Harmonic analysis on 2-step stratified Lie groups without the Moore-Wolf condition

Zhipeng Yang

Georg-August Universität Göttingen Mathematisches Institut

Microlocal and Global Analysis, Interactions with Geometry University of Potsdam, February 21-25, 2022

Nilpotent Lie groups

Graded Lie groups

 A Lie algebra g of step r is called graded if it is endowed with a vector space decomposition

$$\mathfrak{g} = \oplus_{j=1}^r V_j$$
 such that $[V_i, V_j] \subseteq V_{i+j}$.

• A Lie group is called graded if it is a connected simply-connected Lie group whose Lie algebra is graded.

Nilpotent Lie groups

Stratified Lie groups

• A graded Lie algebra \mathfrak{g} of step r is called stratified if V_1 generates \mathfrak{g} as an algebra. In this case, we have

$$\mathfrak{g} = \oplus_{j=1}^r V_j, \quad [V_j, V_1] = V_{j+1}.$$

The natural dilations of ${\mathfrak g}$ are given by

$$\delta_{\lambda}\left(\sum_{k=1}^{r} X_{k}\right) = \sum_{k=1}^{r} \lambda^{k} X_{k}, \quad (X_{k} \in V_{k}).$$

• A Lie group is called stratified if it is a connected simply-connected Lie group whose Lie algebra is stratified.

Nilpotent Lie groups

The sub-Laplacians on stratified Lie groups

Let X_1, \ldots, X_n be a basis of V_1 . Then the second-order differential operator

$$\mathcal{L} = \sum_{j=1}^{n} X_j^2$$

is called a sub-Laplacian on \mathbb{G} . The vector-valued operator $\nabla_{\mathcal{L}} = (X_1, \ldots, X_n)$ is the \mathcal{L} -gradient (or horizontal \mathcal{L} -gradient).

Some properties

- \mathcal{L} is hypoelliptic.
- $\mathcal L$ is invariant with respect to left translations on $\mathbb G$.
- $\bullet \ \mathcal{L}$ is homogeneous of degree two.

The Heisenberg Group

Let us consider in $\mathbb{C}^n \times \mathbb{R} = \mathbb{R}^{2n+1}$:

$$(z,t) \equiv (x,y,t) = (x_1,\ldots,x_n,y_1,\ldots,y_n,t)$$

with $z = (z_1, \ldots, z_n), z_j = x_j + iy_j$ and $x_j, y_j, t \in \mathbb{R}$. Then, the composition law \circ can be explicitly written as

$$(x, y, t) \circ \left(x', y', t'\right) = \left(x + x', y + y', t + t' + 2\left\langle y, x'\right\rangle - 2\left\langle x, y'\right\rangle\right),$$

where $\langle \cdot, \cdot \rangle$ denotes the usual inner product in \mathbb{R}^n . Let us now consider the dilations

$$\delta_{\lambda} : \mathbb{R}^{2n+1} \to \mathbb{R}^{2n+1}, \quad \delta_{\lambda}(z,t) = (\lambda z, \lambda^2 t).$$

Then $\mathbb{H}^n = (\mathbb{R}^{2n+1}, 0, \delta_\lambda)$ is called the Heisenberg group in \mathbb{R}^{2n+1} .

Heisenberg-type group

Consider the homogeneous Lie group

$$\mathbb{H} = \left(\mathbb{R}^{n+m}, \circ, \delta_{\lambda}\right)$$

with composition law as

$$(x,t)\circ(\xi,\tau) = \left(x+\xi, t_1+\tau_1+\frac{1}{2}\left\langle B^{(1)}x,\xi\right\rangle, \dots, t_m+\tau_m+\frac{1}{2}\left\langle B^{(m)}x,\xi\right\rangle\right)$$

where $B^{(1)},\ldots,B^{(m)}$ are fixed $n \times n$ matrices with the following properties:

(1) $B^{(j)}$ is skew-symmetric and orthogonal for every $j \le m$; (2) $B^{(i)}B^{(j)} = -B^{(j)}B^{(i)}$ for every $i, j \in \{1, ..., m\}$ with $i \ne j$. If all these conditions are satisfied, \mathbb{H} is called a group of Heisenberg-type, in short, a H-type group.

Métivier group

Definition (G. Métivier, Duke Math.J., 1980)

Let $\mathfrak g$ be a (finite-dimensional) Lie algebra, and let us denote by $\mathfrak z$ its center. We say that $\mathfrak g$ is a Métivier Lie algebra if it admits a vector space decomposition

$$\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2 \quad ([\mathfrak{g}_1, \mathfrak{g}_1] = \mathfrak{g}_2 \subseteq \mathfrak{z}, \quad [\mathfrak{g}_1, \mathfrak{g}_2] = \{0\})$$

with the following additional property: for every $\eta \in \mathfrak{g}_2^*$, the skew-symmetric bilinear form on \mathfrak{g}_1 defined by

$$B_{\eta}:\mathfrak{g}_{1}\times\mathfrak{g}_{1}\to\mathbb{R},\quad B_{\eta}\left(X,X'
ight):=\eta\left(\left[X,X'
ight]
ight)$$

is non-degenerate.

Following D. Müller and F. Ricci. Ann. of Math. 1996, we call this 2-step nilpotent Lie algebra, Moore-Wolf algebra (MW in short).

H-type group \subsetneq Métivier group

For example, consider the group on \mathbb{R}^5 (points are denoted by $(x,t),x\in\mathbb{R}^4,\,t\in\mathbb{R}$) with the composition law

$$(x,t)\circ(\xi,\tau) = \left(x+\xi,t+\tau+\frac{1}{2}\langle Bx,\xi\rangle\right),$$

where

$$B = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -2 & 0 \end{pmatrix}.$$

Then \mathbb{G} is a Métivier group, for B is a non-singular skew-symmetric matrix. But \mathbb{G} is not a H-type group, for B is not orthogonal.

```
graded \supset stratified \supset Métivier \supset H-type \supset Heisenberg
```

We will study a special 2-step stratified Lie groups, we are going to assume that the Lie algebra \mathfrak{g} decomposes into subspaces

 $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2,$

with $\dim \mathfrak{g}_1 = n, \dim \mathfrak{g}_2 = m$ and

 $[\mathfrak{g},\mathfrak{g}]=\mathfrak{g}_2\subseteq\mathfrak{z}=$ the center of $\mathfrak{g}.$

Then, there exists a bilinear, antisymmetric map

 $\sigma: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^m$

such that, for $Z, Z' \in \mathbb{R}^n$ and $t, t' \in \mathbb{R}^m$,

$$[(Z,t),(Z',t')] = (0,\sigma(Z,Z')).$$

It follows that

$$(Z,t)\cdot\left(Z',t'\right) = \left(Z+Z',t+t'+\frac{1}{2}\sigma\left(Z,Z'\right)\right)$$

Fix a basis $\mathcal{B} = \{X_1, X_2 \cdots, X_n, X_{n+1}, \cdots, X_{n+m}\}$ so that $\mathfrak{g}_1 = \operatorname{span}_{\mathbb{R}} \{X_1, X_2 \cdots, X_n\}$ and $\mathfrak{g}_2 = \operatorname{span}_{\mathbb{R}} \{X_{n+1}, \cdots, X_m\}$. Since \mathfrak{g} is nilpotent the exponential map is an analytic diffeomorphism. We can identify \mathbb{G} with $\mathfrak{g}_1 \oplus \mathfrak{g}_2$ and write (X, T) for $\exp(X + T)$, where $X \in \mathfrak{v}$ and $T \in \mathfrak{z}$.

For any $\lambda \in \mathfrak{z}^*$, we define a skew-symmetric bilinear form on \mathfrak{g}_1 by

$$B^{(\lambda)}(X,Y) := \lambda([X,Y])$$
 for all $X, Y \in \mathfrak{g}_1$.

One can find a Zariski-open subset Λ of \mathfrak{z}^* such that the number of distinct eigenvalues of $B^{(\lambda)}$ is maximal. We denote by k the dimension of the radical \mathfrak{r}_{λ} of $B^{(\lambda)}$. Since $B^{(\lambda)}$ is skew-symmetric, the dimension of the orthogonal complement of \mathfrak{r}_{λ} in \mathfrak{g}_1 is even, which we shall denote by 2d.

Therefore, there exists an orthonormal basis

$$(X_1(\lambda),\ldots,X_d(\lambda),Y_1(\lambda),\ldots,Y_d(\lambda),R_1(\lambda),\ldots,R_k(\lambda))$$

and \boldsymbol{d} continuous functions

$$\eta_j : \mathbb{R}^m \to \mathbb{R}_+, \quad 1 \le j \le d$$

such that $B^{(\lambda)}$ reduces to the form

$$\begin{pmatrix} 0 & \eta(\lambda) & 0\\ -\eta(\lambda) & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}),$$

where

$$\eta(\lambda) := \operatorname{diag}\left(\eta_1(\lambda), \ldots, \eta_d(\lambda)\right) \in \mathcal{M}_d(\mathbb{R}),$$

and each $\eta_j(\lambda) > 0$ is smooth and homogeneous of degree 1 in $\lambda = (\lambda_1, \cdots, \lambda_m)$, hence the basis vectors are chosen to depend smoothly on λ in Λ .

2-step stratified Lie group without MW condition

Decompose \mathfrak{g}_1 as

$$\mathfrak{g}_1 = \mathfrak{p}_\lambda \oplus \mathfrak{q}_\lambda \oplus \mathfrak{r}_\lambda$$

with

$$p_{\lambda} := \operatorname{span}_{\mathbb{R}} \left(X_1(\lambda), \dots, X_d(\lambda) \right), \mathfrak{q}_{\lambda} := \operatorname{span}_{\mathbb{R}} \left(Y_1(\lambda), \dots, Y_d(\lambda) \right), \mathfrak{r}_{\lambda} := \operatorname{span}_{\mathbb{R}} \left(R_1(\lambda), \dots, R_k(\lambda) \right).$$

Then we have the decomposition $\mathfrak{g} = \mathfrak{p}_{\lambda} \oplus \mathfrak{q}_{\lambda} \oplus \mathfrak{r}_{\lambda} \oplus \mathfrak{g}_{2}$. Further we can write

$$(X, Y, R, T) = \sum_{j=1}^{d} x_j(\lambda) X_j(\lambda) + \sum_{j=1}^{d} y_j(\lambda) Y_j(\lambda) + \sum_{j=1}^{k} r_j(\lambda) R_j(\lambda) + \sum_{j=1}^{m} t_j T_j(\lambda) Y_j(\lambda) + \sum_{j=1}^{k} r_j(\lambda) Y_j(\lambda) + \sum_{j=1}^{$$

and denote it by (x,y,r,t) suppressing the dependence of λ which will be understood from the context.

2-step stratified Lie group without MW condition

For
$$(\lambda, \nu, w)$$
 in $\Lambda \times \mathbb{R}^k \times \mathbb{R}^N$ with

$$w = (x, y, r, t) \in \mathbb{R}^d \oplus \mathbb{R}^d \oplus \mathbb{R}^k \oplus \mathbb{R}^m = \mathbb{R}^N,$$

we define the irreducible unitary representations of \mathbb{R}^N , equipped with the group law defined above, on $L^2(\mathbb{R}^d)$

$$(\pi_{\lambda,\nu}(w)\phi)(\xi) := \exp\left(i\sum_{j=1}^{m}\lambda_j t_j + i\sum_{j=1}^{k}\nu_j r_j + i\sum_{j=1}^{d}\eta_j(\lambda)\left(y_j\xi_j + \frac{1}{2}x_jy_j\right)\right)$$
$$= e^{i\langle\nu,r\rangle}e^{i\langle\lambda,t\rangle}e^{i\sum_{j=1}^{d}\eta_j(\lambda)\left(y_j\xi_j + \frac{1}{2}x_jy_j\right)}\phi(\xi + x)$$
$$= e^{i\langle\nu,r\rangle}e^{i\langle\lambda,t\rangle}e^{i\langle\eta(\lambda)\cdot(\xi + \frac{1}{2}x),y\rangle}\phi(\xi + x).$$

• G. B. Folland. Harmonic analysis in phase space. Annals of Mathematics Studies. 1989.

• M. W. Wong. Weyl transforms. Springer-Verlag, New York, 1998. We develop the (λ, ν) -Weyl transform $W^{\lambda,\nu}$ and (λ, ν) -Wigner transform $W_{\lambda,\nu}(f,g)$ on 2-step stratified Lie groups \mathbb{G} to prove the classic theorem of Stone and von Neumann for the 2-step stratified Lie group, which says in effect that any irreducible unitary representation of \mathbb{G} that is nontrivial on the center is equivalent to some $\pi_{\lambda,\nu}$.

Theorem (Stone and von Neumann)

Let π be any unitary representation of \mathbb{G} on a Hilbert space \mathcal{H} , such that for some $\lambda \in \Lambda$, $\pi(0,0,0,t) = e^{i\lambda t}I$. Then $\mathcal{H} = \bigoplus \mathcal{H}_{\alpha}$ where the \mathcal{H}_{α} are mutually orthogonal subspaces of \mathcal{H} , each invariant under π , such that $\pi|_{\mathcal{H}_{\alpha}}$ is unitarily equivalent to $\pi_{\lambda,\nu}$ for each α and some $\nu \in \mathbb{R}^k$. In particular, if π is irreducible then π is equivalent to $\pi_{\lambda,\nu}$.

2-step stratified Lie group without MW condition

For
$$(\lambda,
u,w)$$
 in $\Lambda imes \mathbb{R}^k imes \mathbb{R}^N$ with

$$w = (x, y, r, t) \in \mathbb{R}^d \oplus \mathbb{R}^d \oplus \mathbb{R}^k \oplus \mathbb{R}^m = \mathbb{R}^N.$$

Definition (Fourier transform)

The Fourier transform of the function $f \in L^1(\mathbb{G})$ at the point

 $(\lambda,\nu)\in\Lambda\times\mathbb{R}^k$

is a unitary operator acting on $L^2(\mathbb{G})$ with

$$\mathcal{F}(f)(\lambda,\nu) = (\hat{f}(\lambda,\nu) := \int_{\mathbb{G}} f(w)\pi_{\lambda,\nu}(w^{-1})dw.$$

Further, the Fourier transform can be extended to an isometry from $L^2(\mathbb{G})$ onto the Hilbert space of two-parameter families $A = \{A(\lambda, v)\}$ of operators on $L^2(\mathbb{R}^d)$ which are Hilbert-Schmidt for almost every $(\lambda, v) \in \Lambda \times \mathbb{R}^k$, with $\|A(\lambda, v)\|_{\mathrm{HS}(L^2(\mathbb{R}^d))}$ measurable and with norm

$$\|A\| := \left(\iint_{\Lambda \times \mathbb{R}^k} \|A(\lambda, v)\|_{\mathrm{HS}(L^2(\mathbb{R}^d))}^2 \operatorname{Pf}(\lambda) d\nu d\lambda \right)^{\frac{1}{2}} < \infty,$$

where $Pf(\lambda) := \prod_{j=1}^{d} \eta_j(\lambda)$ is the Pfaffian of $B^{(\lambda)}$.

Lemma (Fourier-Plancherel formula)

There exists some constant $\kappa > 0$ depending only on the choice of the group such that, for any $f \in L^1(\mathbb{G}) \cap L^2(\mathbb{G})$, there holds

$$\int_{\mathbb{G}} |f(w)|^2 dw = \kappa \iint_{\Lambda \times \mathbb{R}^k} \left\| \mathcal{F}(f)(\lambda, \nu) \right\|_{HS\left(L^2\left(\mathbb{R}^d\right)\right)}^2 \operatorname{Pf}(\lambda) d\lambda d\nu.$$

Lemma (Inversion formula)

For $f \in L^1(\mathbb{R}^N)$ and almost every $w \in \mathbb{R}^N$, the following inversion formula holds:

$$f(w) = \kappa \iint_{\Lambda \times \mathbb{R}^k} \operatorname{tr} \left((\pi_{\lambda, \nu}(w))^* \mathcal{F}(f)(\lambda, \nu) \right) \operatorname{Pf}(\lambda) d\lambda d\nu$$

with the same constant $\kappa > 0$.

2-step stratified Lie group without MW condition

We can now define the sub-Laplacian ${\mathcal L}$ on ${\mathbb G}$ by

$$\mathcal{L} = -\Delta_x - \Delta_y - \Delta_r - \frac{1}{4} \left(|x|^2 + |y|^2 \right) \Delta_t + \sum_{s=1}^m \sum_{j=1}^d \left\{ - \left(B_s y, e_j \right) \frac{\partial}{\partial x_j} + \left(x, B_s e_j \right) \frac{\partial}{\partial y_j} \right\} \frac{\partial}{\partial t_s}.$$

By taking the Fourier transform of the sub-Laplacian \mathcal{L} with respect to t, we get parametrized λ -twisted sub-Laplacian $\mathcal{L}^{\lambda}, \lambda \in \mathbb{R}^{m}$, given by

$$\mathcal{L}^{\lambda} = -\Delta_x - \Delta_y - \Delta_r + \frac{1}{4} \left(|x|^2 + |y|^2 \right) |\lambda|^2 - i \sum_{j=1}^d \left\{ - \left(B^{(\lambda)}y, e_j \right) \frac{\partial}{\partial x_j} + \left(x, B^{(\lambda)}e_j \right) \frac{\partial}{\partial y_j} \right\},\$$

where we use $B^{(\lambda)} = \sum_{s=1}^{m} \lambda_s B_s$.

2-step stratified Lie group without MW condition

If $\eta = (\eta_1, \ldots, \eta_d) \in (\mathbb{R}^*_+)^d$ and $\alpha \in \mathbb{N}^d$, we define the rescaled Hermite function Φ^{λ}_{α} by

$$\Phi_{\alpha}^{\lambda} := |\eta|^{\frac{d}{4}} \Phi_{\alpha} \left(|\eta|^{\frac{1}{2}} \cdot \right),$$

where Φ_{α} is the usual Hermite function and define the special Hermite function

$$\Phi_{\alpha,\beta}^{\lambda}(x) = \operatorname{Pf}(\lambda)^{\frac{1}{2}} (2\pi)^{-\frac{d}{2}} \int_{\mathbb{R}^d} e^{i\eta(\lambda) \cdot px} \Phi_{\alpha}^{\lambda}\left(x + \frac{q}{2}\right) \overline{\Phi_{\beta}^{\lambda}\left(x - \frac{q}{2}\right)} dx.$$

In particular, they form an orthonormal basis of $L^2\left(\mathbb{R}^d\right)$ and we have the rescaled harmonic oscillator

$$\mathcal{H}(\lambda)\Phi_{\alpha}^{\lambda} := (-\Delta + |\eta \cdot x|^2)\Phi_{\alpha}^{\lambda} = \sum_{j=1}^{d} \eta_j(\lambda)(2\alpha_j + 1)\Phi_{\alpha}^{\lambda}.$$

We therefore can write

$$\mathcal{F}(\mathcal{L}f)(\lambda,\nu)(u) = \mathcal{F}(f)(\lambda,\nu)\left(\mathcal{H}(\lambda) + |\nu|^2\right)(u).$$

Theorem

For $\lambda \in \Lambda, \nu \in \mathbb{R}^k$, one has the formula

$$\mathcal{L}^{\lambda}(\Phi_{\alpha,\beta}^{\lambda}) = \left(\sum_{j=1}^{d} \eta_j(\lambda)(2\alpha_j+1) + \sum_{j=1}^{k} \nu_j^2\right) \Phi_{\alpha,\beta}^{\lambda}.$$

Applications

Heat kernels of $\mathcal{H}(\lambda)$

The associated heat kernel of the rescaled harmonic oscillator $\mathcal{H}(\lambda)$ is

$$G_{\tau}(x) = \prod_{j=1}^{d} \frac{1}{2\sinh(\eta_j(\lambda)\tau)} \exp\left\{-\sum_{j=1}^{d} \frac{\eta_j(\lambda) |x_j|^2}{2} \coth(\eta_j(\lambda)\tau)\right\},\$$

i.e., $G_{ au}(x)$ satisfies the heat equation

$$\begin{split} &\frac{\partial G_{\tau}}{\partial \tau} + \sum_{j=1}^{d} \left(\eta_j^2(\lambda) x_j^2 - \frac{\partial^2}{\partial x_j^2} \right) G_{\tau}(x) = 0, \\ &\lim_{\tau \to 0} \int_{\mathbb{R}^d} G_{\tau}(x) f(x) dx = f(0). \end{split}$$

Applications

Now, we consider the initial-value problem given by

$$\begin{cases} \partial_{\tau} u(\omega, t, \tau) + (\mathcal{L}u)(w, t, \tau) = 0, \\ u(\omega, t, 0) = f(\omega, t), \\ \omega = (z, r) \in \mathbb{R}^{2d+k}, t \in \mathbb{R}^m, \tau > 0. \end{cases}$$

By taking the Fourier transform with respect to t and evaluated at λ , we get an initial-value problem for the heat equation governed by the λ -twisted sub-Laplacian \mathcal{L}^{λ} , i.e.

$$\begin{cases} \partial_{\tau} u_{\lambda}(\omega,\tau) + (\mathcal{L}^{\lambda} u_{\lambda})(\omega,\tau) = 0, \\ u_{\lambda}(\omega,0) = f_{\lambda}(\omega), \end{cases}$$

 $\text{for all } \omega = (z,r) \in \mathbb{R}^{2d+k}, \tau > 0 \text{ and } \lambda \in \mathbb{R}^m \backslash \{0\}.$

Applications

With the heat kernels of $\mathcal{H}(\lambda)$, we can obtain the heat kernel of \mathcal{L} .

Heat kernel of ${\boldsymbol{\mathcal{L}}}$

For all f in $L^2(\mathbb{G}), e^{-\tau \mathcal{L}} f = f *_{\mathbb{G}} K_{\tau}$, where

$$K_{\tau}(\omega,t) = (2\pi)^{-(d+m)} \int_{\mathbb{R}^m} e^{-it \cdot \lambda} e^{-\tau|\nu|^2} \prod_{j=1}^d \frac{\eta_j(\lambda)}{2\sinh(\eta_j(\lambda)\tau)} \\ \times \exp\left\{-\frac{\eta_j(\lambda)\omega_j^2}{4}\coth(\eta_j(\lambda)\tau)\right\} d\lambda$$

for all $(\omega, t) \in \mathbb{G}$.

Applications

Why calculate heat kernels ?

- Heat kernel estimates;
- Li-Yau/gradient estimates;
- Long/short time asymptotics;
- Restriction theorems;
-

Thanks for your attention!

Recent works on 2-step nilpotent Lie groups

- Ruzhansky et. al: Wave equations and Gevrey spaces;
- Bahouri et. al: Dispersive estimates and Fourier restriction theorems
- Kumar et. al: Trace class and Hilbert-Schmidt operators Chang et. al: Laguerre calculus;
- Thangavelu et. al: Hardy/Beurling's theorem;
- Garofalo et. al: Variational problems;
- Müller et. al: Singular integral and multipliers;

•