1.
λ ξ

(4.6)

Furthermore, by (4.4)–(4.6), we know that <J 0R1, provided ∣ ∣ ∣ ∣+λ ξ is large enough. Same as the proof
above, from ( )( )K i3 , we can choose sufficient large >R ρ such that <J 0R2, . □

Lemma 4.4. Assume that ( )K2 holds. Then

( ) ( )−
=

→

− −

+

λ ξc ξc

λ
Alim

Γ , Γ 0,
,

λ β ξ
0

s s
1

2
1

2 (4.7)

where

�

( ) ∣ ∣ ( )∫∑= ∗
=

∗A c a ξ x Q x x
2

d .ξ
s j

N

j
β

1
1

2
β

N

s
2

Proof. Note that if <β N , then �∣ ∣ ( ) ( )∈
∗x Q x Lβ N2 1s . Thus, from ( )K2 , we have

�

�

�

�

( ( ) ( )) ( )

( ) ( )

( ) ∣ ∣ ( )

( ) ∣ ∣ ( )

( ) ( ) ∫

∫

∫

∫

∑

∑

∑

−
=

+ −

=

=

=

→

− −

→ ∗

∗

∗
=

∗
=

∗
=

+ +

∗

∗

∗

λ ξc ξc

λ
K c λx ξ K ξ Q x

λ
x

a ξ c x Q x x

c a ξ x Q x x

c a ξ x Q x x

lim
Γ , Γ 0,

lim 1
2

d

1
2

d

2
d

2
d . □

λ β λ s
β

s j

N

j s j
β

s j

N

j j
β

s j

N

j
β

0 0

2

1

1
2 2

1

2

1
1

2

s s

N

s

N

s

β

N

s

β

N

s

1
2

1
2

1
2

2

2

Lemma 4.5. Let ( )∈ξ KCrit be isolated and suppose ( )K2 holds. Then ( )= −z ξc0, s
1

2 is an isolated critical point
of Γ and the following properties hold:

( ) ( ) ( )

( ) ( ) ( )

∑

∑

∇ = ∇ >

∇ = − ∇ <

=

=

z K ξ if a ξ

z K ξ if a ξ

deg Γ, deg , , 0,

deg Γ, deg , , 0.

j

N

j

j

N

j

loc loc
1

loc loc
1

Proof. By (4.3), we know that z is a critical point of Γ. Since �( ) ( )∈a x Cj
N and ( )∑ ≠= a ξ 0j

N
j1 , then there exist

>δ 0 such that for any ( )∈y B ξδ , we have ( )∑ ≠= a y 0.j
N

1 From (4.7), we can conclude ( ) ( ) +− −λ yc ycΓ , ~ Γ 0,s s
1

2
1

2

�A λy for ( )∈y B ξδ , which together with isolated property of ξ imply that z is an isolated critical point of Γ.
Let [ ] ( )= − × −L δ δ B ξc, .δ δ s

1
2 For >δ 0 small the degree ( )∇ Ldeg Γ, , 0δ is well defined, then by property

of multiplicative yields to

( ) ( ) ⎛
⎝

⎞
⎠

∇ = ∇ ⋅ ∂
∂

L K ξ
λ

deg Γ, , 0 deg , deg Γ , 0 .δ loc loc (4.8)

By (4.7) again, then we conclude that

On the singular perturbation fractional Kirchhoff equations  1113



⎛
⎝

⎞
⎠

( )

⎛
⎝

⎞
⎠

( )

∑

∑

∂
∂

= >

∂
∂

= − <

=

=

λ
a ξ

λ
a ξ

deg Γ , 0 1, if 0,

deg Γ , 0 1, if 0.

j

N

j

j

N

j

loc
1

loc
1

(4.9)

Thus, by (4.8) and (4.9), we can prove this conclusion. □

4.3 Proof of Theorems 1.3 and 1.4

Let

{( )∣( ) ( ) }= ∈ >+� λ ξ λ ξ λ, , Crit Γ , 0 .

According to Lemmas 4.3 and 4.4, +� is a (possibly empty) compact set. Since the extended Γ is even in λ,
then

{( )∣( ) }= − ∈− +� �λ ξ λ ξ, ,

is also a critical point set of Γ. Denote = ∪+ −� � � . We claim that there is a bounded open set
�( )⊂ ∞ ×Ω 0, N with ⊂+� Ω such that

( )∇ ≠deg Γ, Ω, 0 0.

Argue by contradiction, we may assume that there is an open bounded set Ω with ⊂+� Ω such that

( )∇ =deg Γ, Ω, 0 0.

Using Lemma 4.3, we can prove that

( ( ) ) ( )∇ = −+ +Bdeg Γ, 0 , 0 1 .R
N N1 1

Let {( ) ( ) }= − ∈− λ ξ λ ξΩ , : , Ω and set ′ = ∪ −Ω Ω Ω . Of course, one has that

( )∇ =−deg Γ, Ω , 0 0

and hence

( ) ( )∇ ′ = −+ +Bdeg Γ, \Ω̄ , 0 1 ,R
N N1 1

where ′Ω̄ denotes the closure of ′Ω . According to (4.3) any ( )∈ �z Crit Γ \ must be of the form ( )= −z ξc0, s
1

2

with ( )∈ξ KCrit . Using Lemma 4.5, then we can deduce that

( ) ( ) ( ) ( )∑ ∑ ∑∇ ′ = ∇ = ∇ − ∇+

> <

B z K ξ K ξdeg Γ, \Ω̄ , 0 deg Γ, deg , deg , .R
N

a a

1
loc

0
loc

0
loc

ξ ξ

Thus, one has

( ) ( ) ( )∑ ∑∇ − ∇ = −
> <

+K ξ K ξdeg , deg , 1 .
a a

N

0
loc

0
loc

1

ξ ξ

Let ≥R ρ, where ρ is defined as ( )K3 . Since ( )∇ ⋅ <K x 0 for all ∣ ∣ ( )= ≥x R R ρ , then we have

( ( ) ) ( )∇ = −K Bdeg , 0 , 0 1R
N N

which combining with the properties of topological degree yield to

( ) ( )
( )

∑ ∇ = −
∈

K ξdeg , 1 .
ξ K

N

Crit
loc
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Moreover, since ( )≔ ∑ ≠=a a ξ 0ξ j
N

j1 for all ( )∈ξ KCrit , then

( ) ( ) ( )∑ ∑∇ + ∇ = −
> <

K ξ K ξdeg , deg , 1 .
a a

N

0
loc

0
loc

ξ ξ

Therefore, we obtain

( ) ( )∑ ∇ = −
<

K ξdeg , 1 ,
a

N

0
loc

ξ

which contradicts to the assumption ( )K4 . Then the claim is true and we can prove Theorems 1.3 and 1.4 by
Theorem 4.1.
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