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Recall RTG lecture
For any α ∈ (0, 1), the fractional Sobolev space Hα(R3) = W α,2(R3)
is defined as follows:

Hα(R3) = {u ∈ L2(R3) :

󰁝

R3
(|ξ|2α|F(u)|2 + |F(u)|2)dξ < ∞},

whose norm is defined as

󰀂u󰀂2
Hα(R3) =

󰁝

R3

󰀃
|ξ|2α|F(u)|2 + |F(u)|2

󰀄
dξ.

We also define the homogeneous fractional Sobolev space Dα,2(R3) as
the completion of C∞

0 (R3) with respect to the norm

󰀂u󰀂Dα,2(R3) :=

󰀕 󰁝󰁝

R3×R3

|u(x)− u(y)|2
|x − y |3+2α dxdy

󰀖 1
2
.
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Recall RTG lecture

The fractional Laplacian (−∆)α is defined by

F((−∆)αu)(ξ) = |ξ|2αF(u)(ξ), ξ ∈ R3,

for functions φ in the Schwartz class. (−∆)αu can be presented as

(−∆)αu(x) = −
1
2C(α)

󰁝

R3

u(x + y) + u(x − y)− 2u(x)
|y |3+2α dy , ∀x ∈ R3.
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My previous works

By the Plancherel Theorem, the norms on Hα(R3) defined above

u 󰀁−→ (

󰁝

R3
|u|2dx +

󰁝󰁝

R3×R3

|u(x)− u(y)|2
|x − y |3+2α dxdy)

1
2 ;

u 󰀁−→ (

󰁝

R3
(|ξ|2α|F(u)|2 + |F(u)|2)dξ)

1
2 ;

u 󰀁−→ (

󰁝

R3
|u|2dx + 󰀂(−∆)

α
2 u󰀂2

2)
1
2

are equivalent.
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My previous works

lim
s→1−

(−∆)su = −∆u lim
s→0+

(−∆)su = u.

Brownian motion: 2nd order PDE Lèvy processes: fractional PDE
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Fractional Schrödinger-Poisson system

An interesting class of Schrödinger equations arises when it describes
quantum (nonrelativistic) particles interacting with the electromag-
netic field generated by the motion. That is a nonlinear fractional
Schrödinger- Poisson system (also called fractional Schrödinger-Maxwell
system)

󰀫
iε∂Ψ

∂t = h̄2s(−∆)sΨ+ V (x)Ψ+ µφΨ− f (|Ψ|)Ψ in R3 × R,
ε2t(−∆)tφ = |Ψ|2 in R3,

(1)

where i is the imaginary unit, ε > 0 is associate to the Planck constant.
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Fractional Schrödinger-Poisson system

(e−iEt/h̄u(x),φ(x)) is a standing wave solution of (1) iff (u(x),φ(x))
satisfies the following fractional Schrödinger-Poisson system:

󰀫
ε2s(−∆)su + V (x)u + φu = f (u) in R3,

ε2t(−∆)tφ = u2 in R3.
(2)

When s = t = 1, this is the famous Schrödinger-Poisson system
󰀫
−ε2∆u + V (x)u + φu = f (u) in R3,

−ε2∆φ = u2 in R3.
(3)

Many previous known results: P.L. Lions, CMP. 1984 (Hartree-Fock
equation).
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Fractional Schrödinger-Poisson system

In the following, we study the fractional Schrödinger-Poisson system
with critical nonlinearity :

󰀫
ε2s(−∆)su + V (x)u + φu = λ|u|p−2u + |u|2∗

s −2u in R3,

ε2t(−∆)tφ = u2 in R3,
(4)

where 2∗
s = 6

3−2s , V ∈ C satisfies the following conditions
(V1) 0 < inf

x∈R3
V (x).

(V2) There is a bounded domain Ω such that

V0 := inf
Ω

V (x) < min
∂Ω

V .
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Work space
Making the change of variable x 󰀁→ εx , we can rewrite the system (4)
as the following equivalent system

󰀫
(−∆)su + V (εx)u + φu = λ|u|p−2u + |u|2∗

s −2u in R3,

(−∆)tφ = u2 in R3.
(5)

If u is a solution of the system (5), then v(x) := u( x
ε ) is a solution of

the system (4).
In view of the presence of potential V (x), we introduce the subspace

Hε =

󰀝
u ∈ Hs(R3) :

󰁝

R3
V (εx)u2dx < +∞

󰀞
,

which is a Hilbert space equipped with the norm

󰀂u󰀂2
Hε

= (u, u) =
󰁝

R3
|(−∆)

s
2 u|2dx +

󰁝

R3
V (εx)u2dx .
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Energy function

System (5) is the Euler-Lagrange equations of the functional J : Hε ×
Dt,2(R3) → R defined by

J(u,φ) = 1
2󰀂u󰀂2 −

1
4

󰁝

R3
|(−∆)

s
2φ|2dx +

1
2

󰁝

R3
φu2dx

−
λ

p

󰁝

R3
|u|pdx −

1
2∗

s

󰁝

R3
|u|2∗

s dx ,

Evidently, the action functional J ∈ C1(Hε ×Dt,2(R3),R) and its criti-
cal points are the solutions of (5). The first difficulty is that J exhibits
a strong indefiniteness, namely it is unbounded both from below and
from above on infinitely dimensional subspaces.
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The reduction method

For a fixed u ∈ Hε , there exists a unique φt
u ∈ Dt,2(R3) which is the

solution of
(−∆)tφ = u2 in R3.

We can write an integral expression for φt
u in the form

φt
u(x) = Ct

󰁝

R3

u2(y)
|x − y |3−2t dy , ∀ x ∈ R3,

which is called t-Riesz potential.
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Fractional Schrödinger-Poisson system

Putting φ = φt
u into the first equation of (5), we obtain a semi-linear

elliptic equation

(−∆)su + V (εx)u + φt
uu = λ|u|p−2u + |u|2∗

s −2u in R3.

The corresponding functional I : Hε → R is defined by

I(u) = 1
2

󰁝

R3
|(−∆)

s
2 u|2dx +

1
2

󰁝

R3
V (εx)u2dx

+
1
4

󰁝

R3
φt

uu2dx −
λ

p

󰁝

R3
|u|pdx −

1
2∗

s

󰁝

R3
|u|2∗

s dx .
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Mountain pass theorem
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Pohožaev-Nehari manifold
If u ∈ Hs(R3) is a weak solution to problem (5), then we have the
following Pohožaev identity:

P(u) = 3 − 2s
2

󰁝

R3
|(−∆)

s
2 u|2dx +

3
2

󰁝

R3
Vu2dx

+
2t + 3

4

󰁝

R3
φt

uu2dx −
3λ
p

󰁝

R3
|u|pdx −

3
2∗

s

󰁝

R3
|u|2∗

s dx = 0.

We define G : Hs(R3) → R as

G(u) = (s + t)〈I ′(u), u〉 − P(u)

Next we study the functional I restricted on the manifold M defined as

M := {u ∈ Hs(R3)\{0} : G(u) = 0}.
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Critical problem:H s(Rn) ↩→ L2∗
s (Rn) is not compact.
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Energy classes

For the Mountain-Pass level c for I, the following inequality holds

0 < c <
s
3S

3
2ss ,

if one of the following conditions is satisfied
(i) s > 3

4 : p ∈ ( 4s
3−2s , 2

∗
s ) and any λ > 0;

(ii) s > 3
4 : p ∈ (4s+2t

s+t , 4s
3−2s ] and any λ > 0 large enough;

(iii) 1
2 < s ≤ 3

4 : p ∈ (4s+2t
s+t , 2∗

s ) and any λ > 0,
where

Ss := inf
u∈Ds,2(R3)

󰀂u󰀂2
Ds,2(R3)

󰀂u󰀂2
2∗

s (R3)

.
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Our results
Theorem 3.2 (Yang-Yu-Zhao, Commun. Contemp. Math., 2019)
Assume that V satisfies (V1) and (V2),
(i) If p ∈ (4s+2t

s+t , 4s
3−2s ], then there exist ε∗ > 0 and λ∗ > 0 such that

for each λ ∈ [λ∗,∞) and ε ∈ (0, ε∗), system (1) possesses a positive
ground state solution (uε,φε) ∈ Hs(R3) × Dt,2(R3).
(ii) If p ∈ ( 4s

3−2s , 2
∗
s ) , then system (1) possesses a positive ground state

solution for any λ > 0.
(iii) If xε ∈ Ω is a maximum point of uε, then

lim
ε→0

V (xε) = V0,

and there exists a constant C > 0 (independent of ε) such that

uε(x) ≤ Cε3+2s

ε3+2s + |x − xε|3+2s , ∀x ∈ R3.
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Thanks for your attention!
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