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Recall RTG lecture

For any « € (0,1), the fractional Sobolev space H*(R3) = W%2(R3)
is defined as follows:

H*(R3?) ={u € L*(R?): J (IEPHF (u)? + |F (u)P)dE < oo},
R3
whose norm is defined as

[l e gy = JR3 (&% F () + |F(u)?) dE.

We also define the homogeneous fractional Sobolev space D*?(R3) as
the completion of C§°(IR3) with respect to the norm

1
[l poe g3y = (JJ U(X)u(y)zdxdy)2
P RIxR3 X — yPT2 .
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Recall RTG lecture

The fractional Laplacian (—A)% is defined by
F(=A)*u)(&) = [EP*F(u)(£), &€ R?,

for functions ¢ in the Schwartz class. (—A)*u can be presented as

(—A)%u(x) = —lcux)J ubxty)+ulbc—y)—2ubd o g,

R3 ‘y|3+2cx
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My previous works

By the Plancherel Theorem, the norms on H*(R3) defined above

[ e lu(x) — u(y)l? 1
d ——— dxd
R3 lufdx + JJR3XR3 Ix — y[3+2x v)%

o (| PP P + PPt

ur—

—
3

ur— (| JuPdx+ | (~A) 2 u|3)z
JR3

are equivalent.
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My previous works

lim (—A)°u=—Au lim (—A)°u = u.

s—1— s—0+

S0 o 00

Fig. 3. This is the pattern of Lévy flight shown for the Lévy index a = 1.5.
Fig. 2. An illustration of Brownian motion which corresponds to normal Contrary to Brownian motion, the variance and any moment of order g,
diffusion. It is obtained by iterating any random walk with identically 4> o are infini
A I e e S RS not continuous, and the figure indeed displays jumps

As a consequence, any Lévy flight path is almost surely

Brownian motion: 2nd order PDE Levy processes: fractional PDE
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Fractional Schrodinger-Poisson system

An interesting class of Schrédinger equations arises when it describes
quantum (nonrelativistic) particles interacting with the electromag-
netic field generated by the motion. That is a nonlinear fractional
Schrédinger- Poisson system (also called fractional Schrédinger-Maxwell

system)

qt

e = BB (—APY+ V(XY + udp¥ — F(YDY in R3 x R, 1)
e (—A) ' = [W]? in R?,

where i is the imaginary unit, ¢ > 0 is associate to the Planck constant.
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Fractional Schrodinger-Poisson system

(e Bt/hy(x), d(x)) is a standing wave solution of (1) iff (u(x), d(x))
satisfies the following fractional Schrédinger-Poisson system:

e25(—A)u+ V(x)u+ pu = f(u) inR3, )
2t (=A)td = u? in R3.
When s =t =1, this is the famous Schrédinger-Poisson system
—e?Au+ V(x)u+ dpu=f(u) inR3 3)
—e2Ad = v? in R3,

Many previous known results: P.L. Lions, CMP. 1984 (Hartree-Fock
equation).
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Fractional Schrodinger-Poisson system

In the following, we study the fractional Schrédinger-Poisson system
with critical nonlinearity :

£25(=Au+ V(x)u+ du = ANulP2u+|u>2u inR3, ()
e2(—A)'d = u? in R3,

where 2} = %, V € C satisfies the following conditions
0 < inf V(x).
x€ER3
There is a bounded domain Q such that

Vo ;= inf V(x) < min V.
Q 0Q
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Work space

Making the change of variable x — ex, we can rewrite the system (4)
as the following equivalent system

(=A)u+ V(ex)u+ du = MulP2u+ |u®"2u in R3, (5)
(=AYt = u? in R3.

If uis a solution of the system (5), then v(x) := u(%) is a solution of
the system (4).
In view of the presence of potential V/(x), we introduce the subspace

H, = {u e H*(R?) :J V(ex)uldx < —1—00},
R3
which is a Hilbert space equipped with the norm

lulZ, = (u,u) = J (—A)3 udx + j V(ex)udx.
R3 R3
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Energy function

System (5) is the Euler-Lagrange equations of the functional J : H, X
DH?(R3) — R defined by
1

_1 2 = o % 2 1 2
Jnd) = 5l = | 1-moPe 3 | putax
A

1 *
—— |ulPdx — — lul? dx,
2*
P Jr3 s JR3

Evidently, the action functional J € CY(H, x D*?(R3),R) and its criti-
cal points are the solutions of (5). The first difficulty is that J exhibits
a strong indefiniteness, namely it is unbounded both from below and
from above on infinitely dimensional subspaces.
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The reduction method

For a fixed u € H, , there exists a unique ¢f, € DH?(R3) which is the

solution of
(=AYb = v® in R3.

We can write an integral expression for ¢, in the form
2
t us(y) 3
x)=C —=—-d VxeR
d)u( ) tJR3 |X_y|3_2t .y) )

which is called t-Riesz potential.
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Fractional Schrodinger-Poisson system

Putting & = ¢}, into the first equation of (5), we obtain a semi-linear
elliptic equation

(=AY u+ V(ex)u+ dtu= MulP~2u+|u>"2u in R3.

The corresponding functional /: H. — R is defined by

1 s 1
KMz—JIPMhﬁw+—J V(ex) i2dx
2 R?: 2 R?’

1 A 1 .
] ot [ lpax— [ uPa
4 R3 P Jr3 2; R3
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Mountain pass theorem

—

T

A. Ambrosetti P.H. Rabinowitz
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Pohozaev-Nehari manifold
If u € H%(R3) is a weak solution to problem (5), then we have the

following Pohozaev identity:

3—2 s 3
= s J (—A)2ul?dx + —J VP dx
R3 2

P(u) 5 ;
R
2t+3 3A 3 "
+ i J ¢Zu2dx—J |u|pdx—J lu> dx = 0.
4 R3 P Jr3 2§ R3

We define G : H*(R3) = R as
Glu) = (s + t){/'(u), u) — P(u)
Next we study the functional / restricted on the manifold M defined as
M :={u e H(R3\{0}: G(u) = 0.
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Critical problem:H(R") — L% (R") is not compact.

.

Halm Brezis

Louis Nirenberg
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e Solutions of Nonlinear Elliptic Equations
Involving Critical Sobolev Exponents
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0. Introduction

0 be a bounded domain in R" with n 3. We are concerned with the
problem of existence of a function u satisfying the nonlinear elliptic equation

~du=u"+flx,u) on 0,
©.1) >0 on Q,
u=0 on an,

where p =(n +2)/(n —2), f(x, 0)=0 and f(x, u) is 2 lower-order perturbation of
u” in the sense that lim, .. f(x, u)/u” =0. A typical example is f(x, u)=Au,
where A is a real constant, The exponent p = (n +2)/(n ~2) is critical from the
viewpoint of 2 ©
points of the functional
[ 1wl LJ’
J'\vm il

where F(x, u)=f; f(x, f) dt. Note that p +1=2n/(n ~2) is the limiting Sobolev

xponent for the embedding H((2)=L”"!(q). Since this embedding is not
compact, the functional  does ot satisfy the (PS) condition. Hence there are
serious difficulties when trying to find criical points by standard variational
methods. In fact, there is a sharp contrast between the case p < (n +2)/(n ~2)
for which the Sobolev embedding is compact, and the case p = (n +2)/(n ~2).
Many existence results for problem (0.1) are known when p < (r +2)/(n ~2)
(see the review article by P. L. Lions [20] and the abundant lst of references
in [20)). On the other hand, a well-known nonexistence result of Pohozacy (24]

) »[F«x. ),

Commnicaions n ur and Apfed Mathemais, Vol XKV, 457477 (1955
© 1983 John Wiy & Sons, Inc €CC 0010.3640/83/040437.41505.10
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Energy classes

For the Mountain-Pass level ¢ for /, the following inequality holds
s 3
0<c< 55525,

if one of the following conditions is satisfied
s> 4 pe(3 52> 2¢) and any A > 0;
s>32:pe (%2t 45 ] and any A > 0 large enough;

s+t ) 3—2s
1 . 4542
T<s<3:pe( o=5,2¢) and any A >0,
where
HUH2DS2(]R3)
Ss = —_—

ueD2(R?) lull3 2: (R3) -
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Our results

Theorem 3.2 (Yang-Yu-Zhao, Commun. Contemp. Math., 2019)
Assume that V satisfies (V1) and (V5),

(i) If p € (%2, 5%5], then there exist ¢* > 0 and A* > 0 such that
for each A € [A*;00) and ¢ € (0,¢*), system (1) possesses a positive
ground state solution (ug, d¢) € H5(R3) x DH?(R3).

(iNlfpe (%, ¥), then system (1) possesses a positive ground state
solution for any A > 0.

(iii) If x, € Q is a maximum point of u, then

lim V(x.) = Vo,

e—0
and there exists a constant C > 0 (independent of ¢) such that

C 3+2s
¢ Vx € R3.

e (x) < 3725 1 |x — x.[3+2”
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Thanks for your attention!
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